数值传热学第十章
数值传热学(课件)

02 数值传热学的基本原理
控制方程
控制方程
数值传热学的核心是求解控制方 程,这些方程描述了热量传递过 程中的物理规律。
偏微分方程
控制方程通常以偏微分方程的形 式给出,包含了温度、时间、空 间等变量的变化关系。
初始条件和边界条
件
为了求解控制方程,需要给出初 始条件和边界条件,这些条件限 定了问题的解的范围。
详细描述
传热过程模拟是数值传热学的另一重要应用,通过建立传热过程的数学模型,可以模拟物体内部的温 度分布和热量传递过程。这对于能源、化工、电子等领域中的热工设备设计和优化具有重要意义。
04 数值传热学面临的挑战与 解决方案
计算精度与稳定性问题
总结词
计算精度和稳定性是数值传热学中的核心问题,直接关系到模拟结果的准确性和可靠性。
详细描述
多尺度问题要求数值方法能够捕捉到不同尺度的物理现象,并准确地将它们联系起来。 这需要发展具有多尺度分辨率的数值方法,如多重网格法、谱方法和自适应网格法等。
非线性问题
总结词
非线性问题在传热过程中广泛存在,如 流动、相变和化学反应等,给数值模拟 带来很大难度。
VS
详细描述
非线性问题需要数值方法能够处理高度非 线性的物理方程,并能够准确地捕捉到非 线性现象。这需要发展高效的数值算法, 如有限元法和有限体积法等,同时还需要 考虑非线性问题的特殊性质,如初始条件 和边界条件等。
02
它涉及传热学的基本原理、数学 建模、数值计算和计算机技术等 多个领域,是计算流体动力学和 计算传热学的重要组成部分。
数值传热学的重要性
随着科技的发展,传热问题在能源、 环境、航空航天、化工等领域越来越 突出,数值传热学的应用也越来越广 泛。
数值传热学 -回复

数值传热学 -回复
数值传热学(Numerical Heat Transfer)是一门研究热传递现象的学科,通过数值模拟和计算方法来分析热传导、对流和辐射等传热过程。
本文将介绍数值传热学的基本原理、方法和应用。
1. 基本原理
数值传热学基于传热学原理和计算数学方法,将传热过程建模为数学方程,并通过数
值方法求解这些方程,从而得到热传递的数值解。
主要的传热模型包括热传导、对流和辐
射传热。
2. 数值方法
数值传热学常用的方法包括有限差分法、有限元法和边界元法等。
有限差分法是最常
用的方法之一,将传热区域离散化为网格,通过差分近似计算网格点上的温度或热流量。
有限元法则是另一种常用的方法,将传热区域划分为元素,通过建立元素之间的关系来计
算温度场或热流场。
边界元法则是将问题转化为边界上的积分方程,通过求解积分方程得
到温度场或热流场。
3. 应用领域
数值传热学在各个领域都有广泛的应用。
在工程领域,数值传热学用于优化热交换器
的设计、预测电子器件温度分布、模拟流体在管道内的传热过程等。
在材料科学领域,数
值传热学用于研究材料的导热性能、相变过程以及焊接和烧结等工艺。
在能源领域,数值
传热学用于分析太阳能热收集器的性能、燃烧过程中的传热机制等。
通过数值传热学的研究,我们可以更加深入地了解热传递过程,并可以通过数值模拟
方法来预测和优化热传递的效果。
数值传热学也为各个领域的工程和科学研究提供了重要
的工具和方法。
通过不断的发展和创新,数值传热学将进一步推动热传递理论和应用的发展。
数值传热学(课件)-1

热流问题的数值计算Numerical Simulations of Thermal & Fluid Problems第一章 绪论主讲 陶文铨西安交通大学能源与动力工程学院 热流中心 CFD-NHT-EHT CENTER 2007年10月16日, 西安1/88物理问题数值解的基本思想 把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限 个离散点(称为节点,node)上的值的集合来代替; 通过一定的原则建立起这些离散点上变量值之间关 系的代数方程 (称为离散方程,discretizationequation);求解所建立起来的代数方程以获得所求解变量的近似解.2/88大规模科学计算的重要性 传热与流动问题数值计算是应用计算机求解热量传 递过程中的速度场,温度场等的分支学科,是大规模 科学计算的重要组成部分,其重要性不言而喻. 2005年美国总统顾问委员会向美国总统提出要大 力发展计算科学以确保美国在世界上的竞争能力. 