第三-1章信道及信道容量
第三章离散信道及其信道容量

0
0 1
不是一一对应,无扰有信息损失
1
(2)有扰信道 例3:
a1
0.9
X
0.1
a2
0.2 0.8
b1
Y
b2
0.9 0.1 [P] 0.2 0.8 有扰有信息损失,干扰严重
例4:
a1
X
a2
1/2 1/2 1/2 1/2
b1
Y
b2
1/ 2 1 / 2 [P] 1/ 2 1 / 2
P yi xi P xi yi
即E{log x} ≤log{E(X)}
即E{log x} ≤log{E(X)}
I(X
;Y
)
X
Y
P(x,
y)
log
P( x)P( y) P(x, y)
log
XY
P(x,
y)
P( x)P( y) P(x, y)
log1
0
∴ I(X;Y) ≥ 0
∵ logx为∩ 型凸函数,只有当且仅当 p(x.y)=P(x)P(y),即x和Y统计独立时I(X;Y)=0
根据输入和输出信号的特点,信道可以分为: (1)离散信道。指输入和输出的随机变量的取值都 有是离散的信道。 (2)连续信道。指输入和输出的随机变量的取值都 是连续的信道。 (3)半离散半连续信道。输入变量是离散型的但相 应的输出变量是连续的信道,或者相反。 (4)波形信道。信道的输入和输出都是一些时间上 连续的随机信号。即信道输入和输出的随机变量的 取值是连续的,并且还随时间连续变化。一般用随 机过程来描述其输入和输出。
p( x1 ) 4
a2 1 4
a3 1 4
a4
1
4
1 P 1
第三章 信道模型和信道容量

这是可知疑义度H(X/Y)=0,平均交互信息量达到最大值 I(X,Y)=H(X),C=logr。从平均意义上讲,这种信道可以把信源 的信息全部传递道信宿。这种每列只有一个非0元素的信道也 是一种无噪声信道,称为无噪声信道。
确定信道
这类信道的转移概率等于1或者等于0, 每一列的元素可有一个或多个1,可知其 噪声熵H(Y/X)=0,此时的平均交互信息 量达到最大值。
离散信道
X
P(Y/X)
Y
离散信道分类: 无干扰信道 有干扰无记忆信道 有干扰有记忆信道
离散信道三种表达方式
概率空间描述 X={a1,a2,……ar} P(Y/X)={p(bj/ai)}
j=1,2,……s) Y={b1,b2,……bs} 0≤p(bj/ai)≤1
(i=1,2,……r;
转移矩阵描述
信道组合
串联信道 并联信道
4.4 时间离散的无记忆连续 信道
可加噪声信道
P(y|x)=p(y-x)=p(z)
Hc (Y | X ) Hc (Z ) I (X ;Y ) Hc (Y ) Hc (Z )
可加噪声信道
高斯噪声信道
I
(X
;Y
)
H
(Y
)
Hc
(X
)
1 2
log(1
2 x 2 z
)
例已知一个二元信源连接一个二元信道, 如图给出。X={x1,x2}, [p(xi)]={1/2,1/2}
求I(X;Y),H(X,Y),H(X/Y),和H(Y/X)。
信道容量
C max R max I (X ;Y )bit / 符号
PX
PX
1
Ct
max PX
Rt
信息论基础第3章离散信道及其信道容量

《信息论基础》
3.6 多符号离散信道及其信道容量
【例】求图所示的二元无记忆离散对称信道的二次 扩展信道的信道容量。
【例】 已知两个独立的随机变量 X、Y 的分布律如下。
X P(x)
a1 0.5
a2 0.5
,
Y P( y)
b1 0.25
b2 b3 0.25 0.5
计算 H X , H Y , H XY , H X |Y , H Y | X , I X ;Y 。
《信息论基础》
3.4 信道容量的定义
I (ai ) 减去已知事件 bj 后对 ai 仍然存在的不确定性 I (ai | bj ) ,实际就是事件
bj 出现给出关于事件 ai 的信息量。
【例】 甲在一个16 16 的方格棋盘上随意放一枚棋
子,在乙看来棋子放入哪一个位置是不确定的。如果甲 告知乙棋子放入棋盘的行号,这时乙获得了多少信息 量?
