FLAC3D岩土软件-本构模型

合集下载

2024flac3d入门指南

2024flac3d入门指南

flac3d入门指南•软件介绍与安装•界面操作与基本功能•初级实例分析:简单模型模拟•中级实例分析:复杂模型模拟目•高级功能应用与技巧•工程案例分析与实战演练录01软件介绍与安装FLAC3D概述FLAC3D(Fast Lagrangian Analysis ofContinua in3Dimensions)是一款用于模拟三维连续介质力学行为的有限差分软件。

它基于显式拉格朗日算法和混合离散化技术,适用于分析复杂地质和岩土工程问题。

FLAC3D广泛应用于边坡稳定、地下工程、隧道开挖、地震工程等领域。

A BC D软件特点与优势显式算法采用显式有限差分法,无需迭代求解,计算效率高。

强大的后处理提供丰富的后处理功能,如等值线、矢量图、动画等,方便用户分析和展示模拟结果。

真实模拟能够模拟复杂的材料本构关系、节理、断层等地质结构,实现真实世界的准确模拟。

开放性支持用户自定义本构模型、边界条件等,方便用户进行二次开发和扩展。

1 2 3安装步骤1. 下载FLAC3D安装包,并解压到指定目录。

2. 运行安装程序,按照提示完成安装过程。

3. 配置环境变量,将FLAC3D的安装路径添加到系统环境变量中。

4. 启动FLAC3D软件,进行初步设置和配置。

01注意事项02确保计算机满足FLAC3D的系统要求,如操作系统、内存、硬盘空间等。

03在安装过程中,选择合适的安装选项和配置,以满足个人或团队的需求。

04在使用FLAC3D前,建议仔细阅读用户手册和相关教程,以充分了解软件的功能和操作方法。

02界面操作与基本功能启动界面及工具栏介绍启动界面展示软件LOGO、版本信息以及最近打开的文件列表。

工具栏包含文件操作、模型操作、视图操作、分析设置等常用工具按钮。

菜单栏提供详细的软件功能选项,包括模型、网格、材料、边界条件、分析等。

通过绘制点、线、面等基本元素构建三维模型。

模型建立网格划分几何体素导入对模型进行离散化,生成有限元网格,可设置网格密度和类型。

FLAC3D知识介绍

FLAC3D知识介绍

FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。

1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。

FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。

因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。

调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。

FLAC3D 采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。

三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。

三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。

三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。

FLAC3D简介(word文档良心出品)

FLAC3D简介(word文档良心出品)

1.FLAC3D知识基本介绍SimWe岩土工程结构的数值解是建立在满足基本方程(平衡方程、几何方程、本构方程)和边界条件下推导的。

由于基本方程和边界条件多以微分方程的形式出现,因此,将基本方程近假发改用差分方程(代数方程)表示,把求解微分方程的问题改换成求解代数方程的问题,这就是所谓的差分法。

差分法由来已久,但差分法需要求解高阶代数方程组,只有在计算机的出现,才使该法得以实施和发展。

FLAC3D(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。

目前,FLAC 有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存(64K),所以,程序求解的最大结点数仅限于2000个以内。

1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。

FLAC3D是一个三维有限差分程序,目前已发展到V2.1版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。

因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。

调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发变形和移动(大变形模式)。

FLAC3D采用的显式拉格朗日算法和混合-离散分区技术能够非常准确发模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。

FLAC3D采用ANSI C++语言编写的。

FLAC3D有以下几个优点:1 对模拟塑性破坏和塑性流动采用的是“混合离散法“。

FLAC3D知识介绍

FLAC3D知识介绍

FLAC 3D基础知识介绍一、概述FLAC(Fast Lagrangian Analysis of Continua)由美国Itasca公司开发的。

目前,FLAC有二维和三维计算程序两个版本,二维计算程序V3.0以前的为DOS版本,V2.5版本仅仅能够使用计算机的基本内存64K),所以,程序求解的最大结点数仅限于2000个以内。