波音公司实现了对航空发动机的网格数达10亿量 级的直接数值模拟,以研究所设计发动机的性能.3/88现代科学研究的三大基本方法及其关系理论分析Analytical实验研究Experimental数值模拟Numerical4/88课程简介1. 学时- 30学时理论教学;6学时计算机作业 2. 考核- 平时作业/计算机大作业/考试: 20/30/50 3. 方法- 理解,参与,应用 努力将与数学处理相对应的物理背景联系起来理解. 4. 助手- 于乐 5. 参考教材-《计算流体力学与传热学》,中国建筑 工业出版社,19915/88学习方法建议1. 善于从物理过程基本特性来掌握理解数值方法; 2. 对数值方法-明其全而析其微:明其全-了解基本原理;析其微-掌握实施细节;3. 努力上机实践; 4. 学会分析计算结果: 合理性,规律性; 5. 应用商业软件与自编程序相结合.6/88《热流问题的数值计算》 主要教学内容第一章 绪论(物理与数学基础) 第二章 一维导热问题的数值解 第三章 多维导热问题的数值解 第四章 势流及管道内充分发展流动与换热的数值解 第五章 有回流的动与换热问题的数值解 第六章 二维涡量-流函数法通用程序介绍 第七章 原始变量法与湍流数值模拟简介7/88绪论1.1 流动与传热问题控制方程的基本类型 1.2 流动与传热问题数值计算的基本步骤 1.3 建立离散方程的方法 1.4 离散方程数学与物理特性分析简介8/881.1 流动与传热问题控制方程的基本类型1.1.1 流动与传热问题完整的数学描写 1.1.2 控制方程 1. 质量守恒方程 3. 能量守恒方程 1.1.3 单值性条件 1.1.4 建立数学描写举例 1.1.5 控制方程式的分类9/882. 动量守恒方程1.1 流动与传热问题控制方程的基本类型1.1.1 流动与传热问题完整的数学描写 1. 有关的守恒定律的偏微分方程(控制方程)一切宏观的流动与传热问题都由三个守恒定律所 支配:质量,动量与能量守恒(conservation law).2. 与表述守恒定律的偏微分方程相关的单值性条件.不同问题的区别主要在于单值性条件 (conditions for unique solution) 的不同:初始条件以,边界条件 以及物性数据.10/881.1.2 控制方程(Governing equations) Mass conservation1. 质量守恒方程r ( r u ) ( r v) ( r w) + + + =0 t x y z单位时间 内质量的 增加 单位时间内流 进微元体的净 质量物理意义:单位时间内空 间某一微元容积质量的增 加等于流入该微元容积的 净质量.11/88对不可压缩流体: r = const 对二维不可压缩流体:u v + =0 x yu v w + + =0 x y z对二维问题,速度矢量:ur u v 数学上称: + = div(U ) x yur r ur U =ui+v j为速度矢量的散度,因此对二维不可压流体有:ur div(U ) = 0下面只讨论不可压缩流体(incompressible flow).12/882. 动量守恒方程(Momentum conservation)对上图所示的微元体分别在三个坐标方向上应用 Newton第2定律(F=ma)在流体中的表现形式: [微元体内动量的增加率]=[作用在微元体上各种力之和] 可得出三个坐标方向的动量方程:u uu uv uw 1 p 2u 2u 2u + + + =+ n ( 2 + 2 + 2 ) + Fx t x y z r x x y z 1 p v vu vv vw 2v 2v 2v + + + =+ n ( 2 + 2 + 2 ) + Fy t x y z r y x y z 1 p w wu wv ww 2 w 2 w 2 w + + + =+ n ( 2 + 2 + 2 ) + Fz t x y z r z x y z微元体内动 量的增加率压力粘性力体积力13/883. 能量守恒方程(Energy conservation)[微元体内热力学能的增加率]=[通过流动与导热进入 微元体内的净热流量]+[体积力与表面力对微元体所做 的功率] 引入导热Fourier定律,假定热物性为常数,可得T (uT ) (vT ) ( wT ) 2T 2T 2T rcp[ + + + ] = l( 2 + 2 + 2 ) + S t x y z x y z微元体 内能增 加率 由于流动被带出 微元体的净功率 由于导热而进入 源项 微元体的净功率 生成 热14/88l =a rcp流体的热扩散率(thermal diffusivity)4. 