《随机过程概论》第3章 随机信号的平稳性与各态历经性 作业

合集下载

第3章 平稳随机过程

第3章 平稳随机过程
上 第三章 平稳随机过程 海 大 上一章讨论的随机过程的数学特征: 学 2 2 E X ( t ) m ( t ) , ( t ) E X ( t ) , ( t ) D X ( t ) , X X X 通 RX ( t1 , t 2 ) , C X ( t1 , t 2 ) , RXY ( t1 , t 2 ) , C XY ( t1 , t 2 ) 。 信 学 1. 它们不仅都是时间的函数,而且相关函数及协方差函数还 院 取决于不同的时刻点。 2 ( t ) 所对应的物理量都是瞬时平均值。 2. 由 mX ( t ) , X ( t ) 和 X 工程上和实际应用中,经常遇到一类广泛存在的所谓“平 稳”随机过程,或在研究相对稳定状态下的物理过程中,其 所 涉及的随机量也都属于“平稳”随机过程。 同样,平稳随机过程是通信系统和各种信号处理中最常遇 到也是最重要的一种特殊类型的随机过程。
一、 互相关函数的性质


(1) RXY (0 ) RYX ( 0 ) (2) RXY ( ) RYX ( ) 2 (3) RXY ( ) RX (0 )RY ( 0 )
1 RXY ( ) [ RX ( 0 ) RY ( 0 )] 2 1 1 2 (4) C XY ( ) [C X (0 ) CY ( 0 )] [ X Y2 ] 2 2
§3.2 平稳过程相关函数的性质


3.2.1 相关函数的性质 设X ( t )为实平稳随机过程,则 EX ( t ) X ( t ) R ( ) (1) R ( ) R ( ) 自相关函数为偶函数。
X
X
X
(2) R ( ) R ( 0 ) ∵ E X ( t ) X ( t ) 0 随机过程在同一时刻点的随机变量的相关性最大。

第3章 随机过程及答案

第3章 随机过程及答案
若a(t1) = 0或a(t2)=0,则B(t1, t2) = R(t1, t2)

互相关函数 R (t1 , t 2 ) E[ (t1 )(t 2 )]
式中 (t) 和 (t) 分别表示两个随机过程。 R(t1, t2)又称为自相关函数。
10
3.2 平稳随机过程 3.2.1 平稳随机过程的定义
12

数字特征:
E (t ) x1 f1 ( x1 )dx1 a

R( t1 , t 2 ) E[ ( t1 ) ( t1 )]



x1 x2 f 2 ( x1 , x2 ; )dx1dx2 R( )
可见,(1)其均值与t 无关,为常数a ; (2)自相关函数只与时间间隔 有关。
P ( f ) 0
P ( f ) P ( f )

这与R()的实偶性相对应。
23
例题

[例3-2] 求随机相位余弦波(t) = Acos(ct + )的功率谱密度。 [解] 在[例3-1]中,我们已经考察随机相位余弦波是一个平稳 过程,并且求出其相关函数为
1 (t ) 2 (t )

n (t )
0
t
3
角度2:随机过程是随机变量概念的延伸。

在一个固定时刻t1上,不同样本的取值{i (t1), i = 1, 2, …, n} 是一个随机变量,记为 (t1)。

样本空间
随机过程是在时间进程中处于不同时刻的随机变量的集合。
S1 x1(t)
t

T /2
T / 2
x( t ) x( t )dt
aa R( ) R( )

随机过程关于平稳过程中的各态历经性的综述

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述首先要介绍一下什么就是平稳过程,平稳过程就是一类统计特性不随时间推移而变化的过程。

在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。

有这样重要的一类随机过程,即所谓平稳随机过程,它的特点就是:过程的统计特性不随时间的推移而变化。

严格地说,如果对于任意的n(=1,2…),12,,t t t T ∈n …,与任意实数h,当12,,n t h t h t h T +++∈…,时,n 维随机变量(X(1t ),X(2t ),…,X(t n ))与 (X(1t h +),X(2t h +),…,X(n t h +))具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。

在实际工作中,确定随机过程的均值函数与相关函数就是很重要的。

而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。

但就是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,就是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。