1995年,FLAC2D已升级为V3.3的版本,其程序能够使用护展内存。

因此,大大发护展了计算规模。

FLAC3D是一个三维有限差分程序,目前已发展到V3.0版本。

FLAC3D的输入和一般的数值分析程序不同,它可以用交互的方式,从键盘输入各种命令,也可以写成命令(集)文件,类似于批处理,由文件来驱动。

因此,采用FLAC程序进行计算,必须了解各种命令关键词的功能,然后,按照计算顺序,将命令按先后,依次排列,形成可以完成一定计算任务的命令文件。

FLAC3D是二维的有限差分程序FLAC2D的护展,能够进行土质、岩石和其它材料的三维结构受力特性模拟和塑性流动分析。

调整三维网格中的多面体单元来拟合实际的结构。

单元材料可采用线性或非线性本构模型,在外力作用下,当材料发生屈服流动后,网格能够相应发生变形和移动(大变形模式)。

FLAC3D采用的显式拉格朗日算法和混合-离散分区技术,能够非常准确的模拟材料的塑性破坏和流动。

由于无须形成刚度矩阵,因此,基于较小内存空间就能够求解大范围的三维问题。

三维快速拉格朗日法是一种基于三维显式有限差分法的数值分析方法,它可以模拟岩土或其他材料的三维力学行为。

三维快速拉格朗日分析将计算区域划分为若干四面体单元,每个单元在给定的边界条件下遵循指定的线性或非线性本构关系,如果单元应力使得材料屈服或产生塑性流动,则单元网格可以随着材料的变形而变形,这就是所谓的拉格朗日算法,这种算法非常适合于模拟大变形问题。

三维快速拉格朗日分析采用了显式有限差分格式来求解场的控制微分方程,并应用了混合单元离散模型,可以准确地模拟材料的屈服、塑性流动、软化直至大变形,尤其在材料的弹塑性分析、大变形分析以及模拟施工过程等领域有其独到的优点。

硬化土本构模型在FLAC_3D_中的开发及应用_王春波

硬化土本构模型在FLAC_3D_中的开发及应用_王春波

软件中的差分格式,编制相应的开发流
程,实现了二次开发。
第 33 卷
第1期
王春波等:硬化土本构模型在 FLAC3D 中的开发及应用
• 201 •
坏比 Rf 取值(默认为 0.9)可求得极限偏应力 qa 。 当 q ≥ qf 时,土体进入塑性阶段,产生塑性变
形,随着硬化参数的变化,HS 模型屈服面也在不 断的变化。 (1) 屈服函数 HS 模型为双屈服函数,包括剪切屈服和帽盖 屈服函数,其屈服面[13]如图 1 所示。
3D
[9]
式中: E50 为加载模量; ref 为相关应力,一般取
ref 100 kPa; E50 为相关应力 ref 时的加载模量; 3 为 为土体内摩擦角;m 小主应力;c 为土体黏聚力;
为幂指数;qa 为极限偏应力,qa ( 1 3 )ult 。 设 Rf 为破坏比,且 Rf ( 1 3 )f /( 1 3 )ult qf / qa (下 标“utl”表示极限,“f”表示破坏),通过设定破
DEVELOPMENT AND APPLICATION OF HARDENING SOIL CONSTITUTIVE MODEL IN FLAC3D
WANG Chunbo1 2,DING Wenqi1 2,QIAO Yafei1
, , ,2
(1. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University, Shanghai 200092,China)

邓肯张本构模型在FLAC3D中的开发与实现

邓肯张本构模型在FLAC3D中的开发与实现

邓肯张本构模型在FLAC3D中的开发与实现一、本文概述随着计算机技术的不断发展和数值模拟方法的日益成熟,岩土工程领域的数值模拟分析已成为研究岩土工程问题的重要手段。

邓肯张本构模型(Duncan-Chang Constitutive Model)作为一种能够描述岩土材料非线性、弹塑性行为的本构模型,在岩土工程领域具有广泛的应用。

