鲁教版2020九年级数学圆的有关性质课后练习题3(附答案)
鲁教版2020九年级数学圆周角与圆心角课后作业题3(附答案)

鲁教版2020九年级数学圆周角与圆心角课后作业题3(附答案)一.选择题(共10小题)1.如图,在半圆⊙O中,直径AB=4,点C、D是半圆上两点,且∠BOC=84°,∠BOD =36°,P为直径上一点,则PC+PD的最小值为()A.4B.2C.2D.22.如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A.=B.=C.=D.不能确定3.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,则α取值范围是()A.36°≤α≤45°B.45°≤α≤54°C.54°≤α≤72°D.72°≤α≤90°4.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.4cm B.3cm C.5cm D.4cm5.如图,A、B、C在⊙O上,∠A=50°,则∠OBC的度数是()A.50°B.40°C.100°D.80°6.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接OC、BD,若∠AOC=110°,则∠ABD的度数是()A.35°B.46°C.55°D.70°7.如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 8.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为()A.50°B.60°C.70°D.80°9.如图,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.120°B.80°C.100°D.60°10.如图,点A,B,C,D,E都是⊙O上的点,=,∠B=122°,则∠D=()A.58°B.116°C.122°D.128°二.填空题(共10小题)11.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是.12.如图,已知点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.则下列结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是.13.如图是两个半圆,点O为大半圆的圆心,AB平行于半圆的直径且是大半圆的弦且与小半圆相切,且AB=24,则图中阴影部分的面积是.14.已知⊙O的弦AB把圆分成两部分的比为1:5,若AB=3cm,则⊙O的半径等于cm.15.如图,五边形ABCDE内接于⊙O,BC=CD=DE,若∠B=98°,∠E=116°,则∠A =°.16.如图,AB为⊙O的直径,C为⊙O上一点,∠BOC=50°,AD∥OC,AD交⊙O于点D,连接AC,CD,那么∠ACD=.17.如图,四边形ABCD内接于⊙O,∠BOD=120°,则∠DCE=.18.如图,在圆内接四边形ABCD中,∠B=100°,则∠D的度数为.19.如图,四边形ABCD内接于⊙O,BC是⊙O的直径,AD∥BC,AC与BD相交于点P,若∠APB=50°,则∠PBC=.20.如图,点A,B,C,D都在⊙O上,C是的中点,AB=CD.若∠ODC=50°,则∠ABC的度数为°.三.解答题(共8小题)21.如图,弦AB和弦CD相交于⊙O内一点E,AD=CB,求证:AB=CD.22.如图,在⊙O中,=,∠A=40°,求∠D的度数.23.如图,在⊙O中,=(1)若∠C=75°,求∠A的度数;(2)若AB=13,BC=10,求⊙O的半径.24.如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.25.如图1,AB、EF是⊙O的直径,点C、F在AB上,且F是的中点,弦BC与FE交于点D,连接AC、BC、FC、FB、AE.(1)求证:AC∥EF;(2)如图2,过点C作FB的平行线,交EF于点N,M为线段CF的中点,连接MD并延长MD交AB于点H,连接FH.若EN=2,AB=6,求FH的长.26.如图,AB为圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F (1)请写出三条与BC有关的正确结论;(2)当∠D=30°,CD=2时,求圆中阴影部分的周长.27.已知:四边形ABCD是⊙O的内接四边形.求证:∠ABC+∠ADC=180°.(用两种方法)28.如图,A、P、B、C是⊙O上四点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形;(2)连接OA,OB,当点P位于什么位置时,四边形PBOA是菱形?并说明理由;(3)已知P A=a,PB=b,求PC的长(用含a和b的式子表示).参考答案与试题解析一.选择题(共10小题)1.如图,在半圆⊙O中,直径AB=4,点C、D是半圆上两点,且∠BOC=84°,∠BOD =36°,P为直径上一点,则PC+PD的最小值为()A.4B.2C.2D.2【解答】解:作点D关于AB的对称点DE,连接CE,交AB于点P,过点O作OF⊥CE,垂足为F,∵∠BOC=84°,∠BOD=36°,∴∠BOE=36°,∠COE=120°,∴∠C=30°,∵AB=4,∴OC=2,∴OF=1,CF=,∴CE=2,∴PC+PD的最小值为2,故选:B.2.如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A.=B.=C.=D.不能确定【解答】解:连接OC,BC,过O作OE⊥AC于D交圆O于E,∵把半圆沿弦AC折叠,恰好经过点O,∴OD=OE,∵AB是半圆O的直径,∴∠ACB=90°,∴OD∥BC,∵OA=OB,∴OD=BC,∴BC=OE=OB=OC,∴∠COB=60°,∴∠AOC=120°,∴=,故选:A.3.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,则α取值范围是()A.36°≤α≤45°B.45°≤α≤54°C.54°≤α≤72°D.72°≤α≤90°【解答】解:∵在△AOB中,OA=OB,∠OAB=α∴∠OBA=α,∠AOB=180°﹣2α∴当α=36°时,∠AOB=180°﹣2×36°=108°108×5=540°∵转360°恰好位于点A,540°﹣360°=180°>108°∴此时不位于弧AB上,A错误;当α=60°时,∠AOB=60°,60×5=300°∴此时小华还没到达点A,故C错误;当α=60°时,∠AOB=60°,60×5=300°当α=90°时,点B在圆外,不符合题意,故D错误;故选:B.4.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.4cm B.3cm C.5cm D.4cm【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD,∴=,∴∠DOB=∠OAC=2∠BAD,在△AOF和△ODE中,,∴△AOF≌△ODE,∴OE=AF=AC=3,在Rt△DOE中,DE==4,在Rt△ADE中,AD==4,故选:A.5.如图,A、B、C在⊙O上,∠A=50°,则∠OBC的度数是()A.50°B.40°C.100°D.80°【解答】解:∵∠BAC=50°,∴∠BOC=100°,∵BO=CO,∴∠OBC=(180°﹣100°)÷2=40°,故选:B.6.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接OC、BD,若∠AOC=110°,则∠ABD的度数是()A.35°B.46°C.55°D.70°【解答】解:连接BC,∵∠AOC=110°,∴∠ABC=∠AOC═55°,∵CD⊥AB,∴=,∴∠ABD=∠ABC=55°,故选:C.7.如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 【解答】解:A、过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;B、∵AC=CD',∴,由折叠得:,∴=,故②正确;C、∵D为AB的中点,∴OD⊥AB,故③正确;D、延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:D.8.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为()A.50°B.60°C.70°D.80°【解答】解:由圆周角定理得,∠CAD=∠CBD=80°,∴∠BAD=80°+30°=110°,∵四边形ABCD是⊙O内接四边形,∴∠BCD=180°﹣∠BAD=70°,故选:C.9.如图,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.120°B.80°C.100°D.60°【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:A.10.如图,点A,B,C,D,E都是⊙O上的点,=,∠B=122°,则∠D=()A.58°B.116°C.122°D.128°【解答】解:连接AC、CE,∵点A、B、C、E都是⊙O上的点,∴∠AEC=180°﹣∠B=58°,∵=,∴∠ACE=∠AEC=58°,∴∠CAE=180°﹣58°﹣58°=64°,∵点A、C、D、E都是⊙O上的点,∴∠D=180°﹣64°=116°,故选:B.二.填空题(共10小题)11.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是51°.【解答】解:如图,∵==,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣78°)=51°.故答案为:51°.12.如图,已知点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.则下列结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是①②③④.【解答】:如图,连接CD、AD、CO,,∵点C,D是半圆上的三等分点,∴∠AOC=∠COD=∠BOD=180°÷3=60°,∴∠CBA=∠AOC÷2=60°÷2=30°,即①正确;∵∠BEO=180°﹣∠BOD﹣∠CBA=180°﹣60°﹣30°=90°∴OD⊥BC,即②正确.∵OB=OC,OD⊥BC,∴E是BC的中点,又∵O是AB的中点,∴OE是△ABC的中位线,∴OE=AC,即③正确.∵AC⊥BC,OD⊥BC,∴AC∥OD,∵∠DCB=∠BOD÷2=60°÷2=30°,∠CBA=30°∴∠DCB=∠CBA,∴CD∥AB,∴四边形AODC是平行四边形,∵∠AOC=60°,OA=OC,∴△AOC是等边三角形,∴AO=AC,又∵四边形AODC是平行四边形,∴AO=OD=DC=CA,∴四边形AODC是菱形,即④正确.综上,可得正确的结论有:①②③④.故答案为①②③④.13.如图是两个半圆,点O为大半圆的圆心,AB平行于半圆的直径且是大半圆的弦且与小半圆相切,且AB=24,则图中阴影部分的面积是72π.【解答】解:将小圆向右平移,使两圆变成同心圆,如图,连OB,过O作OC⊥AB于C点,则AC=BC=12,∵AB是大半圆的弦且与小半圆相切,∴OC为小圆的半径,∴S阴影部分=S大半圆﹣S小半圆=π•OB2﹣π•OC2=π(OB2﹣OC2)=πBC2=72π.故答案为72π.14.已知⊙O的弦AB把圆分成两部分的比为1:5,若AB=3cm,则⊙O的半径等于3cm.【解答】解:∵弦AB将圆分成的两段弧所对的圆心角度数之比为1:5,∴∠AOB=×360°=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为3cm,∴AB=3cm.故答案为:3.15.如图,五边形ABCDE内接于⊙O,BC=CD=DE,若∠B=98°,∠E=116°,则∠A =102°.【解答】解:连接AC,AD,∵BC=CD=DE,∴==,∴设∠BAC=∠CAD=∠DAE=α,∵∠B=98°,∠E=116°,∴∠B+∠E﹣α=98°+116°﹣α=180°,∴α=34°,∴∠BAE=3α=102°,故答案为:102°.16.如图,AB为⊙O的直径,C为⊙O上一点,∠BOC=50°,AD∥OC,AD交⊙O于点D,连接AC,CD,那么∠ACD=40°.【解答】解:连接OD,∵AD∥OC,∴∠DAB=∠BOC=50°,∵OA=OD∴∠AOD=180°﹣2∠DAB=80°,∴∠ACD=∠AOD=40°故答案为40°17.如图,四边形ABCD内接于⊙O,∠BOD=120°,则∠DCE=120°.【解答】解:∵∠BOD=120°,∴∠BCD==60°.∴∠DCE=180°﹣60°=120°.故答案为:120°.18.如图,在圆内接四边形ABCD中,∠B=100°,则∠D的度数为80°.【解答】解:∵四边形ABCD是圆内接四边形,∴∠B+∠D=180°,∵∠B=100°,∴∠D=80°,故答案为80°.19.如图,四边形ABCD内接于⊙O,BC是⊙O的直径,AD∥BC,AC与BD相交于点P,若∠APB=50°,则∠PBC=25°.【解答】解:∵AD∥BC,∴=,∴∠PBC=∠PCB,∵∠APB=50°,∴∠PBC=25°,故答案为:25°.20.如图,点A,B,C,D都在⊙O上,C是的中点,AB=CD.若∠ODC=50°,则∠ABC的度数为100°.【解答】解:∵C是的中点,AB=CD.∴==,∵∠ODC=50°,∴∠A=∠ACB=∠COD=×(180°﹣2∠ODC)=×(180°﹣50°×2)=40°,∴∠ABC=180°﹣∠A﹣∠ACB=180°﹣40°×2=100°.故答案为:100.三.解答题(共8小题)21.如图,弦AB和弦CD相交于⊙O内一点E,AD=CB,求证:AB=CD.【解答】证明:∵AD=BC,∴=,∴=,∴CD=AB.22.如图,在⊙O中,=,∠A=40°,求∠D的度数.【解答】解:∵∠A=40°,∴劣弧BC的度数为80°,则优弧BC的度数为:360°﹣80°=280°,∴∠D=140°.23.如图,在⊙O中,=(1)若∠C=75°,求∠A的度数;(2)若AB=13,BC=10,求⊙O的半径.【解答】解:(1)∵在⊙O中,=,∴AB=AC.∴∠B=∠C=75°.∴∠A=180°﹣2×75°=30°;(2)如图,延长AO交BC于D,则AD⊥BC,BD=CD=BC=5,∴在直角△ABD中,由勾股定理,得AD===12.在直角△OBD中,由勾股定理,得OB2=(12﹣OB)2+52,解得OB=,即⊙O的半径是.24.如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.【解答】证明:连接AC,∵AB=CD,∴=,∴+=+,即=,∴∠C=∠A,∴P A=PC.25.如图1,AB、EF是⊙O的直径,点C、F在AB上,且F是的中点,弦BC与FE交于点D,连接AC、BC、FC、FB、AE.(1)求证:AC∥EF;(2)如图2,过点C作FB的平行线,交EF于点N,M为线段CF的中点,连接MD并延长MD交AB于点H,连接FH.若EN=2,AB=6,求FH的长.【解答】(1)证明:∵点F是的中点,∴∠BAC=∠BOC=∠BOF,∴AC∥EF;(2)解:如图2,∵CN∥FB,OA=OE=OB=OF,∴∠CNF=∠OFB=∠OBF=∠E,∴AE∥FB,∴CN∥AE,∵AC∥EF,∴四边形AENC是▱AENC,∴AC=EN=2,∵OC=OB,∠COF=∠BOF,∴DC=DB,OD⊥BC于点D,∵OD是△ABC的中位线,∴OD=AC=1,∵OB=3,∴BD=2,又∵MD是△BCE的中位线,∴MH∥FB,∴∠ODH=∠OFB=∠OBF=∠DHO,∴OD=OH,又∠DOH为公共角,∴△FOH≌△BOD,∴FH=BD=2.26.