对于二维稳态对流换热问题控制方程汇总u v + =0 x yuu uv 2u 2u 1 p + =+ n ( 2 + 2 ) + Fx y z r x x yvu vv 2v 2v 1 p + =+ n ( 2 + 2 ) + Fy y z r y x y(uT ) (vT ) 2T 2T + = a( 2 + 2 ) + ST x y x y对流项扩散项源项数值计算中常用的术语.15/88不同的二维,稳态求解问题之间的区别在于: (1)边界条件不同; (2)源项与扩散系数不同.5. 二点说明1. 所导出的三维非稳态Navier-Stokes方程,无论对 层流或是湍流都是适用的. 2. 辐射换热需要用积分方程来描述,课程中将不涉及 这类问题.16/881.1.3 单值性条件 1. 初始条件 2. 边界条件 (1) 第一类 (Dirichlet):t = 0, T = f ( x, y, z )TB = Tgiven(2) 第二类 (Neumann): qB = -l (T ) B = qgiven n(3) 第三类 (Rubin):规定了边界上被求函数的一阶导数与函数之间的关系: -l ( T ) B = h(TB - T f )n数值计算中计算区域的出口边界条件常常最难 确定,要做近似处理.17/881.1.4 建立数学描写举例 1. 问题与假设条件突扩区域中的对流传热:二维,稳态,不可压缩, 常物性,不计重力与黏性耗散.18/882. 控制方程u v + =0 x y1 p u u u u u +v =+n ( 2 + 2 ) r x x y x y 2 2 v v 1 p v v u +v =+n ( 2 + 2 ) x y r y x y2 2T T T T u +v = a( 2 + 2 ) x y x y2 219/883. 边界条件 (1)进口边界条件:给定u,v,T随y 的分布; (3)中心线: u = T = 0; v = 0 y y(4)出口边y x界:数学上要 求给定u,v,T 或其导数随y 的分布;实际 上做不到;数 值上近似处理20/88(2)固体边界条件:速度无滑移,温度无跳跃1.1.5 传热与流动问题的数学描写的分类 1. 从数学角度分类-椭圆型与抛物型椭圆型 (Elliptic)椭圆型方程数学上的特点是:所求解的因变量对每个 空间自变量均存在二阶导数项: 导热方程-所求解的因变量为温度T ,空间自变量x,y; 动量方程-所求解的因变量为速度u ,空间自变量x,y.21/88抛物型(Parabolic)抛物型方程数学上的特点是:所求解的因变量对某个 个自变量只存在一阶导数项: 非稳态导热方程-因变量T 对时间t仅有一阶导数; 边界层动量方程-u对空间自变量x仅有一阶导数. 仅存在一阶导数的自变量在物理过程上的重要特 点:过程只能沿该坐标的单个方向进行而不能逆向进 行.22/88抛物型与椭圆型流动的例子椭圆型方程的求解必须全场联立进行,而抛物性 方程的求解可以沿坐标正向逐步推进, 大大节省时间.23/88(1)椭圆型问题: 流动有回流,必须 全场同时求解; (2)抛物型问题:流动无回流,可以沿主流方向步 步逼进,不必全场同时求解,大大节省时间.Marching method24/882. 从物理角度分类-守恒型与非守恒型守恒型( Conservative)-对任意大小容积守恒特性 都能得到满足的方程; 凡对流项表示成散度形式的方程具有守恒性 . 非守恒型方程+u v v u u v u ++ u = 0= 0 u ( + ) = 0 x x y y x y (uu ) (uv) 1 p 2u 2 v =+n ( 2 + 2 ) + r x x x y x守恒型方程凡是从守恒型控制方程推导得到的用于数值求解 的代数方程也具有守恒特性.25/881.2 流动与传热问题数值求解的基本步骤1.2.1 流动与传热问题数值求解步骤 1. 建立数理模型 3. 方程的离散化 5.代数方程求解 1.2.2 区域离散化方法 2.区域的离散化 4. 边界条件离散 6. 求解结果分析1.区域离散化的任务 2. 区域离散方法1.2.3 网格系统标记方法26/881) 外节点法2. 