然而,在岩土工程数值模拟软件FLAC3D中,邓肯张本构模型并未直接内置,因此需要对其进行开发与实现。

本文旨在探讨邓肯张本构模型在FLAC3D中的开发与实现过程。

将介绍邓肯张本构模型的基本原理和特点,包括其应力-应变关系、屈服准则、硬化法则等。

然后,将详细阐述如何在FLAC3D中通过用户自定义本构模型(User-Defined Constitutive Model)接口实现邓肯张本构模型,包括模型的初始化、应力更新、应变更新等关键步骤。

还将讨论邓肯张本构模型在FLAC3D中的数值实现方法,如如何设置模型参数、如何处理模型的非线性问题等。

通过本文的研究,旨在为FLAC3D用户提供一种在岩土工程数值模拟中应用邓肯张本构模型的有效方法,也为其他岩土工程数值模拟软件的本构模型开发与实现提供借鉴和参考。

本文的研究成果将有助于提高岩土工程数值模拟的准确性和可靠性,推动岩土工程领域的数值模拟研究向更高水平发展。

二、邓肯张本构模型基本理论邓肯张本构模型(Duncan-Chang Model)是一种广泛使用的岩土工程材料本构模型,主要用于描述土的应力-应变关系。

该模型基于土的弹塑性理论,能够模拟土的非线性、弹塑性和剪胀性等行为。

邓肯张本构模型的基本假设包括土的应力-应变关系是非线性的,土的应力路径对其后续行为有影响,以及土的体积变化与其应力状态有关。

模型的核心在于其应力-应变关系的数学描述,其中包括弹性部分和塑性部分。

在弹性部分,邓肯张模型采用了切线弹性模量来描述土的弹性行为,这个模量随着应力的变化而变化,体现了土的非线性弹性特性。

FLAC3D岩土软件本构模型

FLAC3D岩土软件本构模型

法能够充分考虑岩土体的非线性特性,但需要大量的现场监测数据。
参数校验方法
对比分析法
将室内试验得到的参数与工程经验或相关规范进行对比分析,以验证参数的合理性。
数值模拟法
采用FLAC3D等数值模拟软件,建立岩土体模型,输入室内试验得到的参数进行模拟计算 ,将模拟结果与现场监测数据进行对比分析,以验证参数的准确性。
蠕变模型
经验蠕变模型
基于实验数据拟合得到的蠕变方程,描述岩土材料在长时间持续荷载作用下的变形行为。
粘弹塑性蠕变模型
结合粘弹性、粘塑性和弹塑性理论,全面考虑岩土材料的时间效应和变形特性,适用于复杂应力路径和长时间尺 度的分析。
04
本构模型的参数确定与校验
BIG DATA EMPOWERS TO CREATE A NEW
BIG DATA EMPOWERS TO CREATE A NEW ERA
05
FLAC3D岩土软件本构模型的应用
岩土工程领域的应用
1 2
边坡稳定性分析
FLAC3D可以模拟边坡的渐进破坏过程,分析边 坡的稳定性,为边坡治理提供科学依据。
基坑支护设计
FLAC3D可以模拟基坑开挖过程中的应力场、位 移场和渗流场,为基坑支护设计提供技术支持。
BIG DATA EMPOWERS TO CREATE A NEW ERA
FLAC3D岩土软件本构模型
汇报人:XX
• 引言 • 本构模型概述 • FLAC3D岩土软件中的本构模型 • 本构模型的参数确定与校验 • FLAC3D岩土软件本构模型的应用 • 结论与展望
目录
CONTENTS
01
引言
BIG DATA EMPOWERS TO CREATE A NEW