如图,AB为圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F (1)请写出三条与BC有关的正确结论;(2)当∠D=30°,CD=2时,求圆中阴影部分的周长.【解答】解:(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF∥BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC2=BE•AB;⑥BC2=CE2+BE2;⑦△ABC是直角三角形;⑧△BCD是等腰三角形.(2)∵CD=2,∴CE=,∵∠D=∠A=30°,∴AC=2,AB=4,∴==π,∴周长为:+227.已知:四边形ABCD是⊙O的内接四边形.求证:∠ABC+∠ADC=180°.(用两种方法)【解答】证法1:连接OA,OC,∵∠B=∠1,∠D=∠2,∴∠B+∠D=(∠1+∠2)=×360°=180°;证法2:如图2,连接CA,BD,∵∠1=∠2,∠3=∠4,∴∠ADC=∠1+∠3=∠2+∠4,∴∠ADC+∠ABC=∠2+∠4+∠ABC=180°.28.如图,A、P、B、C是⊙O上四点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形;(2)连接OA,OB,当点P位于什么位置时,四边形PBOA是菱形?并说明理由;(3)已知P A=a,PB=b,求PC的长(用含a和b的式子表示).【解答】(1)证明:∵∠BAC=∠CPB=60°,∴∠ABC=∠APC=60°,∴∠ABC=∠BAC=∠ACB=60°,∴△ABC为等边三角形;(2)解:当点P位于的中点时,四边形PBOA是菱形.理由如下:连接OP,如图1,∵∠AOB=2∠ACB=120°,而P是的中点,∴∠AOP=∠BOP=60°,又∵OA=OP=OB,∴△OAP和△OBP都为等边三角形,∴OA=AP=OB=PB,∴四边形PBOA是菱形;(3)解:如图2,在PC上截取PD=P A,又∵∠APC=60°,∴△APD是等边三角形,∴P A=DA,∠DAP=60°,∵∠P AB+∠BAD=∠BAD+∠DAC,∴∠P AB=∠DAC,在△APB和△ADC中,∴△APB≌△ADC(ASA),∴PB=DC,又∵P A=PD,∴PC=PD+DC=P A+PB=a+b.。
九年级数学: 24.1 圆的有关性质(同步练习题)( 含答案)

24.1圆的有关性质24.1.1圆1.在一个平面内,线段OA绕它固定的一个端点O__旋转一周___,__另一个端点A___所形成的图形叫做圆.这个固定的端点O叫做__圆心___,线段OA叫做__半径___.2.连接圆上任意两点间的线段叫做__弦___.圆上任意两点间的部分叫做__弧___.直径是经过圆心的弦,是圆中最长的弦.3.在同圆或等圆中,能够__互相重合___的弧叫等弧.4.确定一个圆有两个要素,一是__圆心___,二是__半径___,圆心确定__位置___,半径确定__大小___.知识点1:圆的有关概念1.以已知点O为圆心,已知长为a的线段为半径作圆,可以作( A)A.1个B.2个C.3个D.无数个2.下列命题中正确的有( A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个3.如图,图中弦的条数为( B)A.1条B.2条C.3条D.4条4.过圆上一点可以作出圆的最长弦的条数为( A)A.1条B.2条C.3条D.无数条5.如图,在四边形ABCD中,∠DAB=∠DCB=90°,则A,B,C,D四个点是否在同一个圆上?若在,说出圆心的位置,并画出这个圆.解:在,圆心是线段BD的中点.图略知识点2:圆中的半径相等6.如图,MN为⊙O的弦,∠N=52°,则∠MON的度数为( C)A.38°B.52°C.76°D.104°,第6题图),第7题图) 7.如图,AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( D)A.45°B.60°C.90°D.30°8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.解:由ASA证△BEO≌△CFO,∴OE=OF,又∵OC=OB,∴OC+OE=OB+OF,即CE=BF9.如图,点A,B和点C,D分别在两个同心圆上,且∠AOB=∠COD.求证:∠C=∠D.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠AOD=∠BOC,又OA=OB,OC=OD,∴△AOD≌△BOC,∴∠C=∠D10.M,N是⊙O上的两点,已知OM=3 cm,那么一定有( D)A.MN>6 cm B.MN=6 cmC.MN<6 cm D.MN≤6 cm11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是( B)A.a>b>c B.a=b=cC.c>a>b D.b>c>a12.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( C)A.50°B.60°C.70°D.80°,第12题图),第13题图) 13.如图是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( D)14.在同一平面内,点P到圆上的点的最大距离为7,最小距离为1,则此圆的半径为__3或4___.15.如图,AB,CD为圆O的两条直径,E,F分别为OA,OB的中点.求证:四边形CEDF为平行四边形.解:∵AO=BO,E,F分别是AO和BO的中点,∴EO=FO,又CO=DO,∴四边形CEDF为平行四边形16.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:连接OA,OB.∵OA,OB是⊙O的半径,∴OA=OB,∴∠OBA =∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS),∴OE=OF17.如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB =2DE,∠E=18°,求∠AOC的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE,∴∠DOE=∠E,∠OCE=∠ODC.又∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E =18°,∴∠OCE=36°,∴∠AOC=∠OCE+∠E=36°+18°=54°18.如图,AB是半圆O的直径,四边形CDEF是内接正方形.(1)求证:OC=OF;(2)在正方形CDEF的右侧有一正方形FGHK,点G在AB上,H在半圆上,K在EF上.若正方形CDEF的边长为2,求正方形FGHK的面积.解:(1)连接OD,OE,则OD=OE,又∠OCD=∠OFE=90°,CD=EF,∴Rt△ODC ≌Rt△OEF(HL),∴OC=OF(2)连接OH,∵CF=EF=2,∴OF=1,∴OH2=OE2=12+22=5.设FG=GH=x,则(x+1)2+x2=5,∴x2+x-2=0,解得x1=1,x2=-2(舍去),∴S =12=1正方形FGHK24.1.2 垂直于弦的直径1.圆是__轴对称___图形,任何一条__直径___所在的直线都是它的对称轴.2.(1)垂径定理:垂直于弦的直径__平分___弦,并且__平分___弦所对的两条弧; (2)推论:平分弦(非直径)的直径__垂直___于弦并且__平分___弦所对的两条弧.3.在圆中,弦长a ,半径R ,弦心距d ,它们之间的关系是__(12a)2+d 2=R 2___.知识点1:认识垂径定理 1.(2014·毕节)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( B ) A .6 B .5 C .4 D .3,第1题图),第3题图),第4题图)2.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =8,则BE 的长是( C )A .8B .2C .2或8D .3或73.(2014·北京)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为( C )A .2 2B .4C .4 2D .8 4.如图,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24___. 知识点2:垂径定理的推论5.如图,一条公路弯道处是一段圆弧(图中的弧AB),点O 是这条弧所在圆的圆心,点C 是AB ︵的中点,半径OC 与AB 相交于点D ,AB =120 m ,CD =20 m ,则这段弯道的半径是( C )A .200 mB .200 3 mC .100 mD .100 3 m,第5题图) ,第6题图)6.如图,在⊙O 中,弦AB ,AC 互相垂直,D ,E 分别为AB ,AC 的中点,则四边形OEAD 为( C )A .正方形B .菱形C .矩形D .梯形 知识点3:垂径定理的应用7.如图是一个圆柱形输水管的横截面,阴影部分为有水部分,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则输水管的半径为( C )A .3 cmB .4 cmC .5 cmD .6 cm,第7题图) ,第8题图)8.古题今解:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用数学语言可表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,则直径AB 的长为__26___寸.9.如图是某风景区的一个圆拱形门,路面AB 宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?解:连接OA.∵CD ⊥AB ,且CD 过圆心O ,∴AD =12AB =1米,∠CDA =90°.在Rt△OAD 中,设⊙O 的半径为R ,则OA =OC =R ,OD =5-R.由勾股定理,得OA 2=AD 2+OD 2,即R 2=(5-R)2+12,解得R =2.6,故圆拱形门所在圆的半径为2.6米10.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.5,第10题图) ,第11题图)11.(2014·黄冈)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD =.12.已知点P 是半径为5的⊙O 内一点,OP =3,则过点P 的所有弦中,最长的弦长为__10___;最短的弦长为__8___.13.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为__(6,0)___.,第13题图) ,第14题图)14.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__4___.15.如图,某窗户是由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工人师傅求出AB ︵所在⊙O 的半径r.解:由题意知OA =OE =r ,∵EF =1,∴OF =r -1.∵OE ⊥AB ,∴AF =12AB =12×3=1.5.在Rt △OAF 中,OF 2+AF 2=OA 2,即(r -1)2+1.52=r 2,解得r =138,即圆O 的半径为138米16.如图,要把破残的圆片复制完整,已知弧上的三点A ,B ,C.(1)用尺规作图法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC 是等腰三角形,底边BC =8 cm ,腰AB =5 cm ,求圆片的半径R.解:(1)分别作AB ,AC 的垂直平分线,其交点O 为所求圆的圆心,图略 (2)连接AO交BC 于E.∵AB =AC ,∴AE ⊥BC ,BE =12BC =4.在Rt △ABE 中,AE =AB 2-BE 2=52-42=3.连接OB ,在Rt △BEO 中,OB 2=BE 2+OE 2,即R 2=42+(R -3)2,解得R =256,即所求圆片的半径为256cm17.已知⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24 cm ,CD =10 cm ,则AB ,CD 之间的距离为( D )A .17 cmB .7 cmC .12 cmD .17 cm 或7 cm18.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为E ,BC =2 3. (1)求AB 的长; (2)求⊙O 的半径.解:(1)连接AC ,∵CD 为⊙O 的直径,CD ⊥AB ,∴AF =BF ,∴AC =BC.延长AO 交⊙O 于G ,则AG 为⊙O 的直径,又AO ⊥BC ,∴BE =CE ,∴AC =AB ,∴AB =BC =23 (2)由(1)知AB =BC =AC ,∴△ABC 为等边三角形,∴∠OAF =30°,在Rt △OAF 中,AF =3,可求OA =2,即⊙O 的半径为224.1.3 弧、弦、圆心角1.圆既是轴对称图形,又是__中心___对称图形,__圆心___就是它的对称中心. 2.顶点在__圆心___的角叫圆心角.3.在同圆和等圆中,相等的圆心角所对的__弧___相等,且所对的弦也__相等___. 4.在同圆或等圆中,若两个圆心角、两条弧、两条弦中,有一组量是相等的,则它们所对应的其余各组量也分别__相等___.知识点1:认识圆心角1.如图,不是⊙O 的圆心角的是( D ) A .∠AOB B .∠AOD C .∠BOD D .∠ACD,第1题图) ,第3题图)2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB =__60°___.3.(2014·菏泽)如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则BD ︵的度数为__50°___.知识点2:弧、弦、圆心角之间的关系4.如图,已知AB 是⊙O 的直径,C ,D 是BE ︵上的三等分点,∠AOE =60°,则∠COE 是( C )A .40°B .60°C .80°D .120°,第4题图) ,第5题图)5.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有( D ) ①AB ︵=CD ︵; ②BD ︵=AC ︵;③AC =BD ; ④∠BOD =∠AOC. A .1个 B .2个 C .3个 D .4个6.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( C )A .100°B .110°C .120°D .135°,第6题图) ,第7题图)7.如图,在同圆中,若∠AOB =2∠COD ,则AB ︵与2CD ︵的大小关系为( C ) A .AB ︵>2CD ︵ B .AB ︵<2CD ︵ C .AB ︵=2CD ︵D .不能确定8.如图,已知D ,E 分别为半径OA ,OB 的中点,C 为AB ︵的中点.试问CD 与CE 是否相等?说明你的理由.解:相等.理由:连接OC.∵D ,E 分别为⊙O 半径OA ,OB 的中点,∴OD =12AO ,OE =12BO.∵OA =OB ,∴OD =OE.∵C 是AB ︵的中点,∴AC ︵=BC ︵,∴∠AOC =∠BOC.又∵OC=OC ,∴△DCO ≌△ECO(SAS ),∴CD =CE9.如图,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =__40°___.,第9题图) ,第10题图)10.