精品高二数学必修四《任意角和弧度制》教案

合集下载

《任意角和弧度制》教案

《任意角和弧度制》教案

《任意角和弧度制》教案《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1《任意角和弧度制》教案【教学目标】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写.3.了解弧度制,能进行弧度与角度的换算.4.认识弧长公式,能进行简单应用.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.5.了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题.【导入新课】复习初中学习过的:角的度量、圆心角的度数与弧的度数及弧长的关系提出问题:1.初中所学角的概念.2.实际生活中出现一系列关于角的问题.3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角,点O是角的顶点,射线OA,OB分别是角的终边、始边.:在不引起混淆的前提下,“角”或“”可以简记为.2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角.说明:零角的始边和终边重合.3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与某轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例如:30,390,330都是第一象限角;300,60是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90,180,2等等.说明:角的始边“与某轴的非负半轴重合”不能说成是“与某轴的正半轴重合”.因为某轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30k360kZ的形式;反之,所有形如30k360kZ的角都与30角的终边相同.从而得出一般规律:所有与角终边相同的角,连同角在内,可构成一个集合S|k360,kZ,即:任一与角终边相同的角,都可以表示成角与整数个周角的和.说明:终边相同的角不一定相等,相等的角终边一定相同.例1在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)120;(2)640;(3)95012.解:(1)120240360,所以,与120角终边相同的角是240,它是第三象限角;(2)640280360,所以,与640角终边相同的角是280角,它是第四象限角;(3)95012129483360,所以,95012角终边相同的角是12948角,它是第二象限角.例2若k3601575,kZ,试判断角所在象限.解:∵k3601575(k5)360225,(k5)Z∴与225终边相同,所以,在第三象限.例3写出下列各边相同的角的集合S,并把S中适合不等式360720的元素写出来:(1)60;(2)21;(3)36314.解:(1)S|60k360,kZ,S中适合360720的元素是601360300,60036060,601360420.(2)S|21k360,kZ,S中适合360720的元素是21036021,211360339,212260699(3)S|36314k360,kZS中适合360720的元素是36314236035646,363141360314,36314036036314.例4写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边相同的角分别为0k360,90k360,(kZ);(3)第一象限角的集合就是夹在这两个终边相同的角中间的角的集合,我们表示为:M|k36090k360,kZ.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90k360180k360,kZ;N|90k360180k360,kZ;Q|2k360360k360,kZ.说明:区间角的集合的表示不唯一.例5写出y某(某0)所夹区域内的角的集合.解:当终边落在y某(某0)上时,角的集合为|45k360,kZ;当终边落在y某(某0)上时,角的集合为|45k360,kZ;所以,按逆时针方向旋转有集合:S|45k36045k360,kZ.二、弧度制与弧长公式1.角度制与弧度制的换算:∵360=2(rad),∴180=rad.∴1=180rad0.01745rad.1801rad57.305718.oSl2.弧长公式:lr.由公式:lnrlr.比公式l简单.r1801lR,其中l是扇形弧长,R是圆的半径.2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S注意几点:1.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略,如:3表示3rad,in表示rad角的正弦;2.一些特殊角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6把下列各角从度化为弧度:(1)252;(2)1115;(3)30;(4)6730.解:(1)/71(2)0.0625(3)(4)0.37556变式练习:把下列各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o.解:(1);(2)18720;(3).63例7把下列各角从弧度化为度:(1);(2)3.5;(3)2;(4)35.4解:(1)108o;(2)200.5o;(3)114.6o;(4)45o.变式练习:把下列各角从弧度化为度:(1)43;(2)-;(3).12310解:(1)15o;(2)-240o;(3)54o.例8知扇形的周长为8cm,圆心角为2rad,,求该扇形的面积.解:因为2R+2R=8,所以R=2,S=4.课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3..弧度制下的弧长公式和扇形面积公式,并灵活运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

