FLAC3D基本原理和应用特点第三讲FLAC3D动力分析、自定义本构以及结构单元

合集下载

FLAC3D基本原理及简单实例

FLAC3D基本原理及简单实例

FLAC3D基础知识
• 其中,体积模量K和剪切模量G与杨氏模量E和泊松比v有以下关系:
E 3(1 2 ) E G 2(1 ) K
9 KG 3K G 3K 2G G 2(3K G ) E

摩尔-库伦塑性模型需要材料参数有: (1)密度 (2)体积模量 (3)剪切模量 (4)内摩擦角 (5)粘聚力 (6)抗拉强度 如果不指定这些材料参数,其值将会自动默认为零。
3D
生成网格
执行变更
定义材料本构关系和 性质 定义边界、初始条件
计算结果保存及调用
图形绘制及结果输出
FLAC3D基础知识
指定材料模型
• 一旦完成了网格的生成,就必须给模型中的所有单元指定一种或者更 多的材料模型及相应的性质。这可以用两个命令MODEL和 PROPERTY来完成。FLAC中有十种内置的材料模型,一般只用三种 模型:MODEL null,MODEL elastic和MODEL mohr。 • MODEL null指的是从模型中去除的或开挖的材料; MODEL elastic 指的是各向同性弹性材料行为; MODEL mohr指的是摩尔-库伦塑性 行为。 • MODEL elastic和MODEL mohr需要通过PROPERTY命令指定材料的 性质,弹性模型需要的材料参数有: • (1)密度 • (2)体积模量 • (3)剪切模量
f t 3 t
式中, 是摩擦角,C是粘聚力, t 是张拉强度,且有:
N
3
张拉强度不超过 值,最大值由下式给定:
1 sin 1 sin
t max
c tan
2.2 FLAC3D常用材料本构模型
Mohr-Coulomb模型
流动法则

FLAC3D基本原理

FLAC3D基本原理

FLAC3D基本原理FLAC3D,全称为Fast Lagrangian Analysis of Continua in 3D,是一种强大的三维领域连续介质数值计算软件。

它在计算地下开挖、岩土工程、地震灾害、地下水等领域具有广泛的应用。

FLAC3D的基本原理是使用有限差分法对岩土体进行离散化建模,然后通过求解平衡方程来分析介质的力学和流体特性。

首先,FLAC3D将岩土体或其他连续介质划分为许多网格单元,每个网格单元称为控制体。

然后通过定义每个控制体的初始状态,例如形状、几何特征、材料属性等,来描述问题的初始条件。

在FLAC3D中,力学分析通过求解平衡方程来描述。

平衡方程包括动量平衡方程和能量平衡方程。

动量平衡方程描述了物体的运动规律和受力情况,能量平衡方程描述了物体内部的能量转换和耗散过程。

求解平衡方程需要将控制体离散化为一个个单元,然后对每个单元应用数值方法进行求解。

FLAC3D使用有限差分法进行离散化。

具体来说,FLAC3D使用控制体网格中心点的控制方程和边界条件,通过差分近似的方式将偏导数转化为有限差分方程。

然后,通过迭代求解这些方程来计算出每个网格点的力学和流体特性。

在求解过程中,FLAC3D考虑了岩土体的非线性、弹性、塑性、渗流和破裂等特性。

通过选择适当的材料模型和边界条件,可以模拟不同类型的问题,并获取相关的力学和流体特征。

另外,FLAC3D还提供了丰富的后处理功能,可以对模拟结果进行可视化和分析。

用户可以根据自己的需求选择合适的分析工具,例如生成应力、位移、变形等等的图表或动画,以便更好地理解和评估解决方案。

总的来说,FLAC3D通过离散化建模和求解平衡方程,能够有效地分析岩土体和其他连续介质的力学和流体特性。

其基本原理为了进一步提高模拟效果和准确性,还需要适当地选择模型和参数,以及对结果进行合理的解释和验证。

FLAC,FLAC3D基础与应用全部

FLAC,FLAC3D基础与应用全部

New Features in FLAC Version 6.0 GeoHohai
• 使用Intel Fortran compiler拥有更快的计算速度 • 自动网格重画功能,解决 bad-geometry 问题. • 新的模拟颗粒土材料的硬化模型 • 更新的通用网格生成工具
22
New Features in FLAC3D Version 3.1 GeoHohai
孔洞,开挖,后续施工材料(如回填) 低于强度极限的人工材料(如钢 铁);安全系数计算 不超过强度极限的柱状玄武岩
不超过强度极限的层压材料
与隐式有限元程序相比的常用模型 岩土力学通用模型(边坡稳定性分
析,地下开挖) 破坏后研究(失稳过程,立柱屈服,
顶板崩落) 松散沉积地层中的开挖
层状材料破坏后研究
粘土 岩石
=
+
GeoHohai
/2
每个
为常应力/应变:
体积应变由整个四边形算出
. 应变偏量则有两个三角形