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME ⊥AB 于点E ,NF ⊥AB 于点F.在下列结论中:①AM ︵=MN ︵=BN ︵;②ME =NF ;③AE =BF ;④ME =2AE.正确的有__①②③___.11.如图,A ,B ,C ,D 在⊙O 上,且AB ︵=2CD ︵,那么( C )A .AB >2CD B .AB =2CDC .AB <2CDD .AB 与2CD 大小不能确定12.如图,在⊙O 中,弦AB ,CD 相交于点P ,且AC =BD ,求证:AB =CD.解:∵AC =BD ,∴AC ︵=BD ︵,∴AB ︵=CD ︵,∴AB =CD13.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.解:连接AF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠GAE =∠B ,∠EAF=∠AFB.又∵AB =AF ,∴∠B =∠AFB ,∴∠GAE =∠EAF ,∴GE ︵=EF ︵14.如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.解:(1)△AOC 是等边三角形.理由:∵AC ︵=CD ︵,∴∠AOC =∠COD =60°.又∵OA =OC ,∴△AOC 是等边三角形(2)∵AC ︵=CD ︵,∴∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD)=60°.∵OD =OB ,∴△ODB 为等边三角形,∴∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD15.如图,在△AOB 中,AO =AB ,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD =BO.试说明BD ︵=DE ︵,并求∠A 的度数.解:设∠A =x °.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x °,∴∠ABO =∠ODB =∠AOD +∠A =2x °.∵AO =AB ,∴∠AOB =∠ABO =2x °,从而∠BOD=2x °-x °=x °,即∠BOD =∠AOD ,∴BD ︵=DE ︵.由三角形的内角和为180°,得2x +2x +x =180,∴x =36,则∠A =36°16.如图,MN 是⊙O 的直径,MN =2,点A 在⊙O 上,AN ︵的度数为60°,点B 为AN ︵的中点,P 是直径MN 上的一个动点,求PA +PB 的最小值.解:作点B 关于MN 的对称点B′.因为圆是轴对称图形,所以点B′在圆上.连接AB′,与MN 的交点为P 点,此时PA +PB 最短,ABB ′⌒所对的圆心角为90°,连接OB′,则∠AOB′=90°,∴AB ′=AO 2+OB′2=2,∴PA +PB =AB ′=2,即PA +PB 的最小值为224.1.4 圆周角1.顶点在__圆___上,并且两边和圆__相交___的角叫圆周角.2.在同圆或等圆中,__同弧___或__等弧___所对的圆周角相等,都等于这条弧所对的__圆心角___的一半.在同圆或等圆中,相等的圆周角所对的弧__相等___.3.半圆或直径所对的圆周角是__直角___,90°的圆周角所对的弦是__直径___. 4.圆内接四边形对角__互补___,外角等于__内对角___.知识点1:认识圆周角1.下列图形中的角是圆周角的是( B )2.在⊙O 中,A ,B 是圆上任意两点,则AB ︵所对的圆心角有__1___个,AB ︵所对的圆周角有__无数___个,弦AB 所对的圆心角有__1___个,弦AB 所对的圆周角有__无数___个.知识点2:圆周角定理3.如图,已知点A ,B ,C 在⊙O 上,ACB ︵为优弧,下列选项中与∠AOB 相等的是( A ) A .2∠C B .4∠B C .4∠A D .∠B +∠C,第3题图) ,第4题图)4.(2014·重庆)如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是( C )A .30°B .45°C .60°D .70°知识点3:圆周角定理推论5.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是( C ) A .35° B .45° C .55° D .65°,第5题图),第6题图),第7题图)6.如图,CD ⊥AB 于E ,若∠B =60°,则∠A =__30°___.7.如图,⊙O 的直径CD 垂直于AB ,∠AOC =48°,则∠BDC =__24°___.8.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.解:∵AB =BC ,∴AB ︵=BC ︵,∴∠BDC =∠ADB ,∴DB 平分∠ADC知识点4:圆内接四边形的对角互补9.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( B )A .115°B .105°C .100°D .95°,第9题图) ,第10题图)10.如图,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D =__80°___,∠B =__100°___.11.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( B )A .44°B .54°C .72°D .53°,第11题图) ,第12题图)12.(2014·丽水)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD.已知DE =6,∠BAC +∠EAD =180°,则弦BC 的弦心距等于( D )A .412B .342C .4D .3 13.如图,AB 是⊙O 的直径,点C 是圆上一点,∠BAC =70°,则∠OCB =__20°___.,第13题图),第14题图),第15题图)14.如图,△ABC 内接于⊙O ,点P 是AC ︵上任意一点(不与A ,C 重合),∠ABC =55°,则∠POC 的取值范围是__0°<∠POC <110°___.15.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为.16.如图,在△ABC 中,AB =为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)连接AD.∵AB 是⊙O 的直径,∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线,∴AB =AC.又∵AB =BC ,∴AB =AC =BC ,∴△ABC 为等边三角形 (2)连接BE ,∵AB 是直径,∴∠AEB =90°,∴BE ⊥AC.∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点.又∵D 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB =12×2=117.(2014·武汉)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.(1)如图①,若点P 是AB ︵的中点,求PA 的长;(2)如图②,若点P 是BC ︵的中点,求PA 的长.解:(1)连接PB.∵AB 是⊙O 的直径,P 是AB ︵的中点,∴PA =PB ,∠APB =90°,可求PA =22AB =1322(2)连接BC ,OP 交于点D ,连接PB.∵P 是BC ︵的中点,∴OP ⊥BC ,BD=CD.∵OA =OB ,∴OD =12AC =52.∵OP =12AB =132,∴PD =OP -OD =132-52=4.∵AB 是⊙O 的直径,∴∠ACB =90°,由勾股定理可求BC =12,∴BD =12BC =6,∴PB =PD 2+BD 2=42+62=213.∵AB 是⊙O 的直径,∴∠APB =90°,∴PA =AB 2-PB 2=132-(213)2=31318.已知⊙O 的直径为10,点A ,B ,C 在⊙O 上,∠CAB 的平分线交⊙O 于点D. (1)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长; (2)如图②,若∠CAB =60°,求BD 的长.解:(1)∵BC 为⊙O 的直径,∴∠CAB =∠BDC =90°.在Rt △CAB 中,AC =BC 2-AB 2=102-62=8.∵AD 平分∠CAB ,∴CD ︵=BD ︵,∴CD =BD.在Rt △BDC 中,CD 2+BD 2=BC 2=100,∴BD 2=CD 2=50,∴BD =CD =52 (2)连接OB ,OD.∵AD 平分∠CAB ,且∠CAB =60°,∴∠DAB =12∠CAB =30°,∴∠DOB =2∠DAB =60°.又∵⊙O 中OB =OD ,∴△OBD 是等边三角形,∵⊙O 的直径为10,∴OB =5,∴BD =5。
鲁教版2020九年级数学圆的有关性质课后练习题4(附答案)

鲁教版2020九年级数学圆的有关性质课后练习题4(附答案)一.选择题(共10小题)1.中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加了一倍,那么圆的面积增加了()A.一倍B.二倍C.三倍D.四倍2.如图中奥迪车商标的长为34cm,宽为10cm,则d的值为()A.14B.16C.18D.203.下列说法正确的是()A.平行四边形既是中心对称图形,又是轴对称图形B.任意一条直径都是圆的对称轴C.在等圆中,若圆心角相等,那么所对的弦也相等D.把一个图形绕着某一点旋转一个角度能与自身重合,那么这个图形叫做中心对称图形4.在⊙O中,C是的中点,D是上的任一点(与点A、C不重合),则()A.AC+CB=AD+DB B.AC+CB<AD+DBC.AC+CB>AD+DB D.AC+CB与AD+DB的大小关系不确定5.如图,在⊙O中,弦AB长6cm,圆心O到AB的距离是3cm,⊙O的半径是()A.3cm B.C.4cm D.6.如图,A城气象台测得台风中心在城正西方向300千米的B处,并以每小时10千米的速度沿北偏东60°的BF方向移动,距台风中心200千米的范围是受台风影响的区域.若A城受到这次台风的影响,则A城遭受这次台风影响的时间为()A.小时B.10小时C.5小时D.20小时7.如图,AB是⊙O的直径,点C是圆上任意一点,点D是AC中点,OD交AC于点E,BD交AC于点F,若BF=1.25DF,则tan∠ABD的值为()A.B.C.D.8.如图,CD为⊙O的直径,AB为弦,AB⊥CD,点E在圆上,若OF=DF,则∠AEB的度数为()A.135°B.120°C.150°D.110°9.如图,四边形ABCD为⊙O的内接四边形,AO⊥BC,垂足为点E,若∠ADC=130°,则∠BDC的度数为()A.70°B.80°C.75°D.60°10.已知点P在半径为5cm的圆内,则点P到圆心的距离可以是()A.4cm B.5cm C.6cm D.7cm二.填空题(共10小题)11.如图所示,1条直线最多能将圆的内部分成2部分,2条直线最多能将圆的内部分成4部分.那么3条直线最多能将圆的内部分成部分,5条直线最多能将圆的内部分成部分.(每部分不要求全等)12.如图,一个人握着板子的一端,另一端放在圆柱上,某人沿水平方向推动板子带动圆柱向前滚动,假设滚动时圆柱与地面无滑动,板子与圆柱也没有滑动.已知板子上的点B (直线与圆柱的横截面的切点)与手握板子处的点C间的距离BC的长为Lm,当手握板子处的点C随着圆柱的滚动运动到板子与圆柱横截面的切点时,人前进了m.13.如图,AB是⊙O的直径,==,∠COD=32°,则∠AEO的度数.14.⊙O的弦AB等于半径,那么弦AB所对的圆心角度数是.15.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C.当△P AB是以AP为腰的等腰三角形时,线段BC 的长为.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC =60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.17.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是.18.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O不重合,∠BAC=23°,则∠DCA的度数.19.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.20.如图,在矩形ABCD中,AB=6,AD=8,E是BC上的一动点(不与点B、C重合).连接AE,过点D作DF⊥AE,垂足为F,则线段BF长的最小值为.三.解答题(共8小题)21.如图,圆心为点M的三个半圆的直径都在x轴上,所有标注A的图形面积都是S A,所有标注B的图形面积都是S B.(1)求标注C的图形面积S C;(2)求S A:S B.22.说说弦和直径的关系,弧和半圆的关系.23.如图,在⊙O中,点C是优弧ACB的中点,D、E分别是OA、OB上的点,且AD=BE,弦CM、CN分别过点D、E.(1)求证:CD=CE.(2)求证:=.24.问题呈现:阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC 的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC……请按照上面的证明思路,写出该证明的剩余部分;实践应用:(1)如图3,已知△ABC内接于⊙O,BC>AB>AC,D是的中点,依据阿基米德折弦定理可得图中某三条线段的等量关系为.(2)如图4,已知等腰△ABC内接于⊙O,AB=AC,D为AB上一点,连接DB,∠ACD =45°,AE⊥CD于点E,△BDC的周长为4+2,BC=2,请求出AC的长.25.如图,⊙O的两条弦AB∥CD(AB不是直径),点E为AB中点,连结EC,ED (1)直线EO与AB垂直吗?请说明理由;(2)求证:EC=ED.26.已知:如图,AO是⊙O的半径,AC为⊙O的弦,点F为的中点,OF交AC于点E,AC=8,EF=2.(1)求AO的长;(2)过点C作CD⊥AO,交AO延长线于点D,求sin∠ACD的值.27.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°(1)判断△ABC的形状,并证明你的结论;(2)若BC的长为6,求⊙O的半径.28.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.参考答案与试题解析一.选择题(共10小题)1.中央电视台“开心辞典”栏目曾有这么一道题:圆的半径增加了一倍,那么圆的面积增加了()A.一倍B.二倍C.三倍D.四倍【解答】解:设圆的原来的半径是R,增加1倍,半径即是2R,则增加的面积是4πR2﹣πR2=3πR2,即增加了3倍.故选:C.2.如图中奥迪车商标的长为34cm,宽为10cm,则d的值为()A.14B.16C.18D.20【解答】解:∵宽为10cm,∴圆的直径是10cm,∴圆的重叠部分的宽是(40﹣34)÷3=2cm,∴d=20﹣2=18cm.故选:C.3.下列说法正确的是()A.平行四边形既是中心对称图形,又是轴对称图形B.任意一条直径都是圆的对称轴C.在等圆中,若圆心角相等,那么所对的弦也相等D.