控制系统的能控性和能观测性

合集下载

控制系统的能控性和能观性课件

控制系统的能控性和能观性课件

唯一的,因为我们关心的只是它能否将
驱动到
,而不计较
的轨迹如何。
2. 线性连续时变系统的能控性定义
线性连续时变系统:
3. 离散时间系统 这里只考虑单输入的n阶线性定常离散系统:
3
3.2 线性定常系统的能控性判别
线性定常系统能控性判别准则有两种形式,一种是先将系统进行状态变
换,把状态方程化为约旦标准型
3.1 能控性的定义 3.2 线性定常系统的能控性判别 3.3 线性连续定常系统的能观性 3.4 离散时间系统的能控性与能观性 3.5 时变系统的能控性与能观性 3.6 能控性与能观性的对偶关系 3.7 状态空间表达式的能控标准型与能观标准型 3.8 线性系统的结构分解 3.9 传递函数阵的实现问题 3.10 传递函数中零极点对消与状态能控性和能观
一地确定任意初始状态矢量
,则系统是完全能观的,现根据此定义推
导能观性条件。从式(1),有:
(3)
若系统能观,那么在知道
时,应能确定


,现从式(7)可得:
写成矩阵形式:
16
(4) 有唯一解的充要条件是其系数矩阵的秩等于 。这个系数矩阵称为 能观性矩阵。仿连续时间系统,记为N。即
(5)
17
3.5 时变系统的能控性与能观性
3.5.1 能控性判别 1.有关线性时变系统能控性的几点说明 1)定义中的允许控制 ,在数学上要求其元在 绝对平方可积的,即
区间是
这个限制条件是为了保证系统状态方程的解存在且唯一。 2)定义中的 ,是系统在允许控制作用下,由初始状态 目标状态(原点)的时刻。
转移到
3)根据能控性定义, 可以导出能控状态和控制作用之问的关系式。 4)非奇异变换不改变系统的能控性。

能控性与能观性

能控性与能观性
c11 c12 c c22 21 y (t ) c m1 cm 2 c1n e1t x10 c2 n e2t x20 nt cmn e xn 0
假使输出矩阵C中有某一列全为零,譬如说第2列中c12, c22, …, cm2均为零,则在 t y(t)中将不包含 e 2 x20这个自由分量,亦即不包含 x2(t)这个状态变量,很明显,这 个x2(t)不可能从y(t)的测量值中推算出来,即x2(t)是不能观的状态。
系统是状态完全能控的
x 2 1 x2 b2u y c1 c2 x
1 1 b1 x x u; 0 0 1
对于式(3-5)的系统
x 1 1 x1 x2 b1u x 2 1 x2
x2不受u(t)的控制,而为不能控的系统。
对式(3-3)的系统,系统矩阵A为对角线型,其标量微分方程形式为
x 1 1 x1
x 2 2 x2 b2u
x 2
x 1
1 1 0 x x u; 0 1 b2
对于式(3-4)的系统
y c1 c2 x
x 1 1 x1 x2
c13 c23 c33
1 2 1t 1t 1t e x10 te x20 t e x30 2! x1 (t ) 1t 1t e x20 te x30 这时,状态方程的解为 x(t ) x2 (t ) x ( t ) 3 1t e x 30
从而
y1 (t ) c11 c12 y (t ) y2 (t ) c21 c22 y3 (t ) c31 c32