《信息论基础》
第3章 离散信道及其信道容量
通信系统的基本功能是实现信息的传递,信道是信息 传递的通道,是信号传输的媒质。一般而言,信源发出的 消息,必须以适合于信道传输的信号形式经过信道的传输, 才能被信宿接收。
从信源的角度看,信源发出的每个符号承载的平均信 息量由信源熵来定量描述;而从信宿的角度看,信宿收到 的每个符号平均能提供多少信息量由平均互信息来定量描 述。在信息论中,信道问题主要研究在什么条件下,信道 能够可靠传输的信息量最大,即信道容量问题。
《信息论基础》
3.7 信源与信道的匹配
第3章信道容量

其信道容量
C max I ( X ;Y ) max H ( Y ) log m
p ( xi ) p ( xi )
达到此类信道的信道容量的概率分布是使信道输出分布为 等概分布的输入分布。
8
离散无噪信道(总结)
对于无噪信道,求信道容量C的问题,已经 从求I(X;Y)的极值问题退化为求H(Y)或H(X)的 极值问题。
H(X/Y)称为损失熵,即信道疑义度。表示信源符号通过有噪 信道传输后引起的信息量的损失。 因为H(X/Y)=H(X)-I(X;Y) 损失熵等于信源X所含有的信息量减去信道输出端接收到符号 集Y之后平均每个符号所获得的关于输入集X的信息量。 H(Y/X)称为噪声熵,反映了信道中噪声源的不确定性。 因为H(Y/X)=H(Y)-I(X;Y)
i 1 j 1 n n
p( x i ) H ni
i 1
n
H ni p( y j / x i ) log p( y j / x i ) 由 于 信 道 的 对 称 性 , 一 每行 都 是 同 一 集 合 诸素 元的 不 同 排 列 。
其信道容量
C max I ( X ;Y ) max H ( X ) log n
p ( xi ) p ( xi )
6
3.具有归并性能的无噪信道(确定信道)
确定信道的一个输出对应着多个 互不相交的输入,如右图所示。
信道矩阵中每行中只有一非零元 素,即已知X后,Y不再有任何 不确定度。故噪声熵H(Y/X)=0
11
强对称信道的几个特性
强对称信道是对称信道的一个特例;
输入符号数与输出符号数相等; 信道中总的错误概率为p,对称地平均分配给 n-1个输出符号,n为输入符号的个数; 均匀信道中不仅各行之和为1,而且各列之和也 为1。 一般信道各列之和不一定等于1
第三章离散信道及其信道容量

p(ym/x1)
p(ym/x2) … p(ym/xn)
第一节 信道的数学模型及分类 为了表述简便,可以写成 P(bj / ai ) pij
p11 p P 21 ... pr1 p12 ... p22 ... pr 2 ... p1s p2 s ... prs
i 1 r
P(aibj ) P(ai )P(bj / ai ) P(bj )P(ai / bj )
(3)后验概率
P(ai / b j )
P(aib j ) P(b j )
P(a / b ) 1
i 1 i j
r
表明输出端收到任一符号,必定是输入端某一符号 输入所致
第二节 平均互信息
第三节 平均互信息的特性
1、平均互信息的非负性 I(X;Y)>=0 该性质表明,通过一个信道总能传递一些信息,最 差的条件下,输入输出完全独立,不传递任何信息,互 信息等于0,但决不会失去已知的信息。
2、平均互信息的极值性
I(X;Y)<=H(X) 一般来说,信到疑义度总是大于0,所以互信息总是 小于信源的熵,只有当信道是无损信道时,信道疑义度 等于0,互信息等于信源的熵。
C max{I ( X , Y )} max{H ( X ) H ( X / Y )}
P( X ) P( X )
信道容量与与信源无关,它是信道的特征参数,反 应的是信道的最大的信息传输能力。 对于二元对称信道,由图可以看出信道容量等于 1-H(P)
第四节 信道容量及其一般计算方法
1、离散无噪信道的信道容量 (1)具有一一对应关系的无噪声信道 x1 x2 x3 I(X;Y)=H(X)=H(Y) y1 y2 y3
信道与信道容量

1.6.2 信道容量
根据香农信息论,对于连续信道,如果信道带宽为B, 并且受到加性高斯白噪声的干扰,则信道容量的理论公式为
C=B㏒2(1+S/N)(b/s) 式中。 N为白噪声的平均功率; S是信号的平均功率; S/N 为信噪比。信道容量C是指信道可能传输的最大信息速率 (即信道能达到的最大传输能力)。虽然上式是在一定条件 下获得的(要求输入信号也为高斯信号才能实现上述可能 性),但对其他情况也可作为近似式使用。
例1 已知彩色电视图象由5ⅹ105个像素组成。设每个像素有 64种彩色度,每种彩色度有16个亮度等级。设所有彩色度和 亮度等级的组合机会均等,并统计独立。(1)试计算每秒 传送100个画面所需信道容量;(2)如果接受机信噪比为 30dB,为了传送彩色图象所需信道带宽为多少?