高中数学教案《任意角和弧度制》

高中数学教案《任意角和弧度制》

教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。

2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。

二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。

●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。

三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。

●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。

●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。

2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。

●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。

●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。

3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。

●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。

●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。

4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。

人教版高中必修41.1任意角和弧度制教学设计

人教版高中必修41.1任意角和弧度制教学设计

人教版高中必修4-1.1 任意角和弧度制教学设计一、教学目标1.知识目标:理解弧长、辐角和弧度的概念,掌握弧度制与角度制的相互转换方法。

2.技能目标:能够准确地表示任意角的大小,计算圆的周长和面积。

3.情感目标:通过实际操作,培养学生良好的数学思维和解决问题的能力。

二、教学重点难点1.重点:弧长、辐角和弧度的概念,弧度制与角度制的相互转换。

2.难点:如何正确理解并计算任意角的大小,如何正确应用弧度制与角度制。

三、教学方法1.讲授与示范相结合的方法。

通过讲解和演示弧长、辐角和弧度的概念,引导学生理解概念。

2.反思式探究的方法。

通过完成一些练习题和实际操作,引导学生独立思考、合作探究和反思总结。

3.讨论交流的方法。

引导学生在小组内相互探讨、交流解题经验,加深对概念的理解和掌握技能。

四、教学过程1. 导入(5分钟)通过实际操作,向学生呈现“用刀割一个披萨”的活动,引导学生认识切割的式样以及分数的概念。

2. 概念讲解(25分钟)1.弧和弧长的概念:引导学生理解弧的概念,了解计算弧长的公式及其证明过程。

2.辐角和角的概念:引导学生掌握辐角和角的概念,了解任意角的大小的概念及其计算方法。

3.弧度制:介绍弧度制的概念及其优缺点,讲解弧度制与角度制的相互转换方法及应用。

3. 讲解示范(15分钟)示范如何计算各种角的大小及弧长的计算、圆的周长和面积的计算,并且提供实例进行实操。

4. 练习与应用(25分钟)1.对学生提供练习题及实际问题,引导学生计算弧长、辐角、面积和周长。

2.在小组内讨论交流、合作解题,加深对概念及计算方法的理解。

5. 总结反思(5分钟)互相交流解题经验,讲述探究过程,反思总结此次学习内容。

五、教学评价方法1.作业评价:检查学生的学习状况,对正确掌握本节课内容的学生进行表扬和奖励,帮助没有学好的学生弥补差漏。

2.学生综合评价:通过学生自我评价、小组评价、教师评价的方式,将本节课的学习成果进行综合评价。

《任意角和弧度制》课堂导入设计

《任意角和弧度制》课堂导入设计
《任意角和弧度制》课堂导入设计
能力维度
□学情分析 □教学设计 √学法指导 □学业评价
所属环境
√多媒体教学环境 □混合学习环境 □智慧学习环境
微能力点
A5技术支持的课堂导入
教学环境
多媒体教学环境
教学主题
任意角和弧度制
教学对象
高一学生
教学内容
本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。
自评等级
□优秀☑合格 □不合格
2、通过生活中常见的事例,引发学生的思考,让学生带着问题进入新课。
媒体资源
自由体操片段,图片
技术工具
钉钉课堂直播
导入设计
展示自由体操视频片段
发现问题:视频中出现了哪些角?学生带着问题观看视频,思考作答。
本课堂的导入设计旨在创设与主题相关的情境,通过视频导入引起学生注意,让学生能结合生活中的具体实例,感受角的概念的推广的必要性,引发学生的认知冲突,激发他们的学习兴趣和求知欲,让其认识到刻画这些角,不仅要用旋转量,还要有旋转方向,从而自然过渡到本节课的任意角概念。
教学目标
1.了解任意角的概念;
2.掌握正角、负角、零角及象限角的定义,理解任意角的概念;
3.掌握终边相同的角的表示方法;
4.会判断角所在的象限.
ห้องสมุดไป่ตู้教学重点
任意角的概念,象限角的表示,终边相同角的表示;