控制系统的能控性与能观性

控制系统的能控性与能观性
▪ 一个系统的传递函数阵所表示的是该系统 既能控又能观的那一部分子系统(卡尔曼吉伯特定理)。
系统能控性与能观性的对偶关系
▪ 卡尔曼对偶原理
若有两系统 x1 A1x1 B1u1 x2 A2x2 B2u2
y1 C1x1
y2 C2x2
满足条件 A2 A1T , B2 C1T , C2 B1T
▪ 例:已知系统的状态方程如下,判别其能控性
2 1 3 2 5 4
[B
AB
A2
B]
1
1
2
2
4
4
-1 -1 -2 -2 -4 -4
▪ 系统的能控矩阵M的秩等于2,即rankM=2,所 以系统是不完全能控的。
▪ 3. 通过系统的输入和状态矢量间的传递函数来判别 系统的能控性
▪ 例:(1)
4 5 5
x
1
0
1
1
x
0 b2
u;
y
c1
c2 x
画出模拟结构图
(3-2)
u b2
x1
c1
1
x2
c2
y
2
u b2
x2
1
c2
x1 c1
y
1
▪ 由图可以看出: (3-1) 的系统模拟结构 图中状态变量 x1 是一个与 u(t) 无任 何联系的孤立部分,也就是说 x1 不 受 u(t)的控制,因此,x1 是不能控的。 尽管 x2受到的 u(t) 控制,但整个系统仍
( An1)T CT T
CAn1
满秩,即RankN=n。
1 1 0 x 2 1 x 1 u
y 1 0 x
N
C CA
1 0
1 1
rankN=2,满秩,系统是能观的。

控制系统的能控性和能观测性

控制系统的能控性和能观测性


根据定理3-5, 系统(1)能控 ; 系统(2)不能控
(定理(3-4)、定理(3-5)不仅可以判断系统能控性,而且对 于不能控的系统,可以知道哪个状态分量不能控。) 说明:1.上面通过几个定理给出判断系统能控性的判据。虽然它们 的表达形式、方法不同,但是,在判断线性定常系统能控性时是等 价的。
2.在线性连续定常系统中,由于能达性和能控性是等价的,因此, 能控性判据同样可以判断能达性。
一般情况下,系统方程可以表示为
Ax Bu x y Cx
(1)
状态能控与否,不仅取决于B 阵(直接关系),还取决于A 阵(间 接关系)。 系统能观测问题是研究测量输出变量 y 去确定状态变量的问题。
y(t )为输出量,两个电 例3-3 电路如下图所示。选取 u(t )为输入量, 感上的电流分别作为状态变量,则系统方程为
λi Ji 0
1 λi
0 1 阵 B 中与每一个约当子块最下面 一行对应行的元素不全为零。
例3-7 有如下两个线性定常系统,判断其能控性。
0 4 1 0 (1) x 0 4 0 x 4 u 0 2 0 3 0 4 1 4 2 (2) x 0 4 0 x 0 0 u 0 2 0 3 0
3)只有整个状态空间中所有的有限点都是能控的,系统才是能 控的。 4)满足(3)式的初始状态,必是能控状态。
x(0) e Aτ Bu( τ ) d τ
0
t1
(3)
5)当系统中存在不依赖于 u(t ) 的确定性干扰 f (t ) 时,f (t ) 不会改 变系统的能控性。 Ax Bu f (t ) x (4)

第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性

第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。

能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。

能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。

但是⼀般没有特别指明时,指的都是状态的可控性。

所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。

4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。

反之,只要有⼀个状态不可控,我们就称系统不可控。

对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。

4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。

现代控制理论第三章

现代控制理论第三章
方法一: 直接根据状态方程的A阵和B阵
方法二:
转化为约旦标准形 ( Aˆ, Bˆ ) ,再根据 Bˆ 判断
方法三: 传递函数
3.2 线性连续系统的能控性
方法一:线性定常连续系统(A,B), 其状态完全能控的 充要条件是其能控性矩阵的秩为n,即:
rankQc = n Qc = [ B AB A2B … An 1B ]
0 0 2
3
4 1 0
4 2
(2)
x (t)
0
4
0 x(t) 0 0u(t)
0 0 2
3 0
3.2 线性连续系统的能控性 方法三:
3.2 线性连续系统的能控性 例:从输入和状态矢量间的传递函数确定其能控性?
3.2 线性连续系统的能控性 例:判断线性连续系统能控性?
解:
3.2 线性连续系统的能控性
3.3 线性系统的能观测性
例:判断能观测性?
x (t)
2 1
1 3
x(t
)
1
1
u(t)
y(t
)
1 1
0 0 x(t)
解:
C Q0 CA
10 1 0
2 1 2 1
rankQo = 2 = n
系统能观测
3.3 线性系统的能观测性
例: 若系统的状态空间表达式为
x (t)
a d
5
x(t
)
1
7
(2)
x (t)
5
x(t)
1
y(t) 0 4 5x(t)
3 2 0 y(t) 0 3 1 x(t)
(3)
3 1 0
0 3 1
x (t) 0 0 3
x(t)
2

