极大似然法估计鱼
《概率论与数理统计》期末考试试题B卷答案

华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
参数区间估计

则 就是 的100( )%的置信区间.
单击此处添加标题
而这与总体分布有关,所以,总体分布的形式是否已知,是怎样的类型,至关重要.
(这样我们才能确定一个大概率区间).
可见,确定区间估计很关键的是要寻找一个待估参数 和估计量T 的函数S(T, ), 且S(T, )的分布为已知, 不依赖于任何未知参数
的置信水平为0.95的置信区间是 [ 159.27, 180.74]
将 =170,S=30, =1.96,n=30代入得,
三、单侧置信区间
上述置信区间中置信限都是双侧的,但对于有些实际问题,人们关心的只是参数在一个方向的界限.
添加标题
这时,可将置信上限取为+∞,而只着眼于置信下限,这样求得的置信区间叫单侧置信区间.
分布是由正态分布派生出来的一种分布.
来定义.
其中伽玛函数 通过积分
分布的密度函数为
2、t 分布
3、F分布
定义: 设 X与Y相互独立,则称统计量
服从自由度为n1及 n2 的F分布,n1称为第一自由度,n2称为第二自由度,记作 F~F(n1,n2) .
在求置信区间时,要查表求分位数.
教材已经给出了概率分布的上侧分位数(分位点)的定义,为便于应用,这里我们再简要介绍一下.
设0< <1, 对随机变量X,称满足
例如:
的点 为X的概率分布的上 分位数.
标准正态分布的 上 分位数
设0< <1, 对随机变量X,称满足
2
因方差未知,取
添加标题
3
对给定的置信度 ,确定分位数
添加标题
4
使
添加标题
5
即
添加标题
概率论 第七章 参数估计

L( ) max L( )
称^为
的极大似然估计(MLE).
求极大似然估计(MLE)的一般步骤是:
(1) 由总体分布导出样本的联合概率分布 (或联合密度);
(2) 把样本联合概率分布(或联合密度)中自变 量看成已知常数,而把参数 看作自变量, 得到似然函数L( );
(3) 求似然函数L( ) 的最大值点(常常转化 为求ln L( )的最大值点) ,即 的MLE;
1. 将待估参数表示为总体矩的连续函数 2. 用样本矩替代总体矩,从而得到待估参
数的估计量。
四. 最大似然估计(极大似然法)
在总体分布类型已知条件下使用的一种 参数估计方法 .
首先由德国数学家高斯在1821年提出。 英国统计学家费歇1922年重新发现此
方法,并首先研究了此方法的一些性质 .
例:某位同学与一位猎人一起外出打猎.一只 野兔从前方窜过 . 一声枪响,野兔应声倒下 .
p值 P(Y=0) P(Y=1) P( Y=2) P(Y=3) 0.7 0.027 0.189 0.441 0.343 0.3 0.343 0.441 0.189 0.027
应如何估计p?
若:只知0<p<1, 实测记录是 Y=k
(0 ≤ k≤ n), 如何估计p 呢?
注意到
P(Y k) Cnk pk (1 p)nk = f (p)
第七章 参数估计
参数估计是利用从总体抽样得到的信息 估计总体的某些参数或参数的某些函数.
仅估 计一 个或 几个 参数.
估计新生儿的体重
估计废品率
估计降雨量
估计湖中鱼数
…
…
参数估计问题的一般提法:
设总体的分布函数为 F(x, ),其中为未 知参数 (可以是向量).从该总体抽样,得样本
矩估计和极大似然估计