Flac3D教学

Flac3D教学

本构模型选择
02
阐述Flac3D提供的多种本构模型,如弹性模型、弹塑性模型、
粘弹性模型等,并给出选择本构模型的一般原则和建议。
材料参数确定
03
探讨如何通过实验或经验确定材料参数,以及如何在Flac3D中
进行参数输入和调整。
10
03 建模与计算过程详解
2024/1/24
11
建立初始模型及参数设置
创建模型
B
C
对比实验数据与模拟结果
将实验数据与Flac3D模拟结果进行对比分 析,以验证模型的准确性和可靠性。
对比不同时间步的结果
对比同一模型在不同时间步的结果,以观察 模型的动态演化过程。
D
2024/1/24
18
05 工程案例实践与讨论
2024/1/24
19
岩土工程案例介绍
2024/1/24
案例一
深基坑开挖与支护
在Flac3D中,首先需定义模型的空间维度、尺寸及网格划分。
材料属性赋值
为模型各部分赋予相应的材料属性,如弹性模量、泊松比、密度 等。
初始条件设置
设定模型的初始应力、位移等条件。
2024/1/24
12
施加荷载与边界条件调整
01
02
03
荷载施加
根据实际问题,在模型上 施加相应的力、压力或位 移荷载。
通过实例分析,学习如何利用Flac3D解决岩土工程中的实际问题,如 边坡稳定性分析、基坑开挖模拟等。
5
学习方法与建议
1 2
理论学习与实践操作相结合
在学习过程中,既要注重理论知识的学习,也要 加强实践操作的训练,通过不断练习加深对软件 功能的理解和掌握。
多参考官方文档和教程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字测试条件可能影响剪切硬化和软化的特性。因此,单元体人小和网格形状对 模型的计算是很重要的,例题8-1单轴压缩实验剪切软化材料的应用,在包含细密 单元体的样件的顶部和底部慢速施加压力,软化反应如图8一2应变一位移曲线所 示,剪切波及区域分别如图8-3和图8一4所示,塑性区是一个放射螺旋结构的漏斗 形状。
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
德鲁克-布拉格 带有非相关流动法则的弹 性/塑性模型:剪切屈服应力是平均应力的函数
t A
kf
B
ft=0
C
s
st
kf /qf
德鲁克-布拉格 破坏准则
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
弹性本构模型
零模型 — 所有的应力均为零: 模拟挖空区 弹性模型 — 各向同性,线性 各项异性 — 弹性,假定单元为横观各项异性
g
b
y b
f
x
-b 面为对称面. , b 轴与 x, y轴呈任意角度
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
塑性本构模型
德鲁克-布拉格; 摩尔-库伦; 单一节理; 应变硬化-软化; 双屈服; 修正剑桥粘土; 霍克-布朗
通用的岩土力学模型(如边坡稳定问题和地下开挖)
具有强度各向异性的粒状散体材料
具有非线性强化和软化行为 的薄板层状材料
紧密沉积层开挖 用于研究薄板层状材料破坏后力学行为
压应力可以引起不可恢复的 体积缩小的低粘结性的粒状 散体材料
可塑性和剪切强度是体积变 化的函数的材料 各向同性岩石材料
第 五 章 本构模型
一般性考虑 — 选择本构模型及参数
本构模型类型 零模型
各向同性弹性模型
横观各向同性弹性模型 德鲁克-普拉格塑性模型
摩尔-库仑塑性模型 节理化塑性模型 应变硬化/软化摩尔-库仑 模型 双线性应变强化/软化节 理化塑性模型 双屈服塑性模型 修正的剑桥粘土模型 霍克-布朗模型
代表性的材料类型 挖空区
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
6 后破坏参数
有许多实例,特别是在采矿工程领域, 材料刚破坏时的反应是设计中重要的考虑因 素,因此,这种后破坏行为必须考虑。在FLAC3D中,后破坏行为的反响定义为四种 类型:剪切膨胀、剪切硬化/软化、体积硬化/软化、抗拉软化。 摩尔-库仑模型、多节理模型、应变软化多节理模型可以模仿剪切膨胀,应变软化模型、 多节理模型可以模仿剪切硬化/软化,修正剑桥模型可以模仿体积硬化/软化,应变软化 模型、多节理模型可以模仿抗拉软化。 6.1剪切膨胀
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
德鲁克一普拉格模型的强度参数。l以通过内聚力和内摩擦角得到,例如,假设德
鲁与克c、一普有拉如格下破关坏系在式摩尔一库仑范圈内,则德鲁克一普拉格模型参数。q。 和 K
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
例7-1 摩尔-库伦压缩测试 new