定义 设X(t)就是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X(t)〉存在,即〈X(t)〉=1lim ()2T TT X t dt T -→∞⎰ 存在,而且〈X(t)〉=E{X(t)}=X μ依概率1相等。

即〈X(t)〉依概率1等于X μ= E {X(t)}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。

定义 设X(t)就是一均方连续平稳随机过程,且对于固定的τ,()Xt X t τ(+)也就是连续平稳随机过程,〈()X t X t τ(+)〉 代表()Xt X t τ(+)沿整个时间轴的平均值,即()X t X t τ(+)=1lim (+)()2TT T X t X t dt T τ-→∞⎰ 若〈()Xt X t τ(+)〉存在,称〈()X t X t τ(+)〉为X(τ)的时间相关函数。

随机过程第三章

随机过程第三章

随机过程的概率密度函数
概率密度函数
对于连续随机过程,其概率密度函数描述了随机过程在各个时间点或位置上的取值的可能性密度。
联合概率密度函数
对于多个连续随机过程的组合,其联合概率密度函数描述了这些随机过程在各个时间点或位置上的取 值的联合可能性密度。
03
随机过程的数字特征
均值函数
总结词
描述随机过程中心趋势的数字特征
泊松过程
定义
泊松过程是一种随机过程,其中事件的 发生是相互独立的,且以恒定的平均速
率在时间上均匀地发生。
应用
在物理学、工程学、生物学等领域都 有应用,如放射性衰变、电话呼叫等。
性质
泊松过程具有无记忆性,即两次事件 发生的时间间隔与它们是否同时发生 无关。
扩展
泊松过程可以推广为更复杂的过程, 如非齐次泊松过程和条件泊松过程。
随机过程第三章
目录
• 随机过程的基本概念 • 随机过程的概率分布 • 随机过程的数字特征 • 随机过程的平稳性和遍历性 • 马尔科夫链和泊松过程 • 随机过程的应用
01
随机过程的基本概念
随机过程的定义
01
随机过程:一个随机过程是一个定义在概率空间上的
参数集的集合,这个集合的元素是随机变量。
02
马尔科夫链和泊松过程的比较
关联性
马尔科夫链和泊松过程都是随机过程,但它们的 性质和应用场景有所不同。
时间连续性
马尔科夫链可以适用于连续时间,而泊松过程通 常适用于离散时间。
ABCD
状态转移
马尔科夫链关注的是状态之间的转移,而泊松过 程关注的是事件的发生。
应用领域
马尔科夫链在社会科学和生物科学中应用广泛, 而泊松过程在物理学和工程学中更为常见。

随机信号2-2 平稳随机过程和各态历经性

随机信号2-2 平稳随机过程和各态历经性

17
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
严格各态历经:所有参数各态历经
广义各态历随机过程和各态历经性 第二章
随机过程和随机序列
19
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
20
随机过程和随机序列
12
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
13
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
14
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
15
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
各态历经性或遍历性:在一定的条件下,平 稳随机信号的任何一个样本函数的时间平均, 从概率意义上来说等于它的统计平均。
随机过程和随机序列
7
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
8
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
9
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
10
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
11
2-2 平稳随机过程和各态历经性 第二章
1
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
平稳:与时间起点无关
2
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列
严平稳也称狭义平稳
严格平稳要 求所有阶次 原点矩、中 心矩必须时 间平移不变
3
2-2 平稳随机过程和各态历经性 第二章
随机过程和随机序列

《概率论与随机过程》第3章习题答案

《概率论与随机过程》第3章习题答案

《概率论与随机过程》第三章习题答案3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。

解:由题意可得:()[]()()002121020022222002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()12021202120202120202221202022021012022022202010022222200201021212122112210212212121221212222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。

∴()t X 是平稳过程另解:()[][]0022000000[cos()][cos()][];(,)cos()cos(())cos()cos(())t E A t E A E t E A R t t E A t t E A E t t E X ωΦωΦτωΦωτΦωΦωτΦ⎡⎤=+=+=⨯=⎣⎦⎡⎤⎡⎤+=+++=+++⎣⎦⎣⎦[][][])cos()cos())cos((τωτωτωω0200022222A E t E A E =+Φ++= ∴()t X 是平稳过程3.3 设S(t) 是一个周期为T 的函数,随机变量Φ在(0,T )上均匀分布,称X(t)=S (t+Φ),为随相周期过程,试讨论其平稳性及各态遍历性。