把一个图形绕着某一点旋转一个角度能与自身重合,那么这个图形叫做中心对称图形【解答】解:A、根据轴对称图形和中心对称图形的概念,平行四边形是中心对称图形,不是轴对称图形,故错误;B、对称轴应是直径所在的直线,故错误;C、在等圆中,若圆心角相等,那么所对的弦也相等,正确;D、必须是旋转180°,故错误.故选:C.4.在⊙O中,C是的中点,D是上的任一点(与点A、C不重合),则()A.AC+CB=AD+DBB.AC+CB<AD+DBC.AC+CB>AD+DBD.AC+CB与AD+DB的大小关系不确定【解答】解:如图;以C为圆心,AC为半径作圆,交BD的延长线于E,连接AE、CE;∵CB=CE,∴∠CBE=∠CEB;∵∠DAC=∠CBE,∴∠DAC=∠CEB;∵AC=CE,∴∠CAE=∠CEA,∴∠CAE﹣∠DAC=∠CEA﹣∠CED,即∠DAE=∠DEA;∴AD=DE;∵EC+BC>BE,EC=AC,BE=BD+DE=AD+BD,∴AC+BC>BD+AD;故选:C.5.如图,在⊙O中,弦AB长6cm,圆心O到AB的距离是3cm,⊙O的半径是()A.3cm B.C.4cm D.【解答】解:如图所示,由题意知OC=3,且OC⊥AB,∵AB=6,∴AC=AB=3,则OA===3,故选:B.6.如图,A城气象台测得台风中心在城正西方向300千米的B处,并以每小时10千米的速度沿北偏东60°的BF方向移动,距台风中心200千米的范围是受台风影响的区域.若A城受到这次台风的影响,则A城遭受这次台风影响的时间为()A.小时B.10小时C.5小时D.20小时【解答】解:由题意得出:∠ABF=30°,AB=300km,∴AC=150km,当AD=200km,∴CD==50(km),∴DE=2×50=100(km),∴100÷10=10(小时).故选:B.7.如图,AB是⊙O的直径,点C是圆上任意一点,点D是AC中点,OD交AC于点E,BD交AC于点F,若BF=1.25DF,则tan∠ABD的值为()A.B.C.D.【解答】解:∵=,∴∠DAF=∠DBA,∵∠ADF=∠ADB,∴△ADF∽△BDA,∴=,∴AD2=DF•DB,∵BF=1.25DF,∴可以假设DF=4m,则BF=5m,BD=9m,∴AD2=36m2,∵AD>0,∴AD=6m,∵AB是直径,∴∠ADB=90°,∴tan∠ABD===,故选:A.8.如图,CD为⊙O的直径,AB为弦,AB⊥CD,点E在圆上,若OF=DF,则∠AEB的度数为()A.135°B.120°C.150°D.110°【解答】解:连接OA,CA,CB,∵CD为⊙O的直径,AB为弦,AB⊥CD,OF=DF,∴OA=2OF,∴∠AOD=60°,∴∠ACD=30°,∴∠ACB=60°,∴∠AEB=120°,故选:B.9.如图,四边形ABCD为⊙O的内接四边形,AO⊥BC,垂足为点E,若∠ADC=130°,则∠BDC的度数为()A.70°B.80°C.75°D.60°【解答】解:∵四边形ABCD为⊙O的内接四边形,∠ADC=130°,∴∠ABE=180°﹣130°=50°,∵AO⊥BC,∴∠AEB=90°,∴∠BAE=40°,∵AO⊥BC,∴BC=2BE,∴∠BDC=2∠BAE=80°,故选:B.10.已知点P在半径为5cm的圆内,则点P到圆心的距离可以是()A.4cm B.5cm C.6cm D.7cm【解答】解:∵点P在半径为5cm的圆内,∴点P到圆心的距离小于5cm,所以只有选项A符合,选项B、C、D都不符合;故选:A.二.填空题(共10小题)11.如图所示,1条直线最多能将圆的内部分成2部分,2条直线最多能将圆的内部分成4部分.那么3条直线最多能将圆的内部分成7部分,5条直线最多能将圆的内部分成16部分.(每部分不要求全等)【解答】解:3条直线最多能将圆的内部分成4+3=7部分;4条直线最多能将圆的内部分成7+4=11条;5条直线最多能将圆的内部分成11+5=16条.n条直线最多能将圆的内部分成(n2)部分.12.如图,一个人握着板子的一端,另一端放在圆柱上,某人沿水平方向推动板子带动圆柱向前滚动,假设滚动时圆柱与地面无滑动,板子与圆柱也没有滑动.已知板子上的点B (直线与圆柱的横截面的切点)与手握板子处的点C间的距离BC的长为Lm,当手握板子处的点C随着圆柱的滚动运动到板子与圆柱横截面的切点时,人前进了2L m.【解答】解:因为圆向前滚动的距离是Lm,所以人前进了2Lm.13.如图,AB是⊙O的直径,==,∠COD=32°,则∠AEO的度数48°.【解答】解:∵,∠COD=32°,∴∠BOC=∠EOD=∠COD=32°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=84°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO=×(180°﹣84°)=48°.故答案为:48°14.⊙O的弦AB等于半径,那么弦AB所对的圆心角度数是60°.【解答】解:∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°.故答案为:60°15.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C.当△P AB是以AP为腰的等腰三角形时,线段BC的长为或.【解答】解:①当AB=AP时,如图1,延长AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE=AB=4,∴BD=DP,在Rt△AEO中,AE=4,AO=5,∴OE=3,∵∠OAE=∠BAD,∠AEO=∠ADB=90°,∴△AOE∽△ABD,∴=,∴BD=,∴BD=PD=,即PB=,∵AB=AP=8,∴∠ABD=∠P,∵∠P AC=∠ADB=90°,∴△ABD∽△CP A,∴=,∴CP=,∴BC=CP﹣BP=﹣=;③当P A=PB时,如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,则PF⊥AB,∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,∵∠P AF=∠ABP=∠CBG,∠AFP=∠CGB=90°,∴△PFB∽△CGB,∴=,设BG=t,则CG=2t,∵∠P AF=∠ACG,∠AFP=∠AGC=90°,∴△APF∽△CAG,∴=,∴=,解得t=,在Rt△BCG中,BC=t=,综上所述,当△P AB是等腰三角形时,线段BC的长为或,故答案为:或.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC =60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,17.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是35°.【解答】解:连接OC交AB于E.∵C是的中点,∴OC⊥AB,∴∠AEO=90°,∵∠BAO=20°,∴∠AOE=70°,∵OA=OC,∴∠OAC=∠C=55°,∴∠CAB=∠OAC﹣∠OAB=35°,故答案为35°.18.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O不重合,∠BAC=23°,则∠DCA的度数44°.【解答】解:连接BC,如图所示:∵AB是直径,∴∠ACB=90°,∵∠BAC=23°,∴∠ABC=90°﹣∠BAC=90°﹣23°=67°,由翻折的性质得:所对的圆周角为∠B,所对的圆周角为∠ADC,∴∠ADC+∠ABC=180°,∴∠ABC=∠CDB=67°,∴∠DCA=∠CDB﹣∠BAC=67°﹣23°=44°,故答案为:44°.19.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故答案为20.如图,在矩形ABCD中,AB=6,AD=8,E是BC上的一动点(不与点B、C重合).连接AE,过点D作DF⊥AE,垂足为F,则线段BF长的最小值为2﹣4.【解答】解:如图,∵AE⊥DF,∴∠AFD=90°,∴点F的运动轨迹是以AD为直径的⊙O,连接OB,OF.∵四边形ABCD是矩形,∴∠BAO=90°,∵AB=6,AO=4,∴OB==2,FO=AD=4,∵BF≥OB﹣OF,∴BF的最小值为2﹣4,故答案为2﹣4.三.解答题(共8小题)21.如图,圆心为点M的三个半圆的直径都在x轴上,所有标注A的图形面积都是S A,所有标注B的图形面积都是S B.(1)求标注C的图形面积S C;(2)求S A:S B.【解答】解:(1)由题意得到圆M的半径为(6﹣4)÷2=1,则.(1分)(2)∴(3分)∵∴(5分)∴即S A:S B=5:6(6分)22.说说弦和直径的关系,弧和半圆的关系.【解答】解:直径是弦,但弦不一定是直径;半圆是弧,但弧不一定是半圆.23.如图,在⊙O中,点C是优弧ACB的中点,D、E分别是OA、OB上的点,且AD=BE,弦CM、CN分别过点D、E.(1)求证:CD=CE.(2)求证:=.【解答】(1)证明:连接OC.∵=,∴∠COD=∠COE,∵OA=OB,AD=BE,∴OD=OE,∵OC=OC,∴△COD≌△COE(SAS),∴CD=CE.(2)分别连结OM,ON,∵△COD≌△COE,∴∠CDO=∠CEO,∠OCD=∠OCE,∵OC=OM=ON,∴∠OCM=∠OMC,∠OCN=∠ONC,∴∠OMD=∠ONE,∵∠ODC=∠DMO+∠MOD,∠CEO=∠CNO+∠EON,∴∠MOD=∠NOE,∴=.24.问题呈现:阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC 的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是的中点,∴MA=MC……请按照上面的证明思路,写出该证明的剩余部分;实践应用:(1)如图3,已知△ABC内接于⊙O,BC>AB>AC,D是的中点,依据阿基米德折弦定理可得图中某三条线段的等量关系为BE=CE+AC.(2)如图4,已知等腰△ABC内接于⊙O,AB=AC,D为AB上一点,连接DB,∠ACD =45°,AE⊥CD于点E,△BDC的周长为4+2,BC=2,请求出AC的长.【解答】证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG,∵M是的中点,∴MA=MC.在△MBA和△MGC中,,∴△MBA≌△MGC(SAS),∴MB=MG,又∵MD⊥BC,∴BD=GD,∴DC=GC+GD=AB+BD;实践应用(1)如图3,依据阿基米德折弦定理可得:BE=CE+AC;故答案为:BE=CE+AC;(2)∵AB=AC,∴A是的中点,∵AE⊥CD,根据阿基米德折弦定理得,CE=BD+DE,∵△BCD的周长为4+2,∴BD+CD+BC=4+2,∴BD+DE+CE+BC=2CE+BC=4+2,∵BC=2,∴CE=2,在Rt△ACE中,∠ACD=45°,∴AE=CE=2,∴AC=4.25.如图,⊙O的两条弦AB∥CD(AB不是直径),点E为AB中点,连结EC,ED (1)直线EO与AB垂直吗?请说明理由;(2)求证:EC=ED.【解答】(1)解:直线EO与AB垂直,理由是:连接OE,并延长交CD于F,∵EO过O,E为AB的中点,∴EO⊥AB;(2)证明:∵EO⊥AB,AB∥CD,∴EF⊥CD,∵EF过O,∴CF=DF,∴EC=ED.26.已知:如图,AO是⊙O的半径,AC为⊙O的弦,点F为的中点,OF交AC于点E,AC=8,EF=2.(1)求AO的长;(2)过点C作CD⊥AO,交AO延长线于点D,求sin∠ACD的值.【解答】解:(1)∵O是圆心,且点F为的中点,∴OF⊥AC,∵AC=8,∴AE=4,设圆的半径为r,即OA=OF=r,则OE=OF﹣EF=r﹣2,由OA2=AE2+OE2得r2=42+(r﹣2)2,解得:r=5,即AO=5;(2)∵∠OAE=∠CAD,∠AEO=∠ADC=90°,∴∠AOE=∠ACD,则sin∠ACD=sin∠AOE==.27.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°(1)判断△ABC的形状,并证明你的结论;(2)若BC的长为6,求⊙O的半径.【解答】解:(1)△ABC是等边三角形,理由如下:由圆周角定理得,∠ABC=∠APC=60°,∠CAB=∠CPB=60°,∴△ABC是等边三角形;(2)延长BO交⊙O于E,连接CE,由圆周角定理得,∠E=∠BAC=60°,∴BE==4,∴⊙O的半径为2.28.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.【解答】解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.。
鲁教版九年级下册5.1圆同步课时训练(word版含答案)

鲁教版九年级下册5.1圆同步课时训练学校:___________姓名:___________班级:___________考号:___________一、单选题1.在⊙O中,圆心O在坐标原点上,半径为P的坐标为(4,5),那么点P 与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不能确定2.点P在半径为r的A外,则点P到圆心A的距离d与r的关系是()A.d r B.d rC.d r D.d r3.已知O的半径为6,点A与圆心O的距离为5,则点A与O的位置关系是()A.点A在O内B.点A在O上C.点A在O外D.点A不在O内4.已知O的半径是5,点A到圆心O的距离是7,则点A与O的位置关系是()A.点A在O上B.点A在O内C.点A在O外D.点A与圆心O 重合5.如图,抛物线y=14x2-4 与x 轴交于A、B 两点,P 是以点C(0,3)为圆心,2 为半径的圆上的动点,Q是线段PA 的中点,连结OQ,则线段OQ的最大值是()A.1.5 B.3 C.3.5 D.46.已知O的半径为5cm,P为O外一点,则OP的长可能是().A.6cm B.4cm C.3cm D.5cm7.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且45∠=︒,DF AB⊥于点G,当点C在AB上运动时.设ACD⊥于点F,EG AB=,下列中图象中,能表示y与x的函数关系式的图象大致是() =,DE yAF xA.B.C.D.8.已知O的半径是6cm,则O中最长的弦长是()A.6cm B.12cm C.16cm D.20cm9.如图,我们把一个半圆与抛物线的一部分围成的封闭图象称为“果园”,已知点A,B,C,D分别是“果园”与坐标轴的交点,抛物线的解析式为y=x2﹣4x﹣5,AB为半圆的直径,则这个“果园”被y轴截得的弦CD的长为()A.8 B.5 C.D.510.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP,BP,则2AP+BP的最小值为()二、填空题11.在Rt △ABC 中,∠C=90°,∠A=30°,BC=1,分别以A 、B 为圆心的两圆外切,如果点C 在圆A 内,那么圆A 的半径长r 的取值范围是__.12.已知⊙P 在直角坐标平面内,它的半径是5,圆心P (﹣3,4),则坐标原点O 与⊙P 的位置关系是__.13.如图,在平面直角坐标系xOy 中,以点A (﹣5,0)为圆心,13为半径作弧,交y 轴的正半轴于点B ,则点B 的坐标为_____.14.如图,Rt OAB △的直角边2OA =,1AB =,OA 在数轴上,在OB 上截取BC BA =,以原点O 为圆心,OC 为半径画弧,交边OA 于点P ,则点P 对应的实数是________.15.如图,C 的半径为1,圆心坐标为()3,4C ,点()P m n ,是C 内或C 上的一个动点,则22m n +的最小值是__________.16.如图,已知矩形ABCD 中3AB =,4BC =,将三角板的直角顶点P 放在矩形内,移动三角板保持两直角边分别经过点B 、C ,则PD 的最小值为________.三、解答题17.