分别算出
(混合离散 过程)
解题过程中网格坐标按照“拉格朗日方式更新” (网格随材料移动), 且为显式 (一个时步内局部变化不会影响邻域)
17
FLAC3D混和离散
=
GeoHohai
+
/2
18
FLAC3D混和离散
31
一个最简单的例子
gen zon bri size 3 3 3 ;建立网格(前处理)
model elas
;材料参数
prop bulk 3e6 shear 1e6
ini dens 2000
;初始条件
fix z ran z -.1 .1
;边界条件

FLACFLAC3D基础与工程实例_记录

FLACFLAC3D基础与工程实例_记录

《FLACFLAC3D基础与工程实例》阅读札记目录一、FLACFLAC3D软件概述 (2)1. 软件背景与简介 (3)1.1 FLACFLAC3D的发展历程 (4)1.2 软件的应用领域及特点 (5)2. 软件安装与运行环境 (6)2.1 系统要求 (7)2.2 安装步骤 (8)2.3 运行环境配置 (10)二、FLACFLAC3D基础知识 (11)1. 基本概念与术语 (13)1.1 有限元分析原理 (14)1.2 离散元法简介 (14)1.3 FLACFLAC3D中的相关术语解释 (15)2. 软件操作界面及功能模块 (17)2.1 操作界面介绍 (18)2.2 主要功能模块说明 (20)2.3 菜单功能详解 (20)三、工程实例分析 (22)1. 地质工程实例 (23)1.1 工程背景及问题定义 (25)1.2 模型建立与参数设置 (26)1.3 结果分析与讨论 (27)2. 土木工程实例 (29)2.1 工程概况与建模目的 (30)2.2 建模过程及计算步骤 (31)2.3 结果展示与工程应用 (32)四、FLACFLAC3D应用技巧与注意事项 (33)1. 建模技巧与优化方法 (34)1.1 建模策略及优化思路 (35)1.2 网格划分与模型简化技巧 (36)1.3 参数设置与模型验证方法 (38)2. 数据分析与处理方法 (40)2.1 数据采集与整理方法 (41)2.2 结果分析与图表展示技巧 (42)一、FLACFLAC3D软件概述3D是一种广泛使用的岩土力学与有限元分析软件。

它是一套专门用来分析连续介质中的物理力学现象的强大工具,主要应用于土木、矿山、隧道等领域,能针对各种复杂的工程问题进行数值建模和模拟分析。

3D以其高效、灵活的数值分析能力,为工程师提供了强大的技术支持。

其主要特点包括:多功能:3D能够模拟多种物理过程,包括应力分析、稳定性分析、流体流动分析等,适用于多种工程场景。

FLAC3D基础介绍

FLAC3D基础介绍

GeoHohai
命令栏
18/74
菜单驱动(Plot)
GeoHohai
19/74
Case-2 一个最简单的例子
gen zon bri size 3 3 3 ;建立网格
model elas
;材料参数
prop bulk 3e8 shear 1e8
ini dens 2000
;初始条件
fix z ran z -.1 .1
GeoHohai
38/74
接触面单元的用途
岩体介质中的解理、断层、岩层面 地基与土体的接触 箱、槽及其内充填物的接触 空间中无变形的固定“障碍”
GeoHohaiΒιβλιοθήκη 39/74接触面的原理
如:井
孔隙压力,孔隙率,饱和度和流体属性的初始分 布可以用INITIAL命令或者PROPERTY命令定义。
GeoHohai
29/74
单渗流计算及渗流耦合计算
时间比例 完全耦合分析方法 孔压固定分析(有效应力分析) 单渗流得到孔压分布 无渗流计算——孔压的力学响应 流-固耦合计算
GeoHohai
PROP biot_c 0 (or INI fmod 0)
GeoHohai
33/74
无渗流计算——孔压的力学响应
不排水短期响应 两种分析方法:干法和湿法
干法:Ku=K+a2M 两种破坏形式
WATER或INI获得常孔压,不排水的c,φ (孔压改变较小) φ=0,c=cu (M>>K+4/3G)
GeoHohai
16/74
FLAC3D的前后处理
命令驱动(推荐)
程序控制 图形界面接口 计算模型输出 指定本构模型及参数 指定初始条件及边界条件,指定结构单元 指定接触面 指定自定义变量及函数(FISH) 求解过程的变量跟踪 进行求解 模型输出