矩估计
极大似然估计
最小二乘法
贝叶斯方法
……
这里我们主要介绍前面两种方法 .
寻求估计量的方法
点估计问题:
01
构造一个适当的统计量
02
用它的观察值
03
来估计未知参数θ.
04
称
05
为θ的估计量,
06
为θ的估计值.
07
点估计:估计θ的具体数值;
08
区间估计:估计θ的所在范围.
09
参数估计:
第一节
第七章
1
2
取对数: 当 0 < xi < 1, (i=1,2, …,n) 时
建立似然方程
极大似然估计 量为
求解得极大似然估计值为
2) 矩估计法
矩法估计量与极大似然估计量不一定相同;
用矩法估计参数比较简单,但有信息量损失;
极大似然估计法精度较高,但运算较复杂;
不是所有极大似然估计法都需要建立似然方程
在
例5 指数分布的点估计
今取得一组样本Xk数据如下,问如何估计θ? 某电子管的使用寿命 X (单位:小时) 服从指数分布 分析 可用两种方法:矩法估计 和极大似然估计.
340
410
450
520
620
190
210
800
1100
1)矩法估计
取对数
极大似然估计 构造似然函数 当xi>0,(i=1,2, …,n) 时,似然函数为 建立似然方程
小 结
求解.
解
分析 设总体X 即抽一件产品的不合格产品数,相当于抽取了一组样本X1,X2,… ,Xn , 且
设某车间生产一批产品,为估计该批产品不合格品率,抽取了n件产品进行检查.
概率论与数理统计答案(华南理工)

开讨论
例 对容量为n的样本,求下列密度函数中参数 a 的
2 2 (a x), (0 x a) f ( x) a 其它 0, a 2 a 解 由于 E [ X ] x 2 ( a x )dx 0 a 3 a 所以由矩法估计,得 X 3 3 n 解得 a 3 X X i n i 1 3 n 所以,参数 a 的矩估计量为 a X i n i 1
方差
1 50 ˆ X Xi 50 i 1 50 1 2 2 2 ˆ 2 S50 Xi ( X ) 50 i 1
此时,ˆ ,
ˆ
2
为两个统计量
根据大数定理,样本的矩和总体的矩应当非常接近 假若样本有观测值x1,x2,……x50,代入统计量中,有
用样本的统计量来估计分布的数字特征,进而得到参
数估计的办法也叫数字特征法,是矩法的特例。
思考一下,是否有其他求解的办法? 考虑泊松分布的二阶中心矩 得到矩法估计量
Var[ X ]
1 n ( X i X )2 n i 1
可见:同一个参数的矩估计量可以不同。 使用哪个更好一些? 矩法估计总能用低阶矩就不用高阶矩 之后会系统地介绍估计量优劣的评价,届时再展
解:设装袋的重量为随机变量X,即总体为X~N(μ, σ2)。
E[ X ] 2 2 2 Var [ X ] E [ X ] ( E [ X ])
此时,要估计参数,就转化为估计随机变量的矩 观测50次,即取X1,X2,……X50个样本,样本容量50 计算样本 的期望和
若总体的密度函数中有多个参数1,2,…,n,则将 ln L 第(3)步改为 0, (i 1, 2, , n) i 解方程组即可。
置信区间