例2 设有一个图像要在电话线路中实现传真传输。大约要传输2.25ⅹ106个 像素,每个像素有12个亮度等级。假设所有亮度等级都是等概率的,电 话电路具有3kHz带宽和30dB信噪比。试求在该标准电话线路上传输一 张传真图片需要的最小时间。
在数字通信系统中,如果仅研究编码和解码问题, 可得到另一种广义信道---编码信道。编码信道的范围是 从编码器输出端至解码器输入端。这是因为从编码和解 码角度来看,编码器是把信源产生的消息信号转化为数 字信号。反之,解码器是将数字信号恢复原来的消息信 号;而编码器输出端至解码器输入端之间的一切环节只 是起了传输数字信号的作用,所以可以把它看成一个整 体---编码信道。当然,根据研究问题的不同,还可以定 义其他广义信道。
解: Rb = RBN㏒2N
RBN= Rb/×106 / 29.9 ×103=0.269 ×103s=4.5min
例3 已知八进制数字信号的传输速率为1600波 特。试问变换成二进制数字信号时的传输速率为多 少? 解: Rb = RBN㏒2N = 1600× ㏒28 = 4800 b/s
信息论与编码理论-第3章信道容量-习题解答-071102

第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。
i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号 22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。
二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符 BSC 信道达到信道容量时,输入为等概率分布,即:{,}注意单位3-4 设BSC 信道的转移概率矩阵为112211Q εεεε-⎡⎤=⎢⎥-⎣⎦1)写出信息熵()H Y 和条件熵(|)H Y X 的关于1()H ε和2()H ε表达式,其中()log (1)log(1)H εεεεε=----。
第三章 信道和信道容量

I(X;Y):接收到Y前、后关于的平均不确定性 的消除 ;或发送X前、后关于Y的平
均不确定性的消除。
可见:熵只是平均不确定性的描述,而不确定性 的消除(两熵之差)才等于接收端所获得的信息 量。获得的信息量不能和不确定性混为一谈。
第三章 信道和信道容量
关于信道容量: 研究:信道中平均每个符号所能传送的信息量,
有损失,是无噪有损信 道,也称确定信道,即: 损失熵:H(X/Y) ≠ 0; 噪声熵:H(Y/X) = 0, I(X;Y)=H(Y)=H(X)-H(X/Y) <H(X)
第三章 信道和信道容量
信道容量仍是最大熵问题(最大H(Y)):
C=max H(Y)=log s bit/符号
P(X)
(设Y有s个符号)
不相交的子集mk,由mk组成的矩阵[P]k是对称矩阵 (具有可排列的性质),则称此信道为准对称信道, 其信道容量:
r为输入符号集个数 即信道矩阵行数 准对称信道中的 行元素 第k个子矩阵 中行元素之和
第k个子矩阵 中列元素之和
第三章 信道和信道容量
例3-1:二元对称删除 信道如图,计算信道容量。
例3-2:准对称信道的信道矩阵为: P(y/x)= 0.5 0.3 0.2 0.3 0.5 0.2 当输入概率分布为p(x1)=ɑ,p(x2)=1-ɑ
且:p=0时,信道无干扰; P=1/2时,信道干扰最为严重。
第三章 信道和信道容量
二、二元删除信道
难以区分原发送信号时,不硬性
判断0或1,而作删除处理。 删除信道中,p=q时,则为 对称删除信道。 三、Z信道 信道特性:0错成1的概率为0, 1错成0有一定可能。
1
0 1 0
p
1-p
1
第三章 信道和信道容量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H(X/Y)
有噪无损信道
无噪有损信道
34
• 综合上述三种情况,若严格区分的话,凡损失熵等 于零的信道称为无损信道;凡噪声熵等于零的信道 称为无噪信道,而前面讨论的一一对应的无噪信道 则为无噪无损信道。 • 对于无损信道,其信息传输率R就是输入信源X输 出第个符号携带的信息量(信源熵H(X)),所 以其信道容量为
9
《信息论基础》