内节点法1.2.1 流动与传热问题数值求解步骤把原来在空间与时间坐标中连续的物理量的场 (如速度场,温度场,浓度场等),用一系列有限个 离散点(称为节点,node)上的值的集合来代替;通过 一定的原则建立起这些离散点上变量值之间关系的代 数方程(称为离散方程,discretization equation);求 解所建立起来的代数方程以获得所求解变量的近似解.27/88(1) 区域离散 (2) (3) (4) (5) 代数求解 (6)28/88方程离散结果分析1.2.2 区域离散化1.区域离散化的任务将所计算的区域分割成许多不重叠的子区域,确 定每个子区域中节点的位置以及所代表的控制容积. 离散结果得出四种几何要素: (1) 节点(node):所求解未知量的位置; (2) 控制容积(control volume):实施守恒定律的最 小几何单位; (3) 界面(interface):控制容积的分界位置; (4) 网格线(grid lines):沿坐标方向相邻节点连接 成的曲线簇.29/882. 区域离散方法 (a) 外节点法:节点位于子区域的角顶;控制容积界 面位于两节点之间;生成过程:先节点后界面;又 称 Practice A.子区域控制容积30/88YPractice A-外节点法 x31/88(b) 内节点法:节点位于子区域的中心;子区域即为 控制容积;生成过程:先界面,后节点,又称 Practice B.子区域即为控制容积32/88YPractice B-内节点法 x33/88 1.2.3 内接点与外节点法的比较 (a)边界节点所代表的控制容积不同 方法A 边界节点代表半个CV方法B 边界节点代表零个CV(b)网格非均分时,节点作为控制容积的代表方法B 更合理 方法A 方法B34/881.2.3 网格系统表示方法 网格线-节点间连线,用实线表示;界面为虚线; 节点间距离-dx;界面间距离-Dx .35/881.2.4 网格独立解 当网格足够细密以至于再进一步加密网格已对 数值计算结果基本上没有影响时所得到的数值解称 为网格独立解(grid-independent solution).Int. Journal Numerical Methods in Fluids, 1998, 28: 1371-1387.36/881.3 建立离散方程的方法 1.3.1 一维模型方程( 1-D model equation ) 1.3.2 由Taylor 展开法导出导数的差分表示式 1.3.3 控制容积积分法导出导数的差分表示式 1.3.4 讨论37/881.3 建立离散方程的方法 1.3.1 一维模型方程( 1-D model equation ) 一维模型方程是一维非稳态有源项的对流-扩 散方程,具有四个特征项,便于离散方法的研讨. 非守恒型 守恒型 ( rf ) f f + ru = (G ) + Sf t t x xFDM采用 ( rf ) ( r uf ) f + = (G ) + Sf FVM采用 t t x x 瞬态 对流 扩散 源项38/88"麻雀虽小,五脏俱全!"1.3.2 由Taylor 展开法导出导数的差分表示式 1. 一阶导数的差分表达式的导出 将函数f ( x, t ) 在(i+1,n)的值对(i,n)点做Taylor展开:f 2f Dx 2 2 f (i + 1, n) = f (i, n) + )i ,n Dx + 2 )i ,n Dx + ..... x x 2!f f (i + 1, n) - f (i, n) Dx 2f ) i ,n = - ( 2 )i ,n + ... x Dx 2 x39/88O ( Dx ) 称为截断误差, truncation error,表示:随 Dx 的趋于零,用 f (i + 1, n) - f (i, n) 代替 f )i ,n 的误差 x Dxf f (i + 1, n) - f (i, n) )i ,n = + O(Dx) x Dx KD x, K 与 Dx 无关.D x 的方次称为截差的阶数(order of TE).用数值计算的近似解 fin 代替精确解 f (i, n)fin 1 - fin f )i ,n @ + , O(Dx) 得向前差分: x Dx40/88f -f f )i ,n @ 向后差分: x Dxn in i -1, O (Dx )fin 1 - fin 1 f )i , n @ + , O(Dx 2 ) 中心差分: x 2Dx2. 一,二阶导数的各种差分表达式. 