现代控制理论第三章线性系统的能控性和能观测性

现代控制理论第三章线性系统的能控性和能观测性

1 x1 u x 2 2 x2 u x y x x 1 2
1 x
u
1 s 1 s
2
x1
y
x2
2 x
由于状态变量x1、x2都受控于输入u,所以系统 是能控的;输出y能反映状态变量x1,又能反映状 态变量x2的变化,所以系统是可观测的。 即状态变量x1能控、可观测;状态变量x2能控、 可观测。
任意初态 x(t0 ) x 零终态 x(t f ) 0
状态完全能控
Байду номын сангаас
第 三章 线性控制系统式的能控性和能观测性
②把系统的初始状态规定为状态空间的原点, 即 x(t 0 ) 0,终端状态规定为任意非零有限点, 则可达定义表述如下: 对于给定的线性定常系统
Ax Bu ,如果 x
存在一个分段连续的输入 u (t ),能在 [t 0 , t f ] 有限时间间隔内,将系统由零初始状态 x(t 0 ) 转移 到任一指定的非零终端状态 x(t f ) ,则称此系统 是状态完全可达的,简称系统是可达的(能达的)。 任意初态 x(t0 ) 0 零终态 x(t f ) x 状态完全可达
第 三章 线性控制系统式的能控性和能观测性
1. 直接由A,B矩阵的结构判断系统的能控性 定理: 系统
( A, B )

A(t )x B(t )u x y C (t )x D(t )u
状态完全能控的充分必要条件是其能控性矩阵
Qk [ B AB A2 B An1 B]
一、线性定常连续系统状态能控性的定义 定义3.1(状态能控性定义):
Ax Bu,如果存在一个 对于线性定常系统 x 分段连续的输入u(t),能在有限时间间隔[t0,tf]内, 使得系统从某一初始状态x(t0)转移到指定的任一 终端状态x(tf) ,则称此状态是能控的。若系统的 所有状态都是能控的,则称此系统是状态完全能 控的,简称系统是能控的。