第三节 置信区间前面讨论了参数的点估计, 它是用样本算出的一个值去估计未知参数. 即点估计值仅仅是未知参数的一个近似值, 它没有给出这个近似值的误差范围.例如, 在估计某湖泊中鱼的数量的问题中, 若根据一个实际样本, 利用最大似然估计法估计出鱼的数量为50000条, 这种估计结果使用起来把握不大. 实际上, 鱼的数量的真值可能大于50000条, 也可能小于50000条.且可能偏差较大.若能给出一个估计区间, 让我们能较大把握地(其程度可用概率来度量之)相信鱼的数量的真值被含在这个区间内, 这样的估计显然更有实用价值.本节将要引入的另一类估计即为区间估计, 在区间估计理论中, 被广泛接受的一种观点是置信区间, 它由奈曼(Neymann)于1934年提出的.内容分布图示★ 引言 ★ 置信区间的概念★ 例1 ★ 例2★ 寻求置信区间的方法 ★ 例3 ★ )10(-分布参数的区间估计 ★ 例4 ★ 单侧置信区间★ 例5 ★ 例6★ 内容小结 ★ 课堂练习 ★ 习题6-3 ★ 返回内容要点:一、置信区间的概念定义1 设θ为总体分布的未知参数, n X X X ,,,21 是取自总体X 的一个样本, 对给定的数)10(1<<-αα, 若存在统计量),,,,(),,,,(2121n n X X X X X X θθθθ==使得,1}{αθθθ-=<<P则称随机区间),(θθ为θ的α-1双侧置信区间, 称α-1为置信度, 又分别称θ与θ为θ的双侧置信下限与双侧置信上限.注: 1. 置信度α-1的含义: 在随机抽样中, 若重复抽样多次, 得到样本n X X X ,,,21 的多个样本值),,,(21n x x x , 对应每个样本值都确定了一个置信区间),(θθ, 每个这样的区间要么包含了θ的真值, 要么不包含θ的真值. 根据伯努利大数定理, 当抽样次数充分大时, 这些区间中包含θ的真值的频率接近于置信度(即概率) α-1, 即在这些区间中包含θ的真值的区间大约有)%1(100α-个,不包含θ的真值的区间大约有%100α个. 例如, 若令95.01=-α, 重复抽样100次, 则其中大约有95个区间包含θ的真值, 大约有5个区间不包含θ的真值.2. 置信区间),(θθ也是对未知参数θ的一种估计, 区间的长度意味着误差, 故区间估计与点估计是互补的两种参数估计.3. 置信度与估计精度是一对矛盾.置信度α-1越大, 置信区间),(θθ包含θ的真值的概率就越大, 但区间),(θθ的长度就越大, 对未知参数θ的估计精度就越差. 反之, 对参数θ的估计精度越高, 置信区间),(θθ长度就越小, ),(θθ包含θ的真值的概率就越低, 置信度α-1越小. 一般准则是: 在保证置信度的条件下尽可能提高估计精度.二、寻求置信区间的方法寻求置信区间的基本思想: 在点估计的基础上, 构造合适的函数, 并针对给定的置信度导出置信区间.一般步骤:(1) 选取未知参数θ的某个较优估计量θˆ;(2) 围绕θˆ构造一个依赖于样本与参数θ的函数);,,,,(21θn X X X u u =(3) 对给定的置信水平α-1,确定1λ与2λ,使,1}{21αλλ-=≤≤u P通常可选取满足2}{}{21αλλ=≥=≤u P u P 的1λ与2λ,在常用分布情况下, 这可由分位数表查得;(4) 对不等式作恒等变形化后为αθθθ-=≤≤1}{P , 则),(θθ就是θ的置信度为α-1的双侧置信区间。
小概率事件原理的应用

小概率事件原理的应用[摘要]小概率事件原理是概率论中实用价值较高、应用泛围较广的基本理论,本文从实际生活的典型事例出发,运用该原理来分析解决此类问题,从而揭示独立重复随机试验中,小概率事件发生的必然性。
[关键词]概率统计小概率事件假设检验应用一、问题的提出在概率统计中,为了研究随机现象,必须计算种种随机事件的概率,由于随机现象的多样性,我们不得不研究各种数学模型,并对每一种模型进行具体分析。
问题:假设从湖里捕了1000条鱼,系上红线后,放回去,过了一段时间后,又捕了1000条鱼,现在其中5条鱼系着红线,试估计湖中鱼的总数。
此问题可用不退还抽样的概率公式求其估计值。
我们将重点探讨如何利用小概率事件检验关于湖中鱼的个数的假设。
二、小概率事件的认识一个小概率事件,不管其概率是多么小,其值总是一个确定的正数。
该事件随着试验次数的不断增加,迟早会发生的概率趋近于1。
事实上,假如在某个随机试验中,事件A的概率为P(A)=ε,ε是一个充分小的正数,则不论ε如何小,只要不断独立地重复这一试验,事件A总是会发生的(即A发生的概率为1)。
设以A k表示事件A于第k次试验中发生这一事件,则P(A k)=ε。
从而在前n次试验中,A都不发生的概率为:故在前n次试验中,A至少发生一次的概率为:当n→∞时,由于0<ε<1,有limn→∞p n=1记事件Bn={前n次试验中A至少发生一次},则必有这就说明了虽然事件A在一次试验中发生的概率很小,但在不断地重复独立试验中,A 总会发生。
在概率论的基础理论研究中,大量随机现象具有某种稳定的性质,例如频率的稳定性,平均结果的稳定性等等,它反映了偶然性与必然性之间的辩证关系。
为了揭示这种实际上的必然性或实际上的不可能性,我们对概率接近于1或0的事件的研究,具有重大的意义。
概率论的基本问题之一,就是要建立概率接近于1或0的规律。
特别是对大量独立或弱相关因素的累积结果所发生的规律的研究,将导致“依概率收剑”和“依概率1收剑”等概念的产生,与此同时,相应的(弱)大数定律和强大数定律的研究也应运而生。
概率论第七章参数估计2区间估计