FLAC,FLAC3D基础与应用(结构单元)

FLAC,FLAC3D基础与应用(结构单元)
and cable) 这样才能使node产生相互作用.
9
连接 SELs
1. 删除node-zone link on SEL A
SEL nodes connect to grid or other SEL nodes with links
2. 建立新 node-node link from SEL A to SEL B
10
连接 SELs
• 错误!
11
连接 SELs
• 正确!
12
Liner结构单元
• 三节点扁平有限单元 • 每个节点有6个自由度
– 3个移动,3个旋转
• 能够抵抗膜及弯矩荷载 • 能够承受主方向的拉压应力 • 能够模拟管片与土体之间的分离及随后的重新接触 • 能够模拟管片与土体之间的摩擦相互作用
config dyn sel pile id=1 beg 0 0 0 end 0 0 1 sel pile prop dens 2400 &
Emod 1.0e10 Nu 0.3 XCArea 0.3 & XCJ 0.16375 XCIy 0.00625 XCIz 0.01575 & Per 2.8 CS_sK 1.3e11 CS_nK 1.3e11& CS_nGap off sel node fix x y z xr yr zr ran id=1 sel set damp combined def f1 whilestepping f0=10000*sin(10*dytime) np = nd_head loop while np # null if nd_pos(np,1,3)=1 nd_apply(np,1)=f0 endif np = nd_next(np) endloop end solve age 1

FLAC3D软件原理及特点

FLAC3D软件原理及特点

FLAC3D软件原理及特点FLAC3D[1]是三维岩土力学有限差分计算机程序,是国际通用的岩土工程专业分析软件。

FLAC 代表连续介质快速拉格朗日分析,是由国际著名学者、英国皇家工程院院士、离散元法的发明人彼得库德尔Peter Cundall 博士在70年代中期开始研究开发的面向土木建筑、采矿、交通、水利、地质、核废料处理、石油及环境工程的通用软件系统,是美国艾塔斯Itasca国际咨询集团公司的软件核心产品最知名的软件系统之一。

自20世纪90年代中页,中国开始引进FLAC及FLAC3D等Itasca系列软件,许多工业部门都在应用FLAC系统进行工程设计、计算及科学研究;今天,FLAC已经成为我国岩土力学与工程界发展最快、最具有影响的数值分析软件系统。

FLAC程序将单元之间的不平衡力重新分配各节点之上,再进行下一步的迭代运算,直到不平衡力足够小或者各节点的唯一区域平衡为止,如下图1所示:图2 迭代求解过程图3 FLAC3D的特点3.1应用范围广泛FLAC3D是帮助土木、交通、采矿、水利工程师进行分析、测试及设计的连续介质程序。

由于其分析能力并不局限于某一类特殊问题或分析类型,FLAC3D得到了广泛的应用。

FLAC3D的设计思想是针对任何需要连续介质力学分析的岩土工程项目。

在分析岩土工程问题时,边界条件是最重要的考虑因素,而FLAC3D有多种边界条件,并且边界方位可以任意变化,边界条件可以是速度边界、应力边界,单元内部可以给定初始应力,节点可以给定初始位移、速度等,还可以给定地下水位以计算有效应力、所有给定量都可以具有空间梯度分布。