如图,在Rt ABC △中,Rt ,2,ACB BC AC ∠=∠==D 是AC 边上的中点.有一动点P 由点A 以每秒1个单位的速度向终点B 运动,设运动时间为t 秒.(1)如图1,当ADP △是以点P 为直角顶点的直角三角形时,求t 的值;(2)如图2,过点A 作直线DP 的垂线AE ,点E 为垂足.①是否存在这样的t ,使得以,,A P E 为顶点的三角形与ABC 相似,若存在,请求出t 的值;若不存在,请说明理由.②连结BE ,当点P 由点A 运动到点B 的过程中(不包括端点),请直接写出BE 的取值范围.18.已知关于x 的一元二次方程x 2+2mx ﹣n 2+5=0.(1)当m =1时,该一元二次方程的一个根是1,求n 的值;(2)若该一元二次方程有两个相等的实数根.①求m 、n 满足的关系式;②在x 轴上取点H ,使得OH =|m |,过点H 作x 轴的垂线l ,在垂线l 上取点P ,使得PH =|n |,则点P 到点(3,4)的距离最小值是 .19.如图, Rt △ABC 中,90C =∠,3BC =,4AC =,以B 为圆心,4为半径作圆弧交AC 边于点F ,交AB 于点E .(1)求CF 的长;(2)联结CE ,求ACE ∠的正切值.20.已知抛物线212y x bx c =++与x 轴交于(4,0),(2,0)A B -,与y 轴交于点C .(1)求抛物线的解析式及C 点坐标;(2)点D 为第四象限抛物线上一点,设点D 的横坐标为m ,四边形ABCD 的面积为S ,求S 与m 的函数关系式,并求S 的最值;(3)点P 在抛物线的对称轴上,且45BPC ∠=,请直接写出点P 的坐标.参考答案1.A2.D3.A4.C5.C6.A7.A8.B9.C10.A11r <212.点O 在⊙P 上13.()0,12.14115.1616217.(1)32;(2)①存在,1或2或3;4BE <. 【详解】解:(1)Rt ACB ∠=∠,2BC =,AC =tanBC A AC ∴==, 30A ∴∠=︒,点D 是AC 边上的中点,AD CD ∴=DP AB ⊥,cosAP A AD ∴===, 32AP ∴=, 3()12AP t s ∴==; (2)①AE DP ⊥,90C AED ∴∠=∠=︒,如图3,当30BAC ADP ∠=∠=︒时,90E ∠=︒,30ADP ∠=︒,12AE AD ∴== 60APE ADP PAD ∠=∠+∠=︒,30PAE ∴∠=︒,2AP PE ∴=,AE ==, 1AP ∴=,1()1AP t s ∴==; 如图4,若30APD BAC =∠=︒∠时,2AP AE ∴=,60ADE APD PAD ∠=∠+∠=︒,30DAE ∴∠=︒,12DE AD ∴==,32AE ==,3AP ∴=,3()1AP t s ∴==; 如图5,若点E 与点D 重合时,2AP DP ∴=,AD1DP ,2AP =,2()1AP t s ∴==; 综上所述:t 的值为1或2或3;②90AED ∠=︒,∴点E 在以AD 为半径的圆上,如图6,取AD 的中点F ,连接BF ,过点F 作FH AB ⊥于H ,AF ∴=, 30BAC ∠=︒,12FH AF ∴==,34AH ==,24AB BC ==, 134AH ∴=,BF ∴=, 点E 在以AD 为半径的圆上,∴当点E 在线段BF 上时,BE 有最小值,BE ∴- 当点E 与点A 重合时,BE 有最大值为4,∴4BE <.18.(1)±;(2)①m 2+n 2=5;②5【详解】解:(1)把m =1,x =1代入方程得1+2﹣n 2+5=0,解得n =±,即n 的值为±; (2)①根据题意得△=4m 2﹣4(﹣n 2+5)=0,整理得m 2+n 2=5;②∵OH =|m |,PH =|n |,∴OP即点P 在以O∴原点与点(3,4)的连线与⊙O 的交点P 使点P 到点(3,4)的距离最小,∵原点到点(3,45,∴点P 到点(3,4)的距离最小值是5故答案为519.(1)CF =(2)316tan ACE ∠=. 【详解】解:(1)连接BF .∵以B 为圆心,4为半径作圆弧交AC 边于点F ,交AB 于点E , ∴4BF BE ==.∵在Rt △BCF 中,90C =∠,3BC =,4BF =,∴CF ===(2)如图,过点E 作EG ⊥AC 垂足为G .∵90ACB ∠=,∴EG ∥BC .,AGE ACB ∴∽ ∴EG AE AG BC AB AC==. ∵5AB =,4BE =,∴1AE =. ∴1354EG AG ==. ∴35EG =,45AG =. ∴416455CG AC AG =-=-=. ∴33516165EG tan ACE CG ∠===. 20.(1)211(4)(2)422y x x x x =-+=--,C (0,-4);(2)2(2)16S m =--+,最大值为16;(3)(1,1-或(1,1-【详解】解:(1)∵抛物线经过A (4,0),B (-2,0),∴抛物线的表达式为:211(4)(2)422y x x x x =-+=--, 令x=0,则y=-4,∴点C 的坐标为(0,-4);(2)设点21(,4)2D m m m --, ()()221111111·24442162222222OBC OCD ODA D S S S S OB OC OC m AO y m m m m ∆∆∆⎡⎤⎛⎫=++=⨯⨯++⨯-=⨯⨯+⨯=⨯---=--+ ⎪⎢⎥⎝⎭⎣⎦,当2m =时,S 的最大值为16;(3)45BPC ∠=︒,则BC 对应的圆心角为90︒,如图作圆R ,则90BRC ∠=︒, 圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点(,)R m n .90BMR MRB ∠+∠=︒,90MRB CRN ∠+∠=︒,CRN MBR ∴∠=∠,90BMR RNC ∠=∠=︒,BR RC =,()BMR RNC AAS ∴∆≅∆,CN RM ∴=,RN BM =,即24m n +=+,n m -=,解得:1m =,1n =-,即点(1,1)R -,即点R 在函数对称轴上,=则点P 的坐标为:(1,1-或(1,1-.。
难点详解鲁教版(五四制)九年级数学下册第五章圆必考点解析试题(含答案及详细解析)

鲁教版(五四制)九年级数学下册第五章圆必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)∥交O于点D,点C、D 1、如图,AB是O的直径,点C在O上,连接AC、BC,过点O作OD AC∠的度数是()在AB的异侧.若24∠=︒,则BCDBA.66°B.67°C.57°D.48°2、如图,A,B,C为⊙O上三点,若∠ABC=44°,则∠OAC的度数为()A.46°B.44°C.40°D.50°3、如图,在O中,点A,B,C在圆上,45∠=︒,则AOB的形状是().ACBA.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4、如果一弧长是其所在圆周长的118,那么这条弧长所对的圆心角为()A.15度B.16度C.20度D.24度5、如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD,CD,OA,若∠ADC=25°,则∠ABO的度数为()A.35°B.40°C.50°D.55°6、如图,AB是⊙O的直径,AP是⊙O的切线,PB交⊙O于点C,点D在⊙O上,若∠ADC=40°,则∠P的度数是()A.35°B.40°C.45°D.50°7、如图,AB为⊙O的直径,点C在⊙O上,∠A=24°,则∠B的度数为()A .66°B .48°C .33°D .24°8、如图,点A 、B 、C 是O 上的点,且90ACB ∠=︒,6AC =,8BC =,ACB ∠的平分线交O 于D ,下列4个判断:①O 的半径为5;②CD 的长为BC 弦所在直线上存在3个不同的点E ,使得CDE △是等腰三角形;④在BC 弦所在直线上存在2个不同的点F ,使得CDF 是直角三角形;正确判断的个数有( )A .1B .2C .3D .49、平面内,⊙O 的半径为3,若点P 在⊙O 外,则OP 的长可能为( )A .4B .3C .2D .110、如图,BC 为O 的直径,AB 交于O E 点,AC 交O 于D 点,AD CD =,70A ∠=︒,则∠BOE 的度数是( ).A.140°B.100°C.90°D.80°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB为⊙O的直径,且AB=10,点C为⊙O上半圆的一点,CE⊥AB于点E,∠OCE的角平分线交⊙O于点D,弦AC=6,那么△ACD的面积是_______.2、如图,四边形ABCD内接于ΘO,DA=DC,若∠CBE=40°,则∠DAC的度数是________.3、一个扇形的弧长是10πcm,面积是75πcm2,则扇形的圆心角是 _____.4、如图,甲、乙、丙、丁四个扇形的面积之比是1:2:3:4,则甲、乙、丙、丁四个扇形中圆心角度数最大的是___________度.5、如图,将半径为6cm的圆分别沿两条平行弦对折,使得两弧都经过圆心,则图中阴影部分的面积为______cm2.三、解答题(5小题,每小题10分,共计50分)1、已知,如图,直线MN交⊙O于A,B两点,AC是直径,DE与⊙O相切于点D,过D点作DE⊥MN于点E.(1)求证:AD平分∠CAE;(2)若AE=2,AD=4,求⊙O的半径.2、在Rt△ABC中,∠BCA=90°,BC=AC,点E是△ABC外一动点(点B,点E位于AC异侧),连接CE,AE.(1)如图1,点D是AB的中点,连接DC,DE,当△ADE为等边三角形时,求∠AEC的度数;(2)当∠AEC=135°时,①如图2,连接BE,用等式表示线段BE,CE,EA之间的数量关系,并证明;②如图3,点F为线段AB上一点,AF=1,BF=7,连接CF,EF,直接写出△CEF面积的最大值.3、如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC,点Q是AmB上的一点.(1)求证:BC是⊙O的切线;(2)已知∠BAO=25°,求∠AQB的度数;(3)在(2)的条件下,若OA=18,求AmB的长.4、如图,在每个小正方形的边长为1的网格中,ABC的顶点A在格点上,B是小正方形边的中点,经过点A,B的圆的圆心在边AC上.(1)弦AB 的长等于_____;(2)请用无刻度的直尺,在如图所示的网格中,找出经过点A ,B 的圆的圆心O ,并简要说明点O 的位置是如何找到的(不要求证明)_____.5、如图,在Rt △ABC 中,90C ∠=︒,D 是AB 上的一点,以AD 为直径的⊙O 与BC 相切于点E ,连接AE ,DE .(1)求证:AE 平分∠BAC ;(2)若30B ∠=︒,求CE DE的值.-参考答案-一、单选题1、C【解析】【分析】先求出CAO ∠,得出AOD ∠,由等腰三角形的性质和三角形内角和定理求出OAD ∠,再由圆周角定理求出BCD ∠的度数即可.解:连接AD,如图所示:AC OD,//∴∠=∠,CAO AODAB是O的直径,∴∠=︒,ACB90∴∠CCC=90°−∠C=66°.∴∠=︒,AOD66=,OA ODOAD AOD∴∠=︒-∠÷=︒,(180)257∴∠=∠=︒;BCD OAD57故选:C.【点睛】本题考查了圆周角定理、平行线的性质、等腰三角形的性质,解题的关键是熟练掌握圆周角定理的内容.2、A【解析】【分析】先利用圆周角定理求出AOC∠即可.∠的度数,然后再利用等腰三角形的性质求出OAC解:AC 所对的圆周角是ABC ∠,AC 所对的圆心角是AOC ∠,288AOC ABC ∴∠=∠=︒,OA OC =,46OAC OCA ∴∠=∠=︒,故选:A .【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系,解题的关键是熟练掌握圆周角定理.3、D【解析】【分析】根据圆周角定理可得290AOB ACB ∠=∠=︒,根据半径相等可得OA OB =,进而即可判断出AOB 的形状.【详解】解:∵AB AB =,45ACB ∠=︒,∴290AOB ACB ∠=∠=︒,OA OB =AOB ∴是等腰直角三角形故选:D【点睛】本题考查了圆周角定理,理解圆周角定理,掌握等腰三角形的性质是解题的关键.4、C【解析】根据弧长公式和圆的周长公式的关系即可得出答案【详解】 解:∵一弧长是其所在圆周长的118, ∴1=2r 18018n r ππ⨯ ∴=20n∴这条弧长所对的圆心角为20故选:C【点睛】 本题考查了弧长的计算,掌握弧长公式180n r l π=是解题的关键. 5、B【解析】【分析】根据圆周角和圆心角的关系,可以得到∠AOC 的度数,然后根据AB 为⊙O 的切线和直角三角形的两个锐角互余,即可求得∠ABO 的度数.【详解】解:∵∠ADC =25°,∴∠AOC =50°,∵AB 为⊙O 的切线,点A 为切点,∴∠OAB =90°,∴∠ABO =∠OAB ﹣∠AOC =90°﹣50°=40°,故选:B .【点睛】本题考查切线的性质、圆周角定理、直角三角形的性质,利用数形结合的思想解答问题是解答本题的关键.6、D【解析】【分析】根据圆周角和圆心角的关系,可以得到ADC ∠的度数,然后根据AP 为O 的切线和直角三角形的两个锐角互余,即可求得P ∠的度数.【详解】解:40ADC ∠=︒,40ABC ∴∠=︒, AB 为O 的切线,点A 为切点,90OAB ︒∴∠=, 90904050P ABC ∴∠=︒-∠=︒-︒=︒,故选:D .【点睛】本题考查切线的性质、圆周角定理、直角三角形的性质,解题的关键是利用数形结合的思想解答.7、A【解析】【分析】根据直径所对的圆周角为90°得90C ∠=︒,由三角形的内角和为180°,即可求出B .【详解】∵AB 为⊙O 的直径,∴90C ∠=︒,∴180180249066B A C ∠=︒-∠-∠=︒-︒-︒=︒.故选:A .【点睛】本题考查圆周角定理与三角形的内角和定理,掌握直径所对的圆周角为90°是解题的关键.8、C【解析】【分析】利用勾股定理求出AB 即可判断①正确;如图1中,过点D 作DM ⊥CA 交CA 的延长线于点M ,DN ⊥BC 于N .证明四边形CMDN 是正方形,求出CM ,可得结论②正确;利用图形法,即可判断③错误;利用图形法即可判断④正确.【详解】解:如图1中,连接AB.∵∠ACB =90°,∴AB 是直径, ∴22226810AB AC BC ,∴⊙O 的半径为5.故①正确,如图1中,连接AD,BD,过点D作DM⊥CA交CA的延长线于点M,DN⊥BC于N.∵CD平分∠ACB,∴∠ACD=∠BCD,∴AD BD,∴AD=BD,∵∠M=∠DNC=90°,CD=CD,∴△CDM≌△CDN(AAS),∴CM=CN.DM=DN,∵∠M=∠DNB=90°,DA=DB,∴Rt△DMA≌Rt△DNB(HL),∴AM=BN,∵∠M=∠MAN=∠DNC=90°,∴四边形CMDN是矩形,∵DM=DN,∴四边形CMDN是正方形,∴CD,∵AC+CB=CM-AM+CN+BN=2CM=14,∴CM=7,∴CD,故②正确,如图2中,满足条件的点E有4个,故③错误,如图3中,满足条件的点F有2个,故④正确,∴正确的结论是①②④,共3个故选:C.【点睛】本题考查了勾股定理,正方形的判定与性质,全等三角形的判定与性质,等腰三角形,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9、A【解析】【分析】根据点与圆的位置关系得出OP>3即可.【详解】解:∵⊙O的半径为3,点P在⊙O外,∴OP>3,故选:A.【点睛】本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外⇔d>r,点在圆上⇔d=r,点在圆内⇔d<r.10、B【解析】【分析】首先连接BD,CE,OE,由BC为⊙O的直径,根据直径所对的圆周角是直角,可得∠BDC=∠BEC=90°,然后由线段垂直平分线的性质,可得AB=BC,继而求得∠ABC的度数,则可求得∠BCE的度数.