概率论第三章 平稳随机过程

概率论第三章 平稳随机过程
则称X(t)为宽平稳过程(或称广义平稳过程)
严平稳过程只要均方值有界, 就是广义平稳的, 但反之则不一定。
当我们同时考虑两个平稳过程X(t)和Y(t)时,若它 们的互相关函数仅是单变量τ 的函数,即
RX Y (t1, t2 ) E[ X (t1 )Y (t2 )] RXY ( ), t2 t1,
则称X(t)和Y(t)宽平稳相依,或称这两个随机过程 是联合宽平稳的。
例3.1 设随机过程 X (t) a cos(0 t )
式中a,ω0为常数,Φ是在区间(0,2π)上均匀分 布的随机变量, 这种信号通常称为随相正弦波。求 证X(t)是宽平稳的。
二、各态历经(遍历)随机过程
在上面的讨论中,每当谈到随机过程时,就意味 着所涉及的是大量的样本函数的集合。要得到随机过 程的统计特性,就需要观察大量的样本函数。
ln
p( X
/
mX
)
K
N 1
exp
i0
(xi
mX
2
2 X
)2
均值估计
让对数似然函数取最大值
ln p( X / mX ) 0 m X
得到均值的最大似然估值
mˆ X
1 N
N 1
xi
i0
此式说明,可用N个观测值的算术平均作为均值mX的估值。
估计量的性质(工程)
1.有偏估计与无偏估计
由于估计量依赖于观测结果,因此估计量本身是 随机变量,于是它也存在其均值和方差。
定义1:取对应于ρX(τ)=0.05的那个时间为相关 时间τ
0
定义2:用图3.6中的矩形(高为ρX(0)=1,底为τ0的
矩形)面积等于阴影面(ρX(τ)积分的一半)来定义
τ0,即

随机过程关于平稳过程中的各态历经性的综述

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。

在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。

有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。

严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当12,,n t h t h t h T+++∈…,时,n 维随机变量(X(1t ),X(2t ),…,X(t n ))和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。

在实际工作中,确定随机过程的均值函数和相关函数是很重要的。

而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。

但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。

定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即〈X (t )〉=1lim()2T TT X t dtT-→∞⎰存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。

即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 随机信号的平稳性与各态历经性
3-1 随机信号()()010sin X t t ω=+Φ,其中0ω为常数,Φ为在[],ππ-上的均匀分布的随机变量。

若()X t 通过平方律器件,得到()()2Y t X t =,试求:
①()Y t 的均值()E Y t ⎡⎤⎣⎦;②()Y t 的自相关函数(),Y R t t τ+;③()Y t 的平稳性。

3-2 已知平稳信号()X
t 的自相关函数为()4cos X R e ττπτ-=,求该信号的均值、方差、自协方差函数、自相关系数。

3-3 已知随机信号()cos sin X t A t B t =-和随机信号
()cos sin Y t B t A t =+,其中随机变量,A B 统计独立,均值都为0,方差都为5。

①求两个信号的互相关函数(),XY
R t t τ+; ②证明()(),X
t Y t 联合宽平稳。

3-4 设随机信号()()()00cos sin Z t X t t Y t t ωω=-,其中0ω为常
数,()(),X t Y t 为平稳随机信号。

试求:(1)()Z t 的自相关函数(),Z R t t τ+;(2)若()()(),0X Y XY R R R τττ==,求(),Z R t t τ+。

3-5 已知随机信号()()0cos X
t A t ω=+Φ,其中随机相位Φ服从()0,2π上的均匀分布;A 可能为常数,也可能为随机变量,且若A 为随机变量时,和随机变量Φ相互独立,求当A 具备什么条件时,该信号具有均值各态历经性、自相关函数各态历经性和各态历经性。

相关文档
最新文档