表达差分结构的格式图案o构筑差分表达式的位置; 构筑差分表达式所用到的节点.41/88一阶导数的 常用差分表达式42/88二阶导数的常用差分表达式定性判别导数的差分表达式正确与否的方法: (1)量纲是否正确-与导数本身一致; (2)均匀场的各阶导数应为零.43/883. 一维模型方程的有限差分显式离散表示式 微分方程形式: 假设 ( rf ) f f + ru = (G ) t t x xr , u, G均为常数,显式差分表达式:fin +1 - fin fin 1 - fin 1 r + ru + = Dt 2Dx fin 1 - 2fin + fin 1 G + , O (Dt , Dx 2 ) Dx 2差分方程 截断误差44/88显式(Explicit)-空间导数均以初 始时刻之值计算.1.3.3 控制容积积分法导出导数的差分表示式 1. 控制容积积分法实施步骤 1. 将守恒型的方程对控制容积做积分; 2. 选定被求函数及其一阶导数对时间,空间的变化 曲线-型线; 3. 完成积分,整理成相邻节点间未知量的代数方程. 2. 两种常用型线 型线-被求函数随自变量的局部变化方式,本是 所求内容,近似求解需先假定.45/88随空间自变量的变化型线 型线 型线分段线性阶梯逼近46/88piece-wise linear step-wise approximation随时间自变量的变化型线分段线性 piece-wise linear阶梯逼近 step-wise approximation47/883. 一维模型方程的控制容积积分法离散 将守恒型控制方程对控制容积P 在[t, t+ Dt ]内 做积分, ( rf ) ( r uf ) ft立即可得e+xt +Dt t=xe(Gx)r ò (ft +Dt -ft )dx +rwò [(uf)òt- (uf)w ]dt =t +Dt=Gf f [( )e - ( ) w ]dt x xf 以及 x48/88继续积分,需要知道:f对空间与时间的变化型线.1. 非稳态项假设 f 对空间呈阶梯型变化:t t r ò (f t +Dt - f t )dx = r (f P+Dt - f P )Dx w e2. 对流项假设 f 对时间呈显示阶梯型变化:rt +Dtòt[(uf )e - (uf ) w ]dt = r[(uf )te - (uf )tw ]Dt49/88假设 f 对空间呈分段线性变化:fE + fP fP + fW fE - fW r[(uf ) - (uf ) ]Dt = r uDt ( ) = r uDt 2 2 2t e t w均分网格3. 扩散项f 假设 对时间呈显式阶梯型变化: xt +DtGòtf f f t f t [( )e - ( ) w ]dt = G[( )e - ( ) w ]Dt x x x x50/88假设 f 对空间呈分段线性变化:。
第一章数值传热学

(uT ) (vT ) T T a( 2 2 ) x y x y
2 2
19/80
MOE KLTFSE
3. 边界条件
定u,v,T随 y 的分布;
(1)进口边界条件:给
u T (3)中心线: 0; v 0 y y
y x
界:数学上要 求给定u,v,T或 其导数随 y 的 分布;实际上 做不到;数值 上近似处理。
cp
c p
( ) c p
Pr
12/80
MOE KLTFSE
4. 通用控制方程
( ) * * div( U ) div( grad ) S t
瞬态项 对流项 扩散项 广义源项 不同求解变量之间的区别: (1)边界条件与初始条件不同; (2)广义源项表达式不同; (3)广义扩散系数不同。 文献中常以表格形式给出所求解变量的源项与 广义扩散系数的表达式。
常物性不可压缩流体动量方程源项中显含速度部分 为零。
11/80
MOE KLTFSE
3. 能量守恒方程
[微元体内热力学能的增加率]=[进入微元体内的净热 流量]+[体积力与表面力对微元体所做的功] 引入导热Fourier定律,忽略力所作的功, 设hc
pT ;
c p 为常数
( T ) div( T U ) div( gradT ) ST cp t
4/80
MOE KLTFSE
绪论教学目录
1.1 传热与流动问题的数学描写 1.2 传热与流动问题数值计算的基本思想及应 用举例 1.3 传热与流动问题的数学描写的分类及其对 数值解的影响 1.4 传热与流动问题的数值计算的近代发展
5/80
数值传热学陶文铨主编第二版习题答案

1
x1=x; x=t(3,1); end tcal=t