功能强大:FLAC3D是一个利用显示有限差分法为岩土工程提供精确有效分析的工具,可以解决诸多有限元程序难以模拟的复杂的工程问题。

另外,FLAC3D具有强大的内嵌语言FISH,使得用户可以定义新的变量或函数,以适应用户的特殊需要。

FISH可以做如下事情:(1)用户可以自定义材料的分布变化情况;(2)用户可以定义变量,追踪其变化规律并绘图表示;(3)用户可以自己设计FLAC3D内部所没有的单元形态;(4)在数值试验中可以检测控制;(5)用户可以指定特殊的边界条件;(6)自动进行参数分析;(7)利用FLAC3D内部定义的FISH变量或者函数,用户可以获得计算过程中的节点、单元参数,如坐标、位移、速度、材料参数、应力、应变和不平衡力等。

FLAC3D基本原理

FLAC3D基本原理

FLAC3D基本原理FLAC3D是一种常用的三维数值模拟软件,用于模拟岩土结构与地下工程行为。

该软件基于行为离散化原理,采用有限差分(Finite Difference)法进行数值计算,能够模拟地质和土木工程中的各种复杂现象。

1.离散化方法:FLAC3D使用有限差分法将模拟空间离散化,将三维空间划分为规则的网格单元。

每个单元内的物理特性和力学行为都通过节点上的数值来表示,如应力、应变、速度和位移等。

这种离散化方法能够准确地描述物理实体及其行为,方便进行数值计算。

2.材料模型:FLAC3D提供了一系列常用的材料模型,用于描述不同类型的岩土材料的力学性质。

这些材料模型可以基于材料的实验数据进行参数校准,用于模拟材料的弹性、塑性、损伤和破坏行为。

通过选择合适的材料模型,可以准确地模拟不同材料在不同工况下的力学响应。

3.节点连接:FLAC3D使用连接单元将不同类型的节点连接起来,表示它们之间的物理关系。

连接单元可以用于定位节点的相对位置、约束节点的运动、传递节点间的力和应力等。

通过定义不同的连接单元,可以准确地设置节点间的物理行为,从而模拟复杂的地质和结构体系。

4.边界条件:FLAC3D允许用户设定各种边界条件,以模拟实际工况下的问题。

边界条件可以是预设的平移、旋转或固定约束,也可以是施加在表面或内部的荷载、速度或位移等条件。

通过设置合适的边界条件,可以模拟出各种复杂的力学行为,如坡体稳定性、岩石应力分布、地下水渗流等。

5.可视化显示:FLAC3D具有强大的可视化功能,可以将模拟结果以直观的方式展示出来。

用户可以通过设置不同的颜色、亮度和透明度等参数,来显示节点和单元的不同属性,如应力、位移和应变等。

这些可视化结果可以帮助用户直观地理解模拟的物理过程和行为规律。

总而言之,FLAC3D的基本原理是基于离散化方法和有限差分法,使用材料模型、连接单元和边界条件来模拟复杂的地质和土木工程行为。

通过可视化显示结果,用户可以直观地理解模拟的物理过程和行为规律,并进行相应的工程分析和设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
4
动力模拟的3个重要问题
1. 动力荷载与边界条件 2. 材料响应与阻尼 3. 土体液化
5
5
动力荷载
动力输入的类型 加速度时程 速度时程 应力(压力)时程 力时程
APPLY INTERIOR (内部) TABLE FISH
6
6
Quiet边界 静态(quiet,粘性)边界
Lysmer and Kuhlemeyer(1969) 模型边界法向和切向设置独立的阻尼器 性能 对于法向p波和s波能很好的吸收 对于倾斜入射的波和Rayleigh波也有所吸收,但存在反射 人工边界仍应当足够远
quiet
quiet 8
quiet
8
Free-field边界
Cundall et al. (1980)
自由场网格与主体网格的耦合粘性 阻尼器,自由场网格的不平衡力施 加到主体网格边界上
设置条件
底部水平,重力方向为z向 侧面垂直,法向分别为x, y向 其他边界条件在APPLY ff之前
n Cpr vn
0.0001
0.001
0.01
0.1
1
Shear Strain Amplitude (%)
Mid-Range Sand Curve (Seed & Idriss, 1970)
50
Sand Fill Inland:
Friction =32, hr=0.47, Go=440
40
Sand Fill under Rock Dike:
FLAC / FLAC3D基本原理和应用特点
FLAC3D动力分析、自定义本构以及结构单元
非常复杂!
Said by Prof. Peter Cundall
为什么要用FLAC做动力分析? FLAC 可以模拟体系(土,岩石,结构,流体)受到的外部动力荷