【详解】解:连接BD,CE,OE,∵BC为⊙O的直径,∴∠BDC=∠BEC=90°,∴BD⊥CD,∵AD=CD,∴AB=CB,∵∠A=70°,∠ACB=70°,∴∠ABC=180°−∠A−∠ACB=40°,∴∠BCE=90°−∠ABC=50°,∴∠BOE=2∠BCE=100°.故选:B.【点睛】此题考查了圆周角定理、线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题1、21【解析】【分析】连接OD,作AG⊥CD于G,利用角平分线定义、直径所对的圆周角为直角与余角的性质推得∠ACD为45°,然后由等腰直角三角形的性质求出AG和CG的长,再利用垂径定理得出∠AOD=90°,于是由等腰直角三角形的性质求出AD的长度,则由勾股定理可求GD的长度,进而求出CD的长,现知△ACD 的底和高,则其面积可求.【详解】解:如图,连接OD,BD,过点A作AG⊥CD于G,∵AB为直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∵CE⊥AB,∴∠ACE+∠CAB=90°,∴∠ACE=∠ABC,∵OC=OB,∵∠CBO=∠BCO,∴∠ACE=∠BCO,∵CD平分∠ECO,∴∠ECD=∠OCD,∴∠ACE+∠ECD=45°,∵AC=6,∴AG=CG=∵∠ACD=∠BCD=45°,∴AD=BD,∴OD⊥OA,∴OA=OD,∵AB =10,∴AD OA =,∴DG AG 2222523242,∴CD =CG +GD ==∴△ACD 的面积=12×CD ×AG =1221.故答案为:21.【点睛】本题考查角平分线定义,直径所对圆周角性质,等腰直角三角形性质,垂径定理,勾股定理三角形面积,掌握角平分线定义,直径所对圆周角性质,等腰直角三角形性质,垂径定理,勾股定理三角形面积是解题关键.2、70°【解析】【分析】根据邻补角互补求出ABC ∠,根据圆内接四边形的性质得出180D ABC ∠+∠=︒,求出D ∠,再根据等腰三角形的性质和三角形内角和定理求出DAC ∠即可.【详解】解:40CBE ∠=︒,180140ABC CBE ∴∠=︒-∠=︒, 四边形ABCD 是O 的内接四边形,180D ABC ,40D ∴∠=︒,AD CD =,1(180)702DAC DCA D ∴∠=∠=︒-∠=︒, 故答案为:70︒.【点睛】本题考查了圆内接四边形的性质,等腰三角形的性质,三角形内角和定理,圆心角、弧、弦之间的关系,圆周角定理等知识点,解题的关键是能熟记圆内接四边形的对角互补.3、120°【解析】【分析】根据扇形面积公式求出圆的半径,再根据弧长公式求出圆心角度数即可.【详解】解:∵一个扇形的弧长是10πcm ,面积是75πcm 2, ∴110752r ππ⨯=,解得,15r =, ∴10180n rππ=, ∴1510180n ππ=,解得,120n =,故答案为:120°.【点睛】本题考查了扇形面积和弧长的计算,解题关键是熟记扇形面积公式和弧长公式.4、144【解析】【分析】先设甲、乙、丙、丁的圆心角分别为α、β、γ、δ,根据扇形面积得出α:β:γ:δ=1:2:3:4,利用周角360°分别求出α=303166︒=︒,β=2α=72°,γ=3α=108°,δ=4α=144°即可. 【详解】 解;设甲、乙、丙、丁的圆心角分别为α、β、γ、δ,∴S 甲=απr 2360,S 乙=βπr 2360,S 丙=γπr 2360,S 丁=δπr 2360, ∵S 甲:S 乙:S 丙:S 丁=1:2:3:4, ∴απr 2360:βπr 2360:γπr 2360:δπr 2360=1:2:3:4, ∴α:β:γ:δ=1:2:3:4,∴α=0303166︒=︒,β=2α=72°,γ=3α=108°,δ=4α=144°, 故甲、乙、丙、丁四个扇形中圆心角度数最大的是144°.故答案为:144.【点睛】本题考查扇形面积,圆心角,掌握扇形面积与圆心角的关系是解题关键.5、12π【解析】【分析】设该圆圆心为O ,并用大写字母表示出其它点,作OC AB ⊥于点C .根据所作图形可知AC BC =,再根据题意可知11322OC OA OB cm ===,60AOC BOC ∠=∠=︒,即得出AOB ∠.结合勾股定理,在Rt OAC △中,可求出AC 的长,即可求出AB 的长,最后根据4()AOB AOB S S S S =--阴圆扇形,结合圆的面积公式、扇形的面积公式,三角形面积公式求出结果即可.【详解】如图,设该圆圆心为O ,其它点如图所示,并作OC AB ⊥于点C .根据垂径定理可知,AC BC =.∵该圆分别沿两条平行弦对折,且两弧都经过圆心, ∴11163222OC OA OB cm ===⨯=, ∴30OAC OBC ∠=∠=︒,∴903060AOC BOC ∠=∠=︒-︒=︒,∴6060120AOB ∠=︒+︒=︒.∵在Rt OAC △中,AC ,∴BC AC ==,∴AB =.∴222120614()64(3)12)3602AOB AOB S S S S cm πππ⋅=--=⋅--⨯=阴圆扇形.故答案为:12π【点睛】本题考查不规则图形的面积计算,涉及垂径定理,含30角的直角三角形的性质,勾股定理,圆的面积公式,扇形的面积公式.正确的作出辅助线是解答本题的关键.三、解答题1、 (1)见解析(2)4【解析】【分析】(1)由DE与圆O相切,利用切线的性质得到OD垂直于DE,再由DE垂直于MB,得到一对同旁内角互补,利用同旁内角互补两直线平行,得到OD与MB平行,利用两直线平行得到一对内错角相等,再由OD=OA,利用等边对等角得到一对角相等,等量代换可得出∠DAE=∠OAD,即AD为∠CAE的平分线,得证;(2)过O作OF垂直于MB,显然得到四边形ODEF为矩形,利用矩形的对边相等得到OD=EF,OF=DE,设圆的半径为rcm,由DE的长得出OF的长,由EF-AE=OD-EF表示出AF的长,在直角三角形AOF 中,利用勾股定理列出关于r的方程,求出方程的解即可得到半径r的长.【小题1】解:证明:连接OD,∵DE切圆O于D,∴OD⊥DE,∴∠ODE=90°,又∵DE⊥MB,∴∠DEB=90°,∴∠ODE+∠DEB=180°,∴OD∥MB,∴∠ODA=∠DAE,又∵OD=OA,∴∠ODA=∠OAD,∴∠DAE=∠OAD,则AD为∠CAM的平分线;【小题2】过O作OF⊥AB,显然四边形ODEF为矩形,则OF=DE,OD=EF,设圆的半径OD=EF=OA=r,∵AE=2,AD=4,∠AED=90°,∴DE=∴OF=DE=AF=EF-AE=r-2,在Rt△AOF中,根据勾股定理得:OA2=AF2+OF2,即r2=(r-2)2+(2,解得:r=4,故⊙O的半径为4.【点睛】此题考查了切线的性质,勾股定理,平行线的判定与性质,利用了转化及方程的思想,熟练掌握切线的性质是解本题的关键.2、(1)∠AEC=135°;(2)①BE+EA,理由见解析;②4【解析】【分析】(1)由等腰直角三角形的性质得∠CDA=90°,CD=DA,再由等边三角形的性质得DE=DA,∠DEA=∠EDA=60°,然后求出∠DEC=75°,即可求解;(2)①过点C作CH⊥CE交AE的延长线于点H,证△ACH≌△BCE(SAS),得BE=AH=HE+EACE+AE;②取AB的中点O,连接OC,由勾股定理得CF=5,再证A、B、C、E四点共圆,由圆周角定理得AB是圆的直径,AB的中点O是圆心,过点O作ON⊥CF于N,延长ON交圆O于点E,此时点E到CF的距离最大,△CEF面积的面积最大,然后由三角形面积求出ON=125,则EN=OE-ON=85,即可求解.(1)解:∵∠BCA=90°,BC=AC,点D是AB的中点,∴∠CDA=90°,CD=12AB=DA,∵△ADE是等边三角形,∴DE=DA,∠DEA=∠EDA=60°,∴DC=DE,∠CDE=∠CDA-∠EDA=90°-60°=30°,∴∠DEC=12(180°-∠CDE)=12×(180°-30°)=75°,∴∠AEC=∠DEC+∠DEA=75°+60°=135°;(2)解:①线段BE,CE,EA之间的数量关系为:BE+EA,理由如下:过点C作CH⊥CE交AE的延长线于点H,如图2所示:则∠CEH =180°-∠AEC =180°-135°=45°,∴△ECH 是等腰直角三角形,∴CH =CE ,HE,∵∠BCA =∠ECH =90°,∴∠ACH =∠BCE ,在△ACH 和△BCE 中,AC BC ACH BCE CH CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACH ≌△BCE (SAS ),∴BE =AH =HE +EA+AE ;②取AB 的中点O ,连接OC ,如图3所示:∵∠BCA =90°,BC =AC ,∴△ACB 是等腰直角三角形,∴∠ABC =45°,∵O 是AB 的中点,∴OC ⊥AB ,OC =OA =12AB =12(AF +BF )=12×(1+7)=4,∴OF=OA-AF=4-1=3,在Rt△COF中,由勾股定理得:CF=,∵CF是定值,∴点E到CF的距离最大时,△CEF面积的面积最大,∵∠AEC=135°,∴∠ABC+∠AEC=180°,∴A、B、C、E四点共圆,∵∠BCA=90°,∴AB是圆的直径,AB的中点O是圆心,过点O作ON⊥CF于N,延长ON交圆O于点E,此时点E到CF的距离最大,△CEF面积的面积最大,∵S△OCF=12OC•OF=12CF•ON,∴431255OC OFONCF⋅⨯===,∵OE=OC=4,∴EN=OE-ON=4-125=85,∴△CEF面积的面积最大值为:12CF•EN=12×5×85=4.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的性质、四点共圆、圆周角定理、垂径定理、勾股定理、三角形面积等知识,本题综合性强,熟练掌握等腰直角三角形的判定与性质和圆周角定理,证明△ACH≌△BCE 是解题的关键.3、 (1)见解析(2)65°(3)23π【解析】【分析】(1)连接OB,根据等腰三角形的性质得到∠OAB=∠OBA,∠CPB=∠PBC,等量代换得到∠APO=∠CBP,根据三角形的内角和得到∠CBO=90°,于是得到结论;(2)根据等腰三角形和直角三角形的性质得到∠ABO=25°,∠APO=65°,根据三角形外角的性质得到∠POB=∠APO﹣∠ABO=40°,根据圆周角定理即可得到结论;(3)根据弧长公式即可得到结论.(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;(2)解:∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=12(∠AOP+∠POB)=12×130°=65°;(3)解:由(2)得,∠AQB=65°,∴∠AOB=130°,∴AmB的长=AQB的长=23018180π⋅⨯=23π.【点睛】本题考查了切线的判定和性质,等腰三角形的性质,直角三角形的性质,弧长的计算,圆周角定理,熟练正确切线的判定和性质定理是解题的关键.4、90°的圆周角所对的弦是直径【解析】【分析】(1)由勾股定理即可得出答案;(2)取圆与网格线的交点D 、E ,连接DE 交AC 于O ,点O 即为经过出点A ,B 的圆的圆心;由圆周角定理即可得出结论.【详解】解:(1)由勾股定理得:AB ;; (2)如图试所示:取圆与网格线的交点D 、E ,连接DE 交AC 于O ,点O 即为经过出点A ,B 的圆的圆心;理由如下:∵∠EAD =90°,∴DE 为圆O 的直径,∵经过点A ,B 的圆的圆心在边AC 上,∴DE 与AC 的交点即为点O ;故答案为:90°的圆周角所对的弦是直径.【点睛】本题考查了圆周角定理、勾股定理;熟练掌握圆周角定理和勾股定理是解题的关键.5、 (1)见解析(2)CE DE =【解析】【分析】(1)连接OE,根据切线的性质得到∠OEB=90°,进而得到OE//AC,根据平行线的性质得到∠OEA=∠EAC,根据等腰三角形的性质得到∠OEA=∠OAE,根据角平分线的定义证明结论;(2)根据圆周角定理得到∠AED=90°,证明△DAE∽△EAC,根据相似三角形的性质得到CE AE DE AD,根据余弦的定义计算,得到答案.(1)证明:连接OE,∵BC是⊙O的切线,∴OE⊥BC,即∠OEB=90°,∵∠C=90°,∴OE//AC,∴∠OEA=∠EAC,∵OE=OA,∴∠OEA=∠OAE,∴∠OAE=∠EAC,即AE平分∠BAC;(2)∵AD为⊙O的直径,∴∠AED=90°,∵∠OAE =∠EAC ,∠C =90°,∴△DAE ∽△EAC , ∴CE AE DE AD=, ∵∠C =90°,∠B =30°,∴∠BAC =90°-30°=60°,∴∠DAE =12∠BAC =30°,∵cos AE DAE AD ∠==cos30︒=∴CE AE DE AD == 【点睛】本题考查的是切线的性质、圆周角定理、相似三角形的判定和性质、锐角三角函数的定义,根据圆的切线垂直于经过切点的半径得到OE ⊥BC 是解题的关键.。
鲁教版2019-2020九年级数学第五章圆单元综合测试题3(培优 含答案)

鲁教版2019-2020九年级数学第五章圆单元综合测试题3(培优含答案)1.如图,矩形ABCD,AD=1,CD=2,点P为边CD上的动点(P不与C重合),作点P关于BC的对称点Q,连结AP,BP和BQ,现有两个结论:①若DP≥1,当△APB 为等腰三角形时,△APB和△PBQ一定相似;②记经过P,Q,A三点的圆面积为S,则4π≤S<254π.下列说法正确的是()A.①对②对B.①对②错C.①错②对D.①错②错2.如图,O是ABC的外接圆,它的半径为3,若ABC40∠=,则劣弧AC的长为()A.2π3B.3πC.4π3D.4π3.如图,AB是⊙O的弦,OA、OC是⊙O的半径,弧AC=弧BC,∠BAO=37︒,则∠AOC的度数是()度A.74B.106C.117D.1274.如图,⊙O的直径AB=12,CD 是⊙O 的弦,CD⊥AB于P,且BP :AP=1 :5,则CD 的长为()A. B. C. D.5.如图,已知矩形ABCD ,⊙O 是△ABC 的内切圆,现将矩形ABCD 按如图所示折叠,使点D 与点O 重合,折痕为FG ,点F 、G 分别在AD ,BC 上,连接OG 、DG ,若OG ⊥DG ,且⊙O 的半径长为1,则下列结论不成立...的是A .CD+DF=4B .−3C .D .BC−AB=26.如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD ,下底BC 以及腰AB 均相切,切点分别是点D ,C ,E.若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是( )A.9B.10C.12D.147.给出下列四个结论,其中正确的结论为( )A .三点确定一个圆B .同圆中直径是最长的弦C .三角形的外心到三角形三边距离相等D .长度相等的弧是等弧8.如图,圆锥底面半径为rcm ,母线长为5cm ,其侧面展开图是圆心角为216°的扇形,则r 的值为( )A.3B.4C.5D.6 A BC DF G OC'9.如图,⊙O 的半径为1,圆心O 到直线AB 的距离为2,M 是直线AB 上的一个动点,MN 与⊙O 相切于N 点,则MN 的最小值是_____________.10.如图,是⊙O 直径,130AOC ∠=︒,则D ∠=______11.如图,等腰Rt △ABC 的直角边长为4,以A 为圆心,直角边AB 为半径作弧BC 1,交斜边AC 于点C 1,C 1B 1⊥AB 于点B 1,设弧BC 1,C 1B 1,B 1B 围成的阴影部分的面积为S 1,然后以A 为圆心,AB 1为半径作弧B 1C 2,交斜边AC 于点C 2,C 2B 2⊥AB 于点B 2,设弧B 1C 2,C 2B 2,B 2B 1围成的阴影部分的面积为S 2,按此规律继续作下去,得到的阴影部分的面积S 3=_____.12.