习题 4-12 的 Matlab 程序
%代数方程形式 AiTi=CiTi+1+BiTi-1+Di mdim=10;%计算的节点数 x=linspace(1,3,mdim);%生成 A、C、B、T 数据的基数; A=cos(x);%TDMA 的主对角元素 B=sin(x);%TDMA 的下对角线元素 C=cos(x)+exp(x); %TDMA 的上对角线元素 T=exp(x).*cos(x); %温度数据 %由 A、B、C 构成 TDMA coematrix=eye(mdim,mdim); for n=1:mdim coematrix(n,n)=A(1,n); if n>=2 coematrix(n,n-1)=-1*B(1,n); end if n<mdim coematrix(n,n+1)=-1*C(1,n); end end %计算 D 矢量 D=(coematrix*T')'; %由已知的 A、B、C、D 用 TDMA 方法求解 T %消元 P(1,1)=C(1,1)/A(1,1); Q(1,1)=D(1,1)/A(1,1); for n=2:mdim P(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1)); Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1)); end %回迭 Tcal(1,mdim)=Q(1,mdim); for n=(mdim-1):-1:1 Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n); end Tcom=[T;Tcal]; %绘图比较给定 T 值和计算 T 值 plot(Tcal,'r*') hold on plot(T)
《传热学》杨世铭-陶文铨-第十章传热分析与计算

t x
t
Ax dt k dA 0 t
t x ln kAx t
t x texp(kAx )
可见,当地温差随换热面呈指数变化,则沿整个换热面的平 均温差为: 1 A 1 A
t m
A
0
t x dA x
A
0
t exp( kAx )dA x
l (t fi t fo ) Φ (d o 2 )
d 0 dd o 2 do2
d l (t fi t fo ) 1 1 2 2 dd o 2 (do 2 ) 22 do 2 h2 do 2
22 d cr or h2
Bi
t h th R tc tc
式中:下标1、2分别表示两种流体,上角标 ` 表示进口, `` 表示出口,图表中均以P为横坐标,R为参量。
(2)P的物理意义:流体2的实际温升与理论上所能达到
的最大温升之比,所以只能小于1 (3)R的物理意义:两种流体的热容量之比
t h t h qmc cc R tc tc qmh ch
Φ
l (t fi t fo )
d 1 1 1 ln( o ) hi d i 2 di ho d o
圆管外敷保温层后:
Φ
l (t fi t fo )
d o1 do2 1 1 1 1 ln( ) ln( ) hi d i 21 di 22 d o1 ho d o 2
TB,out TA,in (tube side)
增加管程
TB,in (shell side) TA,in (tube side) TA,out TB,out
TB,in (shell side)
数值传热学 习题答案

数值传热学习题答案数值传热学习题答案数值传热学是热力学的一个重要分支,主要研究热量在物质中传递的机理和规律。
在实际工程中,我们经常会遇到各种与传热有关的问题,通过数值计算可以得到准确的答案。
下面我将为大家提供一些数值传热学习题的答案,希望能够帮助大家更好地理解和应用这门学科。
1. 一个铝制热交换器的表面积为10平方米,其表面温度为100摄氏度,环境温度为20摄氏度。
已知铝的导热系数为200 W/(m·K),求热交换器的传热速率。
答:根据传热定律,传热速率与传热面积、传热系数和温度差之间成正比。
传热速率 = 传热系数× 传热面积× 温度差。
将已知数据代入公式中,可得传热速率= 200 × 10 × (100 - 20) = 160,000 W。
2. 一个房间的尺寸为5米× 5米× 3米,墙壁和天花板的厚度为0.2米,墙壁和天花板的导热系数为0.5 W/(m·K),室内温度为25摄氏度,室外温度为10摄氏度。