(整理)控制系统的能控性和能观测性

(整理)控制系统的能控性和能观测性

第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。

可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。

二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。

判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。

对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于不能观测的系统,其不能观测的状态分量与y 既无直接关系, 又无间接关系。状态是否能观测不仅取决于C,还与A 有关。
MIN CASE
x 2 ( 0)
2 1 x
s
x2
x1 (0)
1 x
1 s
x1
y
u
2
不完全能控但能观测
y
R u(t) R
C
R
x
不能控不能观测电路
R
u(t )
1 s
1
x1 (0)
一般情况下,系统方程可以表示为
Ax Bu x y Cx
(1)
状态能控与否,不仅取决于B 阵(直接关系),还取决于A 阵(间 接关系)。 系统能观测问题是研究测量输出变量 y 去确定状态变量的问题。
y(t )为输出量,两个电 例3-3 电路如下图所示。选取 u(t )为输入量, 感上的电流分别作为状态变量,则系统方程为
3.2.2 线性时变系统的能控性判据 线性时变系统的状态方程为
A(t ) x B(t )u x
x (t0 )
(13)
定理3-6 状态在时刻 t 0 能控的充分必要条件是存在一个有限时 间 t1 t0 ,使得函数矩阵 (t0 , t1 ) B(t ) 的n个行在 [t1 , t0 ] 上线性无关。 (证明略)
y Cx 0 1x
系统状态转移矩阵为
0 如果初始状态为 x (0) 0
t 3t e e 1 e At t 3t 2 e e
e t e 3t e t e 3t
系统状态方程的解为 1 t (t τ ) x(t ) e u(τ ) d τ 1 0 可见,不论加入什么样的 输入信号,总是有 x1 x2
i t1 i 0 0
n 1
(8)
βi1 β t1 i2 a ( τ ) u ( τ ) d τ i 0 i βir
(i 0,1,, n 1)
于是
x (0) [ B
β0 β AB An-1 B ] 1 β n 1
0 4 1 0 (1) x 0 4 0 x 4 u 0 2 0 3 0 4 1 4 2 (2) x 0 4 0 x 0 0 u 0 2 0 3 0
1 L QC [b, Ab] 0
R3 R4 1 R1 R2 2 L R R R R 2 3 4 1 1 R2 R4 LC R R R R 1 2 3 4
R2 R4 R1 R2 R3 R4
QC [ B AB
A2 B An1 B]
(6)
(7)
rankQC n
证明
应用凯-哈定理,有
e Aτ a0 ( τ ) I a1 ( τ ) A an1 ( τ ) An-1 ai ( τ ) Ai
上式代入(3)式
n 1 i 0
x(0) A B ai ( τ )u( τ ) d τ
解 根据定理3-4, 系统(1) 不能控 ; 系统(2)能控。
定理3-5(2)式的线性定常系统的矩阵 A 具有重特征值,λ1、λ2 、
l 2 重、 λ3 、…、 λk 分别为 l1 重、 l3 重、…、l k 重。