任意角和弧度制教案

任意角和弧度制教案

任意角和弧度制教案教案标题:任意角和弧度制教案教案目标:1. 了解任意角的概念,能够在坐标系中表示和定位任意角。

2. 理解弧度制的概念,能够在弧度制和度数制之间进行转换。

3. 掌握任意角的三角函数值的计算方法。

教学准备:1. 教师准备:教学投影仪、白板、笔记本电脑、教学PPT等。

2. 学生准备:纸和铅笔。

教学过程:Step 1: 引入1. 教师通过展示一张钟表图,引导学生思考角度的概念。

提问:你们平时见过哪些角度的度量方式?2. 学生回答后,教师解释度数制的概念,并引出本节课学习的内容:任意角和弧度制。

Step 2: 任意角的表示和定位1. 教师通过示意图和坐标系,解释任意角的表示方法。

提醒学生注意正角、负角和零角的特点。

2. 学生跟随教师的指导,在纸上练习绘制不同角度的示意图,并用坐标系表示和定位这些角。

Step 3: 弧度制的介绍和转换1. 教师给出弧度制的定义:1弧度是半径等于1的圆的弧所对应的角。

2. 教师通过示意图和实际物体(如一根铁丝弯成的圆弧),展示弧度制的概念和计算方法。

3. 教师引导学生进行度数制和弧度制之间的转换练习,提供一些常见的转换例题。

Step 4: 任意角的三角函数值的计算1. 教师复习正弦、余弦和正切的定义,并介绍任意角的三角函数值的计算方法。

2. 教师通过示例演示三角函数值的计算步骤,引导学生进行练习。

Step 5: 拓展应用1. 教师提供一些与任意角和弧度制相关的实际问题,引导学生运用所学知识解决问题。

2. 学生个别或小组合作完成拓展应用题。

Step 6: 总结和归纳1. 教师带领学生总结本节课所学内容,并强调重点和难点。

2. 学生将所学知识进行整理和归纳,完成课堂笔记。

Step 7: 作业布置1. 教师布置相关的课后作业,包括练习题和思考题。

2. 学生完成作业,以便巩固所学知识。

教学评估:1. 教师观察学生在课堂上的参与度和理解程度。

2. 教师检查学生完成的课堂练习和作业,评估学生的掌握情况。

任意角与弧度制教案

任意角与弧度制教案

1、1任意角和弧度制一、教材说明:本节任意角和弧度制选自必修四第一章第一节二、三维目标(一)知识与技能(1)了解正、负角与零角的相关定义;(2)根据图形写出角及根据终边写出角的集合;(3)了解弧度制;(二)过程与方法(1)培养学生数型转化的思想;(2)训练学生思维活跃性,能够举一反三;(3)培养学生思维的抽象与具体转化的过程;(三)情感态度与价值观(1)增强学生观察生活中事物的规律能力;(2)在老师的引导下建立数学模型,把数学运用到生活中去;三、教学重难点(一)重点(1)根据图形写出任意角度数;(2)根据已知图形终边位置写出该终边所表示的角的集合;(二)难点根据终边写角的集合(三)教学设计(1)情境设计(2)教学过程(3)给出相关定义(4)举出例题,深化正负角定义(5)提出要点(6)提出关于终边相同,写出所有角所在集合(7)通过练习(教师引导,并作为主体练习),能够独立进行习题练习(8)学生自主练习、教师个别指导、师生互动(9)习题讲解(10)归纳总结(11)引出下堂课知识点:弧度制(12)布置作业四、教学过程(一)创设情境(1)墙上挂钟,在某段时间内,指针转过角度;(2)当手表不准时,我们旋转指针使之准时,这是指针转过的角度是多少?方向如何?(二)揭示课题(1)1、1任意角和弧度制(2)1、1、1任意角(三)复习旧知识顺时针、逆时针(四)给出例题(1)当指针快速顺时针由“12”调至“6”,指针转过多少度?(2)指针由“6”又调回到“12”是,转过角度如何?方向又怎样呢?(五)给出正角、负角定义(1)正角:逆时针方向旋转形成的角叫做正角;(2)负角:顺时针方向旋转形成的角叫做负角;(六)注意要点如果一条射线没有做任何旋转,则称它为零角。

(七)复习旧知识(1)0°—180°内所有角(2)周角(3)平角的整数倍所有角(八)新知识(1)任意角的表示方法;(2)判断当角的始变何种变相同时,角度是否相同.(九)给出任意角及象限角概念注意角的终边在轴上不叫做象限角。

人教版高中数学必修四教案1.1 任意角和弧度制 弧度制(2)

人教版高中数学必修四教案1.1 任意角和弧度制 弧度制(2)