载(比如地震)或内部动力荷载(比如基础振动、爆炸)。 可以计算塑性引起的永久变形以及孔隙水压力的消散。 土动力学中常用的等效线性方法无法直接处理上述问题。
11
11
2. 材料响应与阻尼
1. 连续的非线性,表观模量随着应 变的增大而降低
2. 对所有循环应变等级均存在滞回 特性,因此导致随着循环应变的 增加阻尼比增大。阻尼是率相关 的。
3. 对于复杂波形的各个成分都产生 阻尼。
4. 剪切应变会产生的体积应变,相 应的,随着剪应变循环次数的增 加体积应变逐渐积累。
2. 不能计算永久变形。等效线性方法模型在加荷与卸荷时模量相同,不能计 算土体在周期荷载作用下发生的剩余应变或位移。
3. 塑形屈服模拟不合理。在塑性流动阶段,普遍认为应变增量张量是应力张 量的函数,称之为“流动法则”。然而,等效线性方法使用的塑性理论认为应 变张量(而不是应变增量张量)是应力张量的函数。因此,塑性屈服的模 拟不合理。
30
Friction=30, hr=(%)
20
10
0
0.0001
0.001
0.01
0.1
1
Shear Strain Amplitude (%)
14
14
等效线性方法
• 等效线性方法是岩土地震工程中模拟波的传播的最常用的方法。 • 假定土体是粘弹性体,参照实验室得到的切线模量及阻尼比与剪应变幅值的关
4. 大应变时误差大。等效线性方法所用割线模量在小应变时与非线性的切线 模量很相近,但在大应变时二者相差很大,偏于不安全。
5. 本构模型单一。等效线性方法本身的材料本构模型包括了应力应变的椭圆 形方程,这种预设的方程形式减少了使用者的选择性,但却失去了选择其 它形状的适用性。方法中使用迭代程序虽然部分考虑了不同的试验曲线形 状,但是由于预先设定了模型形式,所以不能反映与频率无关的滞回圈。 另外,模形是率无关的,因此不能考虑率相关性。
7
7
Quiet边界应用
内部振动(如隧道中的列车振动问题)☺ 动力荷载直接施加在节点上 使用Quiet边界减小人工边界上的反射 不需要FF边界
外部荷载的底部边界☺ 软土地基上的地震荷载不适合用加速度或速度边界条件 使用应力条件t = -2Csrvs
地震底部输入的侧向边界 扭曲了入射波
系曲线,对地震中每一单元的阻尼和模量重新赋值。
Iteration toward strain-compatible shear modulus and damping ratio (after Kramer, 1996)
15
15
等效线性方法的特点
1. 使用振动荷载的平均水平来估算每个单元的线性属性,并在振动过程中保 持不变。在弱震阶段,单元会变得阻尼过大而刚度太小;在强震阶段,单 元将会变得阻尼太小而刚度太大。对于不同部位不同运动水平的特性存在 空间变异性。
10
10
Free-field边界与动力荷载 模型底部边界
fix——施加速度或加速度荷载——刚性边界 Free——施加应力时程荷载——柔性边界
对于软弱的地基不适合施加速度(加速度荷载),而应当施 加应力荷载
t 2CS rvs
Note that there is a factor of 2 because the input energy divides into a downward- & upward-propagating wave.
9
相当于一个阻
尼器
9
Free-field边界 APPLY ff将边界上单元的属性、条件和变量全部转移ff单元上; 设置以后主体网格上的改动将不会被FF边界所响应 可存在任意的本构模型以及流体耦合(仅竖向) FF边界进行小变形计算,主体网格可大变形,FF边界上的变
形要相对较小 存在attach的边界将不能设置FF边界 边界上的Interface将不能连续 动力边界设置需在FF边界设置之前
Shear stress
4.0E+05 3.0E+05 2.0E+05 1.0E+05 0.0E+00 -1.0E+05 -2.0E+05 -3.0E+05
-0.1%
0.0%
0.1%
Shear strain %
0.2%
12
12
材料响应
土体在循环荷载作用下呈现出模量衰减和能量消散的特点, 那么如何用非线性数值方法对其进行模拟呢?
Nonlinear characteristics of soils (Martin and Seed, 1979)
13
13
试验得到的阻尼比、割线模量随循环剪应变的曲线
1.0
0.9
rmaliNzoed Shear Modulus, G/Gmax
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
相关文档
最新文档