2、一般离散信道(多维离散信道) 输入输出信号都是平稳随机矢量,其数学模型可用概率空间 [X,p(Y/X),Y]来描述。 其中 为输入信号, 为输出信号。 X中 Y中 其中P(Y/X)是信道的传递概率,反映输入和输出信号之间统计 依赖关系。 根据信道是否存在干扰以及有无记忆,将信道分为: 1 )无干扰(噪声)信道: 2 )有干扰无记忆信道: 3)有干扰有记忆信道:
C max{I ( X ; Y )} max H ( X ) log r (bit / 符号)
p( x) p( x)
• 式中假设输入信源X的符号共有r个符号,所以等概 率分布时信源熵H(X)最大。
35
同理,对于无噪信道,信道容量为
C max{I ( X ; Y )} max H (Y ) log s(bit / 符号)
17
《信息论基础》
三、离散输入、连续输出信道 信道输入符号选自一个有限的、离散的输入符号集 X∈{a1,a2,… ,an},而信道输出Y∈{-∞,+∞},这种信道模 型就称为离散时间无记忆信道。它的特性由离散输入X、 连续输出Y以及一组条件概率密度函数 来决定。
这类信道中最重要的就是加性高斯白噪声(AWGN)信道
32
《信息论基础》
3、有噪无损信道: H(X/Y)= 0, H(Y/X)> 0
33
• 我们可以进一步用维拉图来表述有噪无损信 道和无噪有损信道中平均互信息、损失熵、 噪失熵以及信源熵之间的关系。
H(X)=I(X;Y) H(Y)
I(X;Y) I(X;Y)
H(Y)=I(X;Y) H(X)
H(Y/X)
38
《信息论基础》
2、信道容量
对称离散信道的平均互信息为I(X;Y)=H(Y)-H(Y/X),而
H (Y / X )
P ( x ) P ( y / x ) lo g P ( y / x ) P ( x ) H (Y
X Y X
1
/ X x)
其 中 H (Y / X x )
其中:
19
《信息论基础》
如果多维连续信道的转移概率密度函数满足
这样的信道称为连续无记忆信道即在任一时刻输出变 量只与对应时刻的输入变量有关,与以前时刻的输入输出 都无关。 一般情况下,上式不能满足,也就是连续信道任一时 刻的输出变量与以前时刻的输入输出有关,则称为连续有 记忆信道。
20
《信息论基础》
是差概率,H ( )是关于的熵函数
30
《信息论基础》
二、无干扰离散信道的信道容量
1、无噪无损信道:输入输出一一对应,信道矩阵为单位 阵.疑义度 H ( X/Y ) =0,噪声熵 H ( Y/X ) =0
31
《信息论基础》
2、无噪有损信道(确定信道):
H(X/Y)〉0,H(Y/X)=0 信道输出端接收到某个bj后不能判定是哪个输入符号ai
6
《信息论基础》
二、离散信道的信道参数 1、基本离散信道(单符号离散信道) 输入输出信号都是取值离散的单个随机变量,可用 信道转移概率 来描述。其中 并满足:
信道转移概率:条件概率 为信道输出。
其中,ai为信道输入,bj
7
《信息论基础》
单符号离散信道可以用图形可以描述如下
8
《信息论基础》
信道矩阵的每一行之和必定等于1。
噪声分为两类:加性噪声和乘性噪声,分析较多的是加性噪声信道 ( 噪声与信号是相加的关系,通常相互独立。) 单符号加性噪声信道可以表示为 : x(t)是带限信号,y(t)是输出值,n(t)是加性噪声过程的一个样本函数
说 明: 条件熵Hc(Y/X)是由于噪声引起的,它等于噪声信源的熵Hc(n) 。 所以称条件熵Hc(Y/X)为噪声熵。
37
• 若输入符号和输出符号个数相同,都等于r,且 信道矩阵为
p p P r 1 p r 1 p r 1 p p r 1 p r 1 p r 1 p 其中p p 1
• 则此信道称为强对称信道或均匀信道。这类信 道中的错误概率为p,对称地平均分配给r-1个输 出符号。它是对称离散信道的一类特例。二元 对称信道就是r=2的均匀信道。对均匀信道, 其信道矩阵中各列之和也等于1(一般信道的 信道矩阵中各列之和不一定等于1)
p( x) p( x)
式中假设输出信源Y的符号共有s个符号,所以等概率分布时 信源熵H(Y)最大。而且一定能找到一种输入分布使输出 符号Y达到等概分布。
36
《信息论基础》
三、对称DMC信道
1、定义:如果转移概率矩阵P的每一行包含同样元素,则 为输入对称矩阵;如果转移概率矩阵P的每一列包含同样元 素,则为输出对称矩阵;如果输入输出都对称,则为对称 DMC信道。 例 如:
Y
P ( y / x ) lo g
1 P ( y / x)
29
例:二进制对称信道
• 设p(0)=1/2时,
p (0 / 0) 1 , p(0 /1) , p (1 / 0) , p(1 /1) 1
则C I ( X ; Y ) H ( X ) H ( X / Y ) 1 (1 ) log(1 ) log (bit / 符号) 即二进制对称信道的C 1 H ( )(bit / 符号)
② 如果分析性能的理论极限,则多采用离散输入、连续输 出信道模型。
③ 如果设计和分析数字调制器和解调器的性能,则可采用 波形信道模型。 因为本书后面的内容主要讨论编码和译码,所以DMC 信道模型使用最多。
23
《信息论基础》
作 业:
3-1
24
《信息论基础》
3.1.2 离散单个符号信道 及其容量
4
《信息论基础》
3、根据信道参数与时间的关系分为 ① 固定参数信道:信道参数(统计特性)不随时间的变 化而变化。例如光纤、电缆等信道。 ② 时变参数信道:信道参数随时间变化而变化。例如无 线信道。 4、根据信道中所受噪声种类的不同分为 ① 随机差错信道:噪声独立随机地影响每个传输码元。例 如以白噪声为主体的信道。 ② 突发差错信道:干扰的影响是前后相关的,错误成串出 现。例如衰落信道、码间干扰信道。
②二进制对称信道(BSC):输入和输出信号的符号数都 是2,即X∈A={0,1}和Y∈B={0,1}的对称信道。
16
《信息论基础》
3)有干扰有记忆信道:每个信道输出不但与当前输入信号 之间有转移概率关系,而且与其它时刻的输入输出信号也 有关。 在实际的数字信道中,当信道特性不理想,存在码间干 扰时,输出信号不但与当前的输入信号有关,还与以前的 输入信号有关。常用的处理方法有两种: ①将记忆很强的L个符号当作矢量符号,各矢量符号之 间认为无记忆。这时会引入误差,L越大,误差越小。 ②将转移概率看作记忆长度有限的马尔科夫链的形式, 这种处理方法很复杂,通常取一阶时稍简单。
重点: 无干扰信道、对称信道和准对称信道的信道容量
25
《信息论基础》
一、几个定义
1、信息传输率R:信道中平均每个符号所能传送的信息量
2、信息传输速率Rt:信道中单位时间平均传送的信息量, 即收信者在单位时间内接收到的信息量。单位:bit/秒
26
《信息论基础》
3、信道容量C
1)理论基础:对于固定的信道,平均互信息I ( X ; Y ) 是信源概率分布P ( x ) 的上凸函数。也就是说,存在一个使 某一特定信道的平均互信息达到极大值的信源分布,该极大 值可以用来表述信道传送信息的最大能力,即信道容量。
Y=X+G
式中,G 是一个零均值,方差为σ2的高斯随机变量。 当 X=ai给定后,Y是一个均值为ai,方差为σ2的高斯随机变量。
18
《信息论基础》
四、波形信道
当信道输入和输出都是随机过程{x(t)}和{y(t)} 时,该信 道就称为波形信道,在实际模拟通信系统中,信道都是波 形信道。 如果波形信道为频宽受限信道,在有限的观察时间内, 输入和输出的随机过程可以化为L个时间离散,取值连续的 平稳随机序列。 这样,波形信道化为多维连续信道,信道转移概率密度 函数为
11
《信息论基础》
①无噪无损信道:输入输出一一对应,信道矩阵为单 位阵.
12
《信息论基础》
②无噪有损信道(确定信道):
H(X/Y)〉0,H(Y/X)=0 信道输出端接收到某个bj 后不能判定是哪个输入符号aj
13
《信息论基础》
③有噪无损信道:H(X/Y)=0, H(Y/X)〉0
14
《信息论基础》
5
《信息论基础》
5、根据信道参数与时间的关系分为 ① 离散信道:输入输出信号在时间、幅度上均为离散。 ② 连续信道:信号幅度连续、时间离散。 ③ 半离散半连续信道:输入输出信号中一个离散、一个连 续。 ④ 波形信道:在时间和幅度上均连续,一般可以用随机过 程来表示。限时限频的随机过程可以分解为离散的随机 序列,所以波形信道可以被分解为离散信道、连续信道 和半离散半连续信道。
21
《信息论基础》
加性多维连续信道中,输入矢量、输出矢量和噪 声矢量的关系表示为:
以后主要讨论加性信道,噪声源则主要是加性高 斯白噪声。
22
《信息论基础》
五、信道模型的选取
在分析问题时选用何种信道模型完全取决于分析者的目的