2 / 2 ( n 1)
即
置信区间:
标准差σ的一个置信水平为 1 的置信区间
2 (n 1) S , 2 (n 1) 2
(n 1) S 2 1 (n 1) 2
2
注意:在密度函数不对称时,如 2分布和F 分布,
置信度 1 下,来确定 的置信区间[ , ]
⑴ 已知方差 ,估计均值μ
2
n 1 2 设已知方差 2 0 ,且 X X i 是 的 n i 1 一个无偏点估计,
又
X ~ N (0 , 1) 0 / n
且 对于给定的置信度 查正态分布表,找出
临界值
使得:
2 1 2 2
一个无偏估计, 因为X与Y 相互独立,所以
X Y ~ N ( 1 2 ,
X Y ( 1 2 )
2 1
n1
2 2
n2
)
2 1
n1 n2 所以 1 2 的置信水平为1-α的置信区间为
2 2
~ N (0,1)
( X Y z / 2
已知
由样本值算得:
查表 t0.025 (6) 2.447
得区间:
对某种型号飞机的飞行速度进行15次试验, 测 例 5: 得最大飞行速度(单位: 米/秒)为 422.2, 417.2, 425.6 420.3, 425.8, 423.1, 418.7, 438.3, 434.0, 412.3, 431.5 413.5, 441.3, 423.0, 428.2, 根据长期经验, 可以认为 最大飞行速度服从正态分布. 求飞机最大飞行速度
第三节 区间估计 譬如,在估计湖中鱼数的问题中,若 我们根据一个实际样本,得到鱼数 N 的极 大似然估计为1000条.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20002
500
8000.
用极大似然法估计湖中的鱼数 为了估计湖中的鱼数N,第一次捕上r条鱼, 做上记号后放回. 隔一段时间后, 再捕出S 条鱼, 结果发现这S条鱼中有m条标有记号. 根据这个信息,如何估计湖中的鱼数呢?
第二次捕出的有记号的鱼数X是一个离散型
随机变量, X具有超几何分布:
P{X
k}
C Ck S k r Nr CNS
,
0
k
min(
S, r)
P{X
k}
Crk
C Sk N r
CNS
,0
k
min(
S, r)
在一次试验这里的试验是指:观察第二次捕鱼中有记号的鱼数中,
事件X m就发生了,我们有理由相信,事件X m发生的概率比较
大,也即是PX
m
Crm
C
C
S N
S N
m r
比较大.直观的想法
是
:k取m时,
P X k
CrkΒιβλιοθήκη CS Nk r
C
S N
取得最大值.
Crk
C
S N
k r
C
S N
Crk
C S k N 1r
CS N 1
(N S)(N r) N(N r S k)
N 2 Nr SN Sr N 2 Nr SN Nk
容易知道,当N Sr 时,该比值大于1; k
当N Sr 时,该比值小于1. k
这就是说,当N增大时,PX
k
Crk
C
S N
k r
CNS
先增大后减小,
当N
Sr k
时,PX
k取得最大值.故N的极大似然估计为
N
Sr m
.
极大似然估计法的思想:就好比一位同学和猎人一同出去打猎, 该同学没有经过正规训练。只听见一声枪响,你赶到现场,只见 一只野兔躺在地上。现让你估计这只野兔是被谁打中的,因为 同学没有经验,所以相同条件下,猎人打中的可能性比同学大的 多,也就是说同学打中野兔是小概率事件,在一次试验中几乎不
可能发生,所以有理由相信是猎人打中了野兔。
例题
• 为估计鱼池内的鱼数,第一次捕了2000尾, 做了记号再放回鱼池内,充分混合后再捕 2000尾,结果发现500尾有记号,试用极大 似然法估计鱼池内的鱼数.
解:根据前面的分析,r 2000, S 2000, m 500.
则鱼池内的鱼数N
Sr m