一、教学目标重点:角度制与弧度制的互化;弧度制的运用. 难点::弧度的概念及其与角度的关系.知识点:角度制与弧度制的互化公式;弧长公式;扇形面积公式. 能力点:建立角的集合与实数集R 之间的一一对应关系.教育点:使学生通过弧度制的学习,理解并认识角度制与弧度制是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.自主探究点:利用对应成比例关系得出结论.训练(应用)点:角度制与弧度制的互化换算,弧度制的运用. 考试点:掌握角度制与弧度制的换算,并熟练的进行换算操作. 易错点:角度与弧度的单位写法易错. 易混点:角度和弧度的转换易混 二、引入新课:【师生活动】:教师:我们学习了角的概念的推广知道角可以分为哪几类?学生回答 “正角”与“负角”“0角”教师:要描述一个角的大小,通常用什么表示呢? 学生回答:是用度来表示的。

教师引出角度制的概念,那么1︒的角是如何定义的?学生:1︒的角可以理解为将圆周角分成360等份,每一等份的弧所对的圆心角就是1︒.它是一个定值,与所取圆的半径大小无关.有了它,可以计算弧长,公式为180n rl π=. 【设计意图】:温故而知新,引导学生切身感受角的弧度制引入的必要性. 三、探究新知: (一)弧度制的概念【师生活动】:教师:角除了以度为单位,还有分和秒,他们是六十进制的,计算不方便,角的度量是否也能用不同的单位制?学生分组讨论.教师引导:我们能用等于半径的弧所对的圆心角作为角的度量单位吗?这个弧度数是否与圆半径的大小有关?教师引导学生画出图形.在圆内作出AOB COD α∠=∠=当半径为1r 时,弧长1180n r AB π=(n α=︒) ,弧长与半径的比值为111180180n r AB n r r ππ==. 当半径为2r 时,弧长2180n r CD π=, 弧长与半径的比值为222180180n r CD n r r ππ==. 两比值相等.讨论结果:能.当圆心角一定时,它所对弧长与半径的比值是一定的,与半径大小无关.【设计意图】:学生亲手作图,感受角的弧度制与角度制是角的度量单位,都可以刻画角的大小,与角所在的圆半径无关。

高中数学必修4《任意角和弧度制》教案

高中数学必修4《任意角和弧度制》教案

高中数学必修4《任意角和弧度制》教案一、教学目标1. 理解任意角的概念,掌握任意角的几何性质;2. 理解弧度制的概念,掌握弧度制的基本用法;3. 掌握任意角的三角函数及其基本性质。

二、教学内容1. 任意角的定义和性质;2. 弧度制的概念和计算公式;3. 三角函数的定义、性质及其图象。

三、教学方法1. 归纳法、演示法、讨论法;2. 短片展示、综合练习。

四、教学步骤步骤一:导入新课1. 充分利用素材,抛出有关问题,启发学生思考,激发探究兴趣,从而引出新课。

2. 展示台湾百事可乐的广告,提问:“你们觉得这是哪种角度?”3. 解释任意角的概念,举一些例子,使学生了解不同角度的概念。

步骤二:学习任意角的定义和性质1. 任意角的定义和表示方法。

2. 讲解任意角的性质。

步骤三:学习弧度制的概念和计算公式1. 弧度的概念和推导过程。

2. 弧度与角度的换算公式及例题。

步骤四:学习三角函数的定义、性质及图象1. 正弦函数、余弦函数、正切函数的定义和图象。

2. 三角函数的性质及相互关系。

步骤五:练习讲解1. 小组讨论,练习几何问题。

2. 练习弧度制的换算,解答相关问题。

3. 课后作业:巩固基础知识,拓展思维应用。

五、教学反思本节课的核心是任意角和弧度制,由于任意角和弧度制是高中数学必修课程,因此教学难度较大,需要遵循步步深入的原则,先从角度和任意角说起,再讲述弧度制及其换算公式,最后介绍三角函数及其相关性质。

在教学过程中,教师应运用多种教学方法,使学生更直观地理解这些概念和公式,同时也需要拓展学生的思维应用,使他们发现数学的应用价值,激发学生的学习兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学必修四《任意角和弧度制》教案
【导语】高二时孤身奋斗的阶段,是一个与寂寞为伍的阶段,是一个耐力、意志、自控力比拚的阶段。

但它同时是一个厚实庄重的阶段。

由此可见,高二是高中三年的关键,也是最难把握的一年。

为了帮你把握这个重要阶段,老师高二频道整理了《高二数学必修四《任意角和弧度制》教案》希望对你有帮助!!
教案【一】
教学准备
教学目标
一、知识与技能
(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.
二、过程与方法
创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运。

相关文档
最新文档