求房间的传热损失。
答:房间的传热损失可以通过计算墙壁和天花板的传热速率来得到。
墙壁和天花板的传热速率 = 传热系数× 传热面积× 温度差。
墙壁和天花板的传热面积 = 2 × (5 × 5) + 2 × (5 × 3) = 70平方米。
将已知数据代入公式中,可得墙壁和天花板的传热速率= 0.5 × 70 × (25 - 10) = 525 W。
因此,房间的传热损失为525瓦特。
3. 一个水箱的体积为1立方米,初始温度为20摄氏度,水的密度为1000千克/立方米,比热容为4186 J/(千克·摄氏度),水箱的表面积为2平方米,表面温度为100摄氏度。
已知水的传热系数为0.6 W/(m^2·K),求水箱内水的温度随时间的变化。
数值传热学

Numeca
16
传热数值计算与软件简介
17
传热数值计算与软件简介
18
传热数值计算与软件简介
19
传热数值计算与软件简介
20
传热数值计算与软件简介
21
传热数值计算与软件简介
22
如何实现从微分方程到代数方程的转化又可以采 用不同的数学方法,如有限差分法、有限容积法和 有限元法等。
3
传热数值计算与软件简介
流动与传热问题的控制方程
质量守恒方程
动量守恒方程
4
传热数值计算与软件简介
广义源项能量方程源自5传热数值计算与软件简介
通用形式
6
传热数值计算与软件简介
单值性条件
初始条件 边界条件
对空间上连续的计算区域进行剖分,把它划分 成许多子区域,并确定每个区域中的节点,这 一过程又称为网格生成。 结构化网格 网格 非结构化网格
9
传热数值计算与软件简介
控制方程离散化
把物理上的守恒定律直接应用于所研究的控制容积, 并把节点看成是控制容积的代表,可以导出节点上 未知值间的代数关系式。 计算节点代数式所涉及到的周围节点的不同,离散 精度也不相同,分为一阶、二阶和三阶。
速度边界条件:无滑移 温度边界条件:三类
7
传热数值计算与软件简介
1 时间与空间的离散化
节点
当进行数值求解时,首先要 做的事情是在所研究的时间和 空间区域内把时间和空间分割 成为有限大小的小区域。右图 表示了长柱体矩形截面上区域 离散化的情况。
计算区域离散
控制体
8
传热数值计算与软件简介
计算区域离散化
1、假定一个速度分布,记为u0,v0,以此作为计算动量 离散方程中的系数及常数项; 2、假定一个压力场P*; 3、依次求解两个动量方程,得u*,v*; 4、求解压力修正方程,得P’; 5、根据P‘改进速度值; 6、利用改进后的速度场求解那些通过源项物性等与速度 场耦合的变量; 7、利用改进后的速度场重新计算离散方程的系数,并利 用改进后的压力场作为下一层次迭代计算的初始值,重复 上述步骤,直到获得收敛的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 特殊正交曲线坐标系
现有14种正交曲线坐标系,可以用来求解部分与 该坐标系相适应的不规则区域。
7/82
采用椭圆坐标系计算 椭圆管内的流动与换 热。
采用双极坐标系计算 偏心环形夹层内的流 动与换热。
3) 组合网格(块结构化网格)
对于不同块上的区域各自采用合适的网格,不同块
间对应关系的方法。 3. 微分方程法 (PDE method)
通过求解微分方程来建立计算平面与物理平面上 节点间对应关系的方法。按所求解的微分方程的类 型,分为采用双曲型方程,抛物型方程和椭圆型方程 三类。
15/82
10.2.4 对适体坐标系生成网格的要求 1. 两个平面上网格节点间要一一对应; 2. 物理平面上网格节点的疏密要易于控制; 3. 物理平面上网格线要尽量与与边界正交。
的网格之间需要在分界面上进行信息的交换与传递;数 学上称为分区算法 (Domain decomposition method)。
8/82
网格线连续,
可整求解
网格线不连续
应用举例
9/82
4) 适体坐标系
计算区域边界与网格的等值线相适应的坐标系, 采用数值方法生成这种坐标系是本章讨论重点。
2. 非结构化网格 (unstructured grid)
11/82
10.2 适体坐标方法概述
10.2.1 用适体坐标系求解物理问题的基本思想
1.在进行物理问题的数值计算时最理想的坐标系是坐 标轴与计算区域边界完全相适应的坐标系,称为适体 坐标系(body-fitted coordinates):直角坐标系是矩 形区域的适体坐标系;极坐标是圆环的适体坐标系。 2.数学上已经发展出来的正交曲线坐标系,满足不了 千变万化的工程实际需要,因此采用人工方法来建立 与计算区域边界相适应的坐标系,是网格生成技术的 主要研究内容。