当点A (1,2),B (3,﹣3),C (m ,n )三点可以确定一个圆时,m ,n 需要满足的条件 .13.如图,在△ABC 中,∠BAC =50°,AC =2,AB =3,将△ABC 绕点A 逆时针旋转50°,得到△AB 1C 1,则阴影部分的面积为_______.14.若扇形半径为6cm ,面积为9πcm 2,则该扇形的弧长为 cm .15.半径为6cm 的圆中,有一条长的弦,则圆心到此弦的距离为___________cm.16.如图,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD= 度.17.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.18.直角坐标系中,已知A(1,0),以点A为圆心画圆,点M(4,4)在⊙A上,直线y=x+b过点M,分别交x轴、y轴于B、C两点.(1)填空:⊙A的半径为,b= .(不需写解答过程)(2)判断直线BC与⊙A的位置关系,并说明理由.(3)点D是线段OC上的一点,连接MA、MD并延长交⊙A于E、F,若AE⊥AF,求点D的坐标.19.如图,△ABC中,E是AC上一点,且AE =AB,,以AB为直径的⊙交AC于点D,交EB于点F.(1)求证:BC 与⊙O 相切;(2)若AB=8,sin ∠EBC=,求AC 的长.20.如图,以ABC ∆的边BC 为直径作⊙O ,点A 在⊙O 上,点D 在线段BC 的延长线上,AD AB =,30D ∠=︒(1)求证:直线AD 是⊙O 的切线;(2)若直径4BC =,求图中阴影部分的面积.21.如图,已知△ABC,以A 为圆心AB 为半径作圆交AC 于E,延长BA 交圆A 于D 连DE 并延长交BC 于F, 2CE CF CB =⋅(1)判断△ABC 的形状,并证明你的结论;(2)如图1,若BE=CE=求⊙A 的面积;(3)如图2,若tan ∠CEF=12,求cos ∠C 的值.22.如图,在平面直角坐标系xoy 中,点B 的坐标为(0,2),点在轴的正半轴上,,OE 为△BOD 的中线,过B 、两点的抛物线与轴相交于、两点(在的左侧).(1)求抛物线的解析式;(2)等边△的顶点M、N在线段AE上,求AE及的长;(3)点为△内的一个动点,设,请直接写出的最小值,以及取得最小值时,线段的长.23.如图,在△ACB中,AB=AC=5,BC=6,点D在△ACB外接圆的弧AC上, AE⊥BC于点E,连结DA,DB.(1)求tan∠D的值.(2)作射线CD,过点A分别作AH⊥BD,AF⊥CD,垂足分别为H,F. 求证:DH=DF. 24.AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是AB中点,连接CE,BE,若BE=2,求CE的长.参考答案1.A【解析】【分析】①在Rt△ADP中,由AP=2AD,推出∠APD=30°,即可解决问题.②求出两种特殊位置的⊙O的面积即可判断.【详解】①如图1中,∵DP≥1,当△APB为等腰三角形,∴只有AP=AB,在Rt△ADP中,∵∠D=90°,AP=2,AD=1,∴P A=2AD,∴∠APD=30°,∵CD∥AB,∴∠CPB=∠ABP,∵AP=AB,∴∠ABP=∠APB,∴∠APB=∠CPB=75°,∵P,Q关于BC对称,∴BP=BQ,∴∠BPC=∠BQC=75°,∴△APB∽△BPQ,故①正确.②如图2中,作△APQ的外接圆⊙O.当点O 与B 重合时,⊙O 的半径最小,此时⊙O 的面积为4π,当点P 与C 重合时,设OA =OP =x ,在Rt △AOB 中,则有x 2=22+(x ﹣1)2,∴x =52, 此时⊙O 的面积=254π, 观察图象可知:4π≤S <254π.故②正确, 故选:A .【点睛】本题考查矩形的性质,解直角三角形的应用,相似三角形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.2.C【解析】【分析】根据圆周角定理和弧长公式解答即可.【详解】ABC 40∠=,AOC 80∠∴=,∴劣弧AC 的长80π34π1803⋅⨯==, 故选:C .【点睛】此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.3.D【解析】如图,连接BO,∵OA=OB,∠OAB=37°,∴∠OBA=∠OAB=37°,∴∠AOB=180°-37°-37°=106°,∴∠AOC+∠BOC==360°-106°=254°,∵=AC BC,∴∠AOC=∠BOC=127°.故选D.4.D.【解析】试题分析:∵⊙O的直径AB=12,∴OB=12AB=6,∵BP:AP=1:5,∴BP=16AB=16×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴CD=2PC=2×D.考点:1.垂径定理;2.勾股定理.5.A【解析】试题分析:设⊙O与BC的切点为M,如图1,连接MO并延长MO交AD于点N,可证明△OMG≌△GCD,得到OM=GC=1,CD=GM=BC-BM-GC=BC-2,设AB=a,BC=b,AC=c,则根据切线长的性质,由图2可知1()2a b c+-=1,即c=a+b-2,根据勾股定理可求得1,或a=1,因此可求出1,3,所以BC-AB=2,BC+AB=4;如图3,,设DF=x,则在Rt△ONF中,FN=3+-1-x,OF=x,,由勾股定理得,从而求得CD-DF=3,CD+DF=5.故选A考点:三角形的内切圆,切线长,勾股定理6.D【解析】根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14.故选D7.B【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A、错误,不在同一直线上的三点确定一个圆;B、正确;C、错误,同弧或等弧所对的圆周角等于圆心角的一半;D、错误,能够重合的弧是等弧.故选B.【点睛】本题考查了命题与定理的知识,解题的关键是对这些有关的定理及定义熟练掌握.8.A【解析】【分析】直接根据弧长公式即可得出结论.【详解】∵圆锥底面半径为rcm,母线长为5cm,其侧面展开图是圆心角为216°的扇形,∴2πr=216360×2π×5,解得r=3.故选:A.【点睛】本题考查的是圆锥的相关计算,熟记弧长公式是解答此题的关键.9【解析】如图连接OM,当OM⊥AB时,OM的值最小。
鲁教版2019-2020九年级数学第五章第一单元圆的有关性质单元综合练习题(培优 含答案)

鲁教版2019-2020九年级数学第五章第一单元圆的有关性质单元综合练习题(培优 含答案)1.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC =5,CD =3,AB = ,则⊙O 的直径等于( )A .52B .C .D .72.如图,已知△ABC 的外接圆⊙O 的半径为3,AC =4,则sinB 的值是( )A .B .C .D .3.如图,A ,B ,C 是⊙O 上的三个点,∠ABC =25°,则∠AOC 的度数是( )A.25°B.50°C.60°D.90°4.如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC=8,AH=6,⊙O 的半径OC=5,则AB 的值为( )A.5B.132C.7D.1525.如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4.P 是△ABC 内部的一个动点,且满足∠P AB=∠PB C.则线段CP 长的最小值为( )A.32B.2C.13D.136.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2,则下列说法中不正确的是( )A .当a ﹤5时,点B 在⊙A 内 B .当1﹤a ﹤5时,点B 在⊙A 内C .当a ﹤-1时,点B 在⊙A 外D .当a ﹥5时,点B 在⊙A 外7.如图,在矩形ABCD 中,AB=3,AD=4,若以点A 为圆心,以4为半径作⊙A ,则下列各点中在⊙A 外的是( )A.点AB.点BC.点CD.点D8.如图,在△ABC 中,AB=AC ,∠ABC=45°,以AB 为直径的⊙O 交BC 于点D ,若,则图中阴影部分的面积为( )A.π+1B.π+2C.2π+2D.4π+19.已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是_____. 10.如图,P 是⊙O 外一点,A 、B 、C 是⊙O 上的三点,∠AOB=60°,PA 、PB 分别交ACB 于M 、N 两点,则∠APB 的范围是______.11.已知AB是⊙O的直径,弦CD⊥AB于点E,弦PQ∥AB交弦CD于点M,BE=18,CD=PQ=24,则OM的长为______.12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图(从上向下垂直投影)如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是________cm.13.如图,在平面直角坐标系中,点P(3,4),⊙P半径为2,A(2.6,0),B(5.2,0),点M是⊙P上的动点,点C是MB的中点,则AC的最小值为_____________.14.阅读下面材料:如图,AB是半圆的直径,点C在半圆外,老师要求小明用无刻度的直尺画出△ABC的三条高.小明的作法如下:(1)连接AD,BE,它们相交于点P;(2)连接CP并延长,交AB于点F.所以,线段AD,BE,CF就是所求的△ABC的三条高.请回答,小明的作图依据是________.15.已知AB、CD为⊙O的两条弦,圆心O到它们的距离分别为OM、O N,如果AB>CD,那么OM____ON。
鲁教版2019-2020九年级数学第五章第一单元圆的有关性质单元综合练习题(基础 含答案)

鲁教版2019-2020九年级数学第五章第一单元圆的有关性质单元综合练习题(基础含答案)1.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是()A.AD=BDB.OD=CDC.∠CAD=∠CBDD.∠OCA=∠OCB 2.已知⊙O的半径为5,点P在⊙O外,则OP的长可能是()A.3 B.4 C.5 D.63.不在同一条直线上的三个点可以确定()个圆.A.1 B.2 C.3 D.44.如图,⊙O是△ABC的外接圆,若AC=12,sinB=,则⊙O的半径为()A.6.5 B.7.5 C.8.5 D.105.5.下列说法中正确的有()①垂直平分弦的直线经过圆心;②平分弦的直径一定垂直于弦;③一条直线平分弦,那么这条直线垂直这条弦;④平分弦的直线,必定过圆心;⑤平分弦的直径,平分这条弦所对的弧.A.1个B.2个C.3个D.4个6.如图,AB、AC是圆O的两条切线,切点为B、C且∠BAC=50°,D是圆上一动点(不与B、C重合),则∠BDC的度数为:( )A.130°B.65°C.50°或130°D.65°或115°7.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA ,若∠D的度数是50°,则∠C的度数是()A.25°B.40°C.30°D.50°8.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于点E ,则sin ∠E 的值是A.12B.13 D.29.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD ⊥AB 交AB 于D .已知cos ∠ACD=,BC=4,则AC 的长为( )A .1B .C .3D . 10.如图,⊙的直径垂直于弦,则的大小是()A. B. C. D.11.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为________米. 12.如图,以AB 为直径的半圆O 上有两点D 、E ,ED 与BA 的延长线交于点C ,且有DC=OE ,若∠C=20°,则∠EOB 的度数是__________.13.________叫做弧.14.如图,AB 是O 的直径,C D 、为O 上的两点,若35CDB ∠=︒,则ABC ∠的度数为__________.15.如图,等腰△ABC 内接于⊙O ,已知AB =AC ,∠ABC =30°,BD 是⊙O 的直径,如果CD =3,则AD =_______.16.如图,是半圆的直径,,则的大小是_______度17.如图,⊙O 是△ABC 的外接圆,∠A =72°,则∠OCB=____°.18.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________.19.如图:AB 是⊙O 的直径,C 是⊙O 上的一点,∠BAC 的平分线交⊙O 于D ,若∠ABC = 400,则∠ABD = _________020.如图,四边形ABCD 内接于⊙O ,点E 在AB 的延长线上,BF ∥AC ,AB =BC ,∠ADC=130°,则∠FBE=_______°.21.如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心P恰好在∠AOB的角平分线上(尺规作图,保留痕迹,不需要写出作法).22.若一个四边形的一条对角线把四边形分成两个等腰三角形,且其中一个等腰三角形的底角是另一个等腰三角形底角的2倍,我们把这条对角线叫做这个四边形的黄金线,这个四边形叫做黄金四边形.(1)如图1,在四边形ABCD中,AB=AD=DC,对角线AC,BD都是黄金线,且AB <AC,CD<BD,求四边形ABCD各个内角的度数;(2)如图2,点B是弧AC的中点,请在⊙O上找出所有的点D,使四边形ABCD的对角线AC是黄金线(要求:保留作图痕迹);(3)在黄金四边形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度数.23.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心O到BD的距离为3,求AD的长.24.如图,弦AB和CD相交于⊙O内一点P, 求证:PA ▪PB = PC▪PD25.请完成以下问题:(1)如图1,,弦AC与半径OD平行,求证:AB是⊙O的直径;(2)如图2,AB是⊙O的直径,弦AC与半径OD平行.已知圆的半径为r,AC=y,CD=x,求y与x的函数关系式.26.如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,直接写出∠BAF的度数.27.如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,AD⊥BC于点D,求证:AD= 12BF.28.如图所示,AB是☉O的弦,C,D为弦AB上两点,且OC=OD,延长OC,OD,分别交☉O 于点E,F.试证:AE=BF.参考答案1.B【解析】DO=CD.理由如下:∵在O中,AB是弦,半径OC⊥AB,∴AD=DB,∵DO=CD,∴AD=BD,DO=CD,AB⊥CO,∴四边形OACB为菱形.故选B.2.D【解析】设点与圆心的距离d,已知点P在圆外,则d>r.解:当点P是⊙O外一点时,OP>5cm,A、B、C均不符.故选:D.“点睛”本题考查了点与圆的位置关系,确定点与圆的位置关系,就是比较点与圆心的距离化为半径的大小关系.3.A【解析】在同一平面内,不再同一条直线上的三个点可以确定一个圆.故选A.4.B【解析】试题解析:作直径AD,连结DC,如图,∵∠D=∠B,∴sin D=sin B=,∵AD为直径,∴∠ACD=90°,在Rt△ADC中,sin D=,∴AD==15,∴OA=AD=7.5,即⊙O的半径为7.5.故选B.