gen zone cyl p0 0 0 0 p1 1 0 0 p2 0 2 0 p3 0 0 1 size 4 5 4
gen zone reflect norm 1,0,0
gen zone reflect norm 0,0,1 model mohr
model ss ;应变硬化/软化模型 pro den 2500 bulk 2e8 she 1e8 co 2e6 fric 45 ten 1e6 dil 10 pro ftab 1 ctab 2 dtab 3 table 1 0 45 .05 42 .1 40 1 40 table 2 0 2e6 .05 1e6 .1 5e5 1 5e5 table 3 0 10 .05 3 .1 0 fix x y z range y -.1 .1 fix x y z range y 3.9 4.1 ini yvel 2.5e-5 range y -.1 .1 ini yvel -2.5e-5 range y 3.9 4.1
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
例7-2 应变硬化软化模型测试 new
gen zone cyl p0 0 0 0 p1 1 0 0 p2 0 2 0 p3 0 0 1 size 4 5 4
gen zone reflect norm 1,0,0 gen zone reflect norm 0,0,1
hist gp ydisp 0,0,0 ;采样记录座标[0,0,0] 处节点y方向位移
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
4 材料变形参数
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
5 材料的强度参数 内聚力、摩擦角和抗拉强度
应用实例 洞穴,开挖和将要回填的区域
均匀各向同性连续体材料, 具有线形应力应变行为的材 料 具有弹性各向异性力学行为
的薄板层状材料(如板岩)
应用有限;内摩擦角低的软土
处于强度极限下的人工材料(如钢材) ,安全系数法计算 加载不超过强度极限的薄板层状材料 常用于和隐式有限元程序进行比较
松散状和粘结状粒状散体材 料:土体、岩石、混凝土
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
例题 应变软化材料的单轴实验。
new Title;应变软化材料单轴实验 gen zone cyl p0 0 0 0 p1 1 0 0 p2 0 4 0 p3 0 0 1 size 12 30 12 gen zone reflect norm 1,0,0 gen zone reflect norm 0,0,1
摩尔-库仑 带有非相关流动法则的弹性/塑性模型: 根据 最大及最小主应力进行判断
s3
ft=0
B
C
c
2c
st tanf
A
Nf
s1
FLAC中的摩尔-库仑破坏准则
t
(常应力 sn)
坡度 = G
g
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
霍克-布朗模型
非线性破坏面是一个经验公式, 用来
prop bulk 1.19e10 shear 1.1e10 prop coh 2.72e5 fric 44 ten 2e5 fix x y z range y -.1 .1 fix x y z range y 1.9 2.1 ini yvel 1e-7 range y -.1 .1 ini yvel -1e-7 range y 1.9 2.1 ini pp 1e5
水力回填材料
位于粘土中的岩土工程 位于岩石中的岩土工程
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
CHINA UNIVERSITY OF MINING AND TECHNOLOGY
1. 所有模型都由屈服函数,硬化/软化函数,和流动准则描述; 2. 塑性流动基于塑性理论,即总应变可以分解为弹性分量和塑性分量,只
有弹性应变分量根据弹性定律引起应力增加。而且,弹性和塑性分量与 主应力同轴; 3. 德鲁克-布拉格,摩尔-库伦,单一节理, 应变硬化-软化模型使用剪切屈 服函数和非相关联流动法则; 4. 德鲁克-布拉格,摩尔-库伦,单一节理, 应变硬化-软化模型另外还定义 了拉伸强度准则及其相关流动法则; 5. 所有模型都使用有效应力描述; 6. 双屈服和修正剑桥粘土考虑了体积改变对材料可变形性和体积变形的影 响; 7. 霍克-布朗包含非线性破坏面,随围压改变的塑性流动法则.
hist gp ydisp 0,0,0 ;采样记录座标[0,0,0] 处节点y方向位移
hist zone syy 0,1,0 ;采样记录座标[0,1,0] 处单元体yy方向应力
相关文档
最新文档