12/82
10.2.2 用适体坐标系为什么能使计算区域简化 1.设已经在直角坐标系x-y中建立了一个适体坐标系,
记为 ξ −η ; 2.将 ξ −η 看成是计算平面上一个直角坐标的两个
轴,则物理平面的不规则计算区域立即转换为计算平 面的矩形区域;
13/82
3.规定计算平面上网格永远均匀划分,只要给定节点 数目可以立即得出计算平面上的网格; 4.先在计算平面上进行求解,获得收敛的解后再将结 果传递到物理平面上,这样就使求解区域简化。
5.为了将求解结果传递到物 理平面上,需要获得计算平 面与物理平面节点间的对应 关系;所谓网格生成技术主 要就是指已知计算平面上的
(ξ ,η) 获取物理平面上相应 的 (x, y)的过程。
14/82
10.2.3 生成适体坐标系的常用方法
1.保角变换法 (conforming mapping)
2.代数法 (algebraic method) 利用代数方法来建立计算平面与物理平面上节点
节点间没有固定的规则 予以联系,因此需要存节点 间储联系的信息;适合求解 不规则区域问题,但计算工 作量大。
10/82
10.2 适体坐标方法概述 10.2.1 用适体坐标系求解物理问题的基本思想
10.2.2 用适体坐标系为什么能使计算区域简化 10.2.3 生成适体坐标系的常用方法 10.2.4 对适体坐标系生成网格的要求 10.2.5 用适体坐标系求解物理问题的基本步骤
数值传热学
第十章 网格生成技术
主讲
西安交通大学能源与动力工程学院 热流中心 CFD-NHT-EHT CENTER
2009年12月16日
1/82
第10章 网格生成技术 10.1 FDM,FVM 中处理不规则区域的方法 10.2 适体坐标方法概述 10.3 生成适体坐标的代数方程法 10.4 生成适体坐标的PDE方法 10.5 网格分布的控制 10.6 控制方程与边界条件的转换与离散 10.7 计算平面上的SIMPLE算法 10.8 计算结果的处理和算例
3/82
10.1 FDM,FVM 中处理不规则区域的方法 10.1.1 常用正交坐标系无法适应各种复的杂区域
平面喷管 偏心圆环 集热器
外掠管束
4/82
10.1.2 FDM,FVM 中处理复杂计算区域的常用方法 1. 结构化网格(structured grid) 1) 区域扩充法
将不规则区域扩充为规则计算区域,用阶梯型曲 线逼近实际的不规则边界,采用常规坐标系计算。 (1) 流场计算 (a)令扩充区边界B-C-D-E上
u=v=0; (b)令扩充区内
η = 1025 ~ 1030; 5/82
(c) 界面扩散系数采用调和平均。 (2) 温度场计算 (a)第一类边界条件(且温度均匀)-方法同流场:
扩充区 λ = 1025 ~ 1030 , 边界温度为给定值;
(b)第二,三类边界条件采用附加源项法
• 第二 类边界条件-给定热流密度分布(未必均匀)
ቤተ መጻሕፍቲ ባይዱ
对P控制容积引入附加热流
SC ,ad
=
qief ΔVP
;
同时令扩充区 λ = 0
以阻止热量向外传导。
6/82
• 第三类边界条件-给定对流换热系数及周围流体温度
对P控制容积引入附加源项:
SC ,ad
=
ef ΔVP
Tf
1/ h +δ
/λ
;
Tf ,h
S P ,ad
=
−
ef ΔVP
1
1/ h +δ
/λ
;
同时令扩充区 λ = 0 ,以阻止热量向外传导。
2/82
10.1 FDM,FVM 中处理不规则区域的方法 10.1.1 常用正交坐标系无法适应各种复的杂区域 10.1.2 FDM,FVM 中处理复杂计算区域的常用方法 1. 结构化网格
1) 区域扩充法 2) 特殊正交曲线坐标系 3) 组合网格(块结构化网格) 4) 适体坐标系 2. 非结构化网格
10.2.5 用适体坐标系求解物理问题的基本步骤
1. 生成网格,即找出(ξ ,η) − (x, y) 的一一对应关系;
2. 将所研究问题的控制方程与边界条件从物理平面 转换到计算平面上; 3. 在计算平面上离散求解; 4. 将求解所得结果传递到物理平面上。
16/82
10.3 生成适体坐标的代数方程法 10.3.1 边界规范化方法 1. 二维渐扩喷管 2. 梯形封闭空腔 3. 偏心圆环 4. 一边不规则的平面通道 10.3.2 双边界法