l
i 1
k
i
n , λi λ j ,(i j ) 经过非奇异线性变换,得到约当阵
能控标准形和能观测标准形 能控性、能观测性与传递函数的关系 系统的结构分解 实现问题 使用MATLAB判断系统的能控性和能观测性
3.1
引言
首先,通过例子介绍能控性、能观测性的基本概念。
例3-1 电路如下图所示。如果选取电容两端的电压 uC 为状态变量, u(t ) x 。 uC 电桥平衡时,不论输入电压 如何改变, 即: x(t ) uC不随着 u(t ) 的变化而改变,或者说状态变量不受 u(t ) 的控 制。即:该电路的状态是不能控的。 显然,当电桥不平衡时, 该电路的状态是能控的。
x1
1 s
2
x 2 ( 0)
x2 y(t )
该系统是不完全能观测的
注:从工程实际角度考虑,一个实际系统为能观测的概率几乎等于1。
3.2
1. 能控性定义
能控性及其判据
3.2.1 线性定常系统的能控性及其判据
线性定常系统的状态方程为
Ax Bu x
(2)
给定系统一个初始状态 x (t0 ) ,如果在 t1 t0 的有限时间区间[t0 , t1 ] 内,存在容许控制 u(t ) ,使 x (t1 ) 0 ,则称系统状态在 t 0 时刻是 能控的;如果系统对任意一个初始状态都能控,则称系统是状态完 全能控的。 说明: 1) 初始状态 是状态空间中的任意非零有限点,控制的目标是 状态空间的坐标原点。(如果控制目标不是坐标原点,可以通过坐 标平移,使其在新的坐标系下是坐标原点。)
J1 x 0
J2
0 x Bu Jk
λi Ji 0
1 λi
0 1 λi
(12)
则系统能控的充分必要条件是矩阵 B 中与每一个约当子块最下面 一行对应行的元素不全为零。
例3-7 有如下两个线性定常系统,判断其能控性。
(9)
如果系统能控,必能够从(9)式中解得 样就要求
0 , 1 , … , n1 。这
rankQC rank[B AB A2 B An1 B] n
(本判据本身很简单,因此是最为常用的方法。)
例 图示电路,判断系统能控性条件 L iL
R1
R2
C
u
R3 uC R 4
解 选取状态变量x1=iL,x2=uC,得系统的状态方程为:
2)如果在有限时间区间[t0 , t1 ] 内,存在容许控制 u(t ) ,使系统 x (t1 ) ,则称系统是状态 从状态空间坐标原点推向预先指定的状态 能达的;由于连续系统的状态转移矩阵是非奇异的,因此系统的能 控性和能达性是等价的。
3)只有整个状态空间中所有的有限点都是能控的,系统才是能 控的。 4)满足(3)式的初始状态,必是能控状态。
例3-2 电路如下图所示,如果选择电容C1、 C2两端的电压为状态 x1 uC1 , x2 uC 2 ,电路的输出 y 为C2上的电压, 变量,即: 即 y x2 ,则电路的系统方程为
2 1 1 x Ax bu x 1u 1 2
rank[ λi I A B] n (i 1,2,, n) (证明略)
定理3-4 (2)式的线性定常系统的矩阵 A 的特征值
(10)
(i 1,2,, n) 将系统经过非奇异线性变换变换成对角阵
λi 互异,
0 λ1 λ 2 x Bu (11) x 0 λ n 则系统能控的充分必要条件是矩阵 B 中不包含元素全为零的行。
第3章 控制系统的能控性和能观测性
在多变量控制系统中,能控性和能观测性是两个反映控制系统 构造的基本特性,是现代控制理论中最重要的基本概念。 本章的内容为: 1. 2. 3. 4. 引言——能控性、能观测性的基本概念 能控性及其判据 能观测性及其判据 离散系统的能控性和能观测性
5.
对偶原理
6. 7. 8. 9. 10.
(可以应用定理3-2证明,详见教材87页)
例3-6 有如下两个线性定常系统,判断其能控性。
0 7 2 x 0 u (1) x 5 1 0 9 0 7 0 1 (2) x 4 0u x 5 1 0 7 5

1 x
1统能控的充分必要条件是向量组{bl11、bl12、bl13}线性 无关以及{bl21} 不为零向量。
定理3-3 (PBH判别法) (2)式的线性定常系统为状态能 控的充分必要条件是,对A 的所有特征值 λi,都有
定理3-7 状态在时刻 t 0 能控的充分必要条件是存在一个有限时 间 t1 t0 ,使得以下格拉姆矩阵非奇异。
WC [t0 , t1 ] (t0 , t ) B(t ) BT (t ) T (t0 , t ) d t
t0
t1
(14)
定义:M k 1 (t ) A(t ) M k (t ) d M k (t )
x(t ) e x(0) eA(t τ ) bu (τ ) d τ
At 0 t
为了简便起见,令 u(t ) 0

x(t ) e At x(0)
y(t ) C e At x(0) [ x1 (0) x2 (0)]e3t
从上式可知,不论初始状态为什么数值,输出 仅仅取决于其差 值 [ x1 (0) x2 (0)] 。当 x1 (0) x2 (0) ,则输出恒等于零。显然,无法通过对 输出的观测去确定初始状态,称这样的系统是不能观测的。 一般情况下,系统方程如式(1)所示,状态能观测与否,不仅取 决于C 阵(直接关系),还取决于A阵(间接关系)。
即(R1R4=R2R3)时,系统不能控。否则系统能控。
1 0 1 0 x 1 0 1 1 0 2 0 0 bl11 0 0 1 0 bl12 1 2 u 0 1 bl13 1 1 0 1 bl 21
-2 1 1 x Ax Bu x u 1 -2 0
y Cx 1 1x
系统状态转移矩阵为
t 3t e e 1 e At t 3t 2 e e
相关文档
最新文档