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和锐角三角函数的定义.5.B【解析】垂直于弦的直径平分弦,符合垂径定理,故①正确;在命题②中,两条直径是相互平分的,所以②是错误的;平分弦的直线不是直径一定不垂直这条弦,故③错误;平分弦的直线不是直径一定不过圆心,故命题④错误;平分弦的直径不一定平分这条弦所对的弧,因为当弦是直径时,任意两条直径互相平分,但不垂直,也不平分这条弦所对的弧,故⑤错误;正确的一个,故选A.6.D【解析】当点在劣弧BC上时为点D′,当点在优弧BC上时为点D,如图所示:∵AB、AC是圆O的两条切线,∴∠ABO=∠ACO=90°,又∵在四边形ABOC中,∠A=50°,∴∠BOC=360°-90°-90°-50°=130°,又∵∠BDC=1652BOC∠=°;∵∠CBD′+∠BCD′=12BOC ∠ ,∠BOC =130°, ∴∠CBD′+∠BCD′=65°,∴在△BCD′中,∠B D′C =180°-65°=115°;故选D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版2020九年级数学圆的有关性质课后练习题3(附答案)一.选择题(共10小题)1.如图,△ABC中,∠A=50°,O是BC的中点,以O为圆心,OB长为半径画弧,分别交AB,AC于点D,E,连接OD,OE,测量∠DOE的度数是()A.50°B.60°C.70°D.80°2.如图,在⊙O中,点A、O、D,点B、O、C以及点E、D、C分别在一条直线上,图中弦的条数为()A.2B.3C.4D.53.点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.或2B.或2C.2或2D.2或24.将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,则这个扇形中圆心角度数最大的是()A.30°B.60°C.120°D.180°5.如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1,AB=10,则CD的长为()A.20B.24C.25D.266.排水管的截面如图,水面宽AB=8,圆心O到水面的距离OC=3,则排水管的半径等于()A.5B.6C.8D.47.如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°8.如图所示,AB是⊙O的直径,C,D为圆上两点,若∠D=30°,则∠AOC等于()A.60°B.90°C.120°D.150°9.如图,点A、B、C、D、E都是⊙O上的点,弧AC=弧AE,∠B=118°,则∠D的度数为()A.122°B.124°C.126°D.128°10.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定二.填空题(共10小题)11.下列说法正确的是()填序号.①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.12.圆上各点到圆心的距离都等于,到圆心距离等于半径的点都在.13.如图所示,在⊙O中,若点C是的中点,∠A=45°,则∠BOC=.14.如图,AB是⊙O的直径,∠AOE=78°,点C、D是弧BE的三等分点,则∠COE=.15.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=10,AE=1,则弦CD的长是.16.位于黄岩西城的五洞桥桥上老街目前正在修复,如图①是其中一处中式圆形门,图②是它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为.17.如图,正方形ABCD内接于⊙O,E是劣弧CD上一动点,则∠AEB=°.18.如图,AB是⊙O的直径点C、D在圆上,∠ADC=65°,则∠ABC等于度.19.如图,已知四边形ABCD内接于⊙O,AD是直径,∠ABC=120°,CD=3,则弦AC =.20.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.三.解答题(共8小题)21.小明投铅球,铅球着地后落在图中点A处,试估计小明投铅球的成绩.22.如图,两个大小相同的大圆,其中一个大圆内有10个小圆,另一个大圆内有2个小圆,你认为大圆内的10个小圆的周长之和与另一个大圆内的2个小圆的周长之和哪一个大?请你猜一猜,并用学过的知识和数学方法验证你的猜想.23.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数.24.如图,圆中两条弦AB、CD相交于点E,且AB=CD,求证:EB=EC.25.如图,⊙O的直径CD垂直弦AB于点E,且CD=10cm,AB=8cm,求OE的长.26.如图,AB是⊙O的直径,⊙O的半径为5cm,弦AC的长为6cm,求弦BC的长.27.请阅读下列材料,并完成相应的任务.克罗狄斯•托勒密(约90年﹣168年),古希腊天文学家、地理学家和光学家.在数学方面,他还论证了四边形的特性,即有名的托勒密定理,托勒密定理的内容如下:圆的内接四边形的两条对角线的乘积等于两组对边乘积的和.即:如图1,若四边形ABCD 内接于⊙O,则有________.任务:(1)材料中划横线部分应填写的内容为.(2)已知,如图2,四边形ABCD内接于⊙O,BD平分∠ABC,∠COD=120°,求证:BD=AB+BC.28.已知P是⊙O所在平面上的一点,且点P距⊙O上点的最大距离为16cm,最小距离为4cm,求⊙O的半径.参考答案与试题解析一.选择题(共10小题)1.如图,△ABC中,∠A=50°,O是BC的中点,以O为圆心,OB长为半径画弧,分别交AB,AC于点D,E,连接OD,OE,测量∠DOE的度数是()A.50°B.60°C.70°D.80°【解答】解:如图,根据题意得:OC=OB=OD=OE,∵∠A=50°,∴∠B+∠C=130°,∴∠CEO+∠BDO=130°,∴∠AEO+∠ADO=230°,∴∠EOD=360°﹣∠A﹣∠AEO﹣∠ADO=360°﹣50°﹣230°=80°,故选:D.2.如图,在⊙O中,点A、O、D,点B、O、C以及点E、D、C分别在一条直线上,图中弦的条数为()A.2B.3C.4D.5【解答】解:图中的弦有AB,BC,CE共三条,故选:B.3.点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.或2B.或2C.2或2D.2或2【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=×4=2,∴OD=OB﹣BD=2,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,连接OC,∵CE===,在Rt△DEC中,由勾股定理得:DC===2;如图②,OD=2,BD=4+2=6,DE=BD=3,OE=3﹣2=1,由勾股定理得:CE===,DC===2,故选:C.4.将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,则这个扇形中圆心角度数最大的是()A.30°B.60°C.120°D.180°【解答】解:由题意可得,三个圆心角的和为360°,∵三个圆心角的度数比为1:2:3,∴最大的圆心角度数为:360°×=180°.故选:D.5.如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1,AB=10,则CD的长为()A.20B.24C.25D.26【解答】解:连接OA,∵CD为⊙O的直径,AB⊥CD,AB=10,∴AE=AB=5,设OA=r,则OE=r﹣CE=r﹣1,在Rt△AOE中,∵OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13,∴CD=2r=26.故选:D.6.排水管的截面如图,水面宽AB=8,圆心O到水面的距离OC=3,则排水管的半径等于()A.5B.6C.8D.4【解答】解:连接OA,∵AB=8,OC⊥AB,∴AC=AB=4.∵OC=3,∴OA===5.故选:A.7.如图,以AB为直径的半⊙O上有两点D,E,ED与BA的延长线交于点C,且有DC=OE,若∠EOB=72°,则∠C的度数是()A.24°B.30°C.36°D.60°【解答】解:∵OE=OD,DC=OE,∴DC=DO,∴∠C=∠DOC,∴∠ODE=2∠C,∵OD=OE,∴∠ODE=∠OED,∴∠OED=2∠C,∵∠BOE=∠C+∠OED,∴∠C+2∠C=72°,解得,∠C=24°,故选:A.8.如图所示,AB是⊙O的直径,C,D为圆上两点,若∠D=30°,则∠AOC等于()A.60°B.90°C.120°D.150°【解答】解:∵∠D=30°,∴∠BOC=60°,∴∠AOC=180°﹣60°=120°,故选:C.9.如图,点A、B、C、D、E都是⊙O上的点,弧AC=弧AE,∠B=118°,则∠D的度数为()A.122°B.124°C.126°D.128°【解答】解:连接AC、CE,∵点A、B、C、E都是⊙O上的点,∴∠AEC=180°﹣∠B=62°,∵弧AC=弧AE,∴∠ACE=∠AEC=62°,∴∠CAE=180°﹣62°﹣62°=56°,∵点A、C、D、E都是⊙O上的点,∴∠D=180°﹣56°=124°,故选:B.10.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定【解答】解:根据点到圆心的距离8cm大于圆的半径6cm,则该点在圆外.故选:A.二.填空题(共10小题)11.下列说法正确的是(④)填序号.①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.【解答】解:①半径不等的圆叫做同心圆,错误;②优弧一定大于劣弧,错误;③不同的圆中不可能有相等的弦,错误;④直径是同一个圆中最长的弦,正确.故答案为:④.12.圆上各点到圆心的距离都等于圆的半径,到圆心距离等于半径的点都在圆上.【解答】解:圆上各点到圆心的距离都等于圆的半径,到圆心的距离等于半径的点都在圆上.故答案为圆的半径,圆上.13.如图所示,在⊙O中,若点C是的中点,∠A=45°,则∠BOC=45°.【解答】解:∵OA=OB,∴∠B=∠A=45°,∴∠AOB=90°,∵点C是的中点,∴∠BOC=∠AOB=45°,故答案为:45°.14.如图,AB是⊙O的直径,∠AOE=78°,点C、D是弧BE的三等分点,则∠COE=68°.【解答】解:∵∠AOE=78°,∴劣弧的度数为78°,∵AB是⊙O的直径,∴劣弧的度数为180°﹣78°=102°,∵点C、D是弧BE的三等分点,∴∠COE=×102°=68°,故答案为:68°.15.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=10,AE=1,则弦CD的长是6.【解答】解:连接OC,∵AB是⊙O的直径,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案为:6.16.位于黄岩西城的五洞桥桥上老街目前正在修复,如图①是其中一处中式圆形门,图②是它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为1米.【解答】解:设该圆形门洞的半径为r,∵AB过圆心O,且垂直CD于点B,连接OC,在Rt△OCB中,可得:r2=(1.8﹣r)2+0.62,解得:r=1,故答案为:1米17.如图,正方形ABCD内接于⊙O,E是劣弧CD上一动点,则∠AEB=45°.【解答】解:连接OA、OB,如图,∵四边形ABCD为正方形,∴∠AOB=90°,∴∠AEB=∠AOB=45°.故答案为45.18.如图,AB是⊙O的直径点C、D在圆上,∠ADC=65°,则∠ABC等于65度.【解答】解:∵∠ADC=65°,∠ADC和∠ABC都是对的圆周角,∴∠ABC=∠ADC=65°,故答案为:65.19.如图,已知四边形ABCD内接于⊙O,AD是直径,∠ABC=120°,CD=3,则弦AC =3.【解答】解:∵四边形ABCD内接于⊙O,∴∠D=180°﹣∠B=60°,∵AD是直径,∴∠ACD=90°,∴AC=CD•tan D=3,故答案为:3.20.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是68.【解答】解:设点O为AB的中点,H为CE的中点,连接HO交半圆于点P,此时PH取最小值,∵AB=20,四边形ABCD为矩形,∴CD=AB,EO=AD,∴OP=CE=AB=10,∴CP2+EP2=2(PH2+CH2).过H作HG⊥AB于g,∴HG=12,OG=5,∴OH=13,∴PH=3,∴CP2+EP2的最小值=2(9+25)=68,故答案为:68.三.解答题(共8小题)21.小明投铅球,铅球着地后落在图中点A处,试估计小明投铅球的成绩.【解答】解:在8m和9m之间.22.如图,两个大小相同的大圆,其中一个大圆内有10个小圆,另一个大圆内有2个小圆,你认为大圆内的10个小圆的周长之和与另一个大圆内的2个小圆的周长之和哪一个大?请你猜一猜,并用学过的知识和数学方法验证你的猜想.【解答】解:相等.理由如下:设大圆的直径为d,则大圆内的10个小圆的直径为,另一个大圆内的2个小圆的直径为.则大圆内有10个小圆的周长为:10×π×=πd,另一个大圆内的2个小圆的周长为:2×π×=πd,所以,大圆内的10个小圆的周长之和与另一个大圆内的2个小圆的周长之和相等.23.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数.【解答】解:∵AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,而OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.24.如图,圆中两条弦AB、CD相交于点E,且AB=CD,求证:EB=EC.【解答】证明:如图,连接AD,∵AB=CD,∴=,∴﹣=﹣,即=,∴∠BAD=∠CDA,∴AE=DE,又∵AB=CD,∴AE=CE.25.如图,⊙O的直径CD垂直弦AB于点E,且CD=10cm,AB=8cm,求OE的长.【解答】解:连接OB,∵CD=10cm,∴OB==5cm,∵CD⊥AB,AB=8cm,∴BE=AB=4cm,在直角三角形OEB中,OE==3cm.26.如图,AB是⊙O的直径,⊙O的半径为5cm,弦AC的长为6cm,求弦BC的长.【解答】解:∵⊙O的半径为5cm,∴AB=10cm,∵AB是⊙O的直径,∴∠ACB=90°,由勾股定理得,BC===8,∴弦BC的长为8cm.27.请阅读下列材料,并完成相应的任务.克罗狄斯•托勒密(约90年﹣168年),古希腊天文学家、地理学家和光学家.在数学方面,他还论证了四边形的特性,即有名的托勒密定理,托勒密定理的内容如下:圆的内接四边形的两条对角线的乘积等于两组对边乘积的和.即:如图1,若四边形ABCD 内接于⊙O,则有________.任务:(1)材料中划横线部分应填写的内容为AC•BD=AB•CD+BC•AD.(2)已知,如图2,四边形ABCD内接于⊙O,BD平分∠ABC,∠COD=120°,求证:BD=AB+BC.【解答】解:(1)由托勒密定理可得:AC•BD=AB•CD+BC•AD故答案为:AC•BD=AB•CD+BC•AD(2)如图,连接AC∵∠COD=120°,∴∠CBD=∠CAD=60°∵BD平分∠ABC∴∠ABD=∠CBD=60°∴∠ACD=60°,∴△ACD是等边三角形∴AC=AD=CD,∵四边形ABCD是圆内接四边形∴AC•BD=AB•CD+BC•AD∴BD=AB+BC28.已知P是⊙O所在平面上的一点,且点P距⊙O上点的最大距离为16cm,最小距离为4cm,求⊙O的半径.【解答】解:当点在圆内时,圆的直径是16+4=20,所以半径是10cm.当点在圆外时,圆的直径是16﹣4=12,所以半径是6cm.故⊙O的半径是10cm或6cm。