第十六章 分式 复习教学案

合集下载

第16章《分式》题型复习导学案

第16章《分式》题型复习导学案

第16章《分式》题型复习导学案学习目标:复习和提高同学们解题方法和技巧.题型1、分式的概念。

下列各式中是分式的(填序号)( ) ①-x 3 ②53x ③ 21 ④ m s 72- ⑤-x 1+2 ⑥b+3b 知识2、分式有意义的条件:当a 或x 取什么值时,下列分式有意义? 1、当a 取 时,分式a a 3334--无意义。

2、当x 时,分式912-x 有意义。

题型3、分式值为零的条件:当x 取何值时,下列分式的值为零?1、122--x x2、 6292--x x 3、当分式||33x x -+的值为零时,x 的值为( ). A.0 B.3 C.-3 D.±3题型4、分式的符号法则:填上使等式成立的符合 -321+-x x =( )321+-x x =( )321---x x 题型5、约分: 1、计算22()ab a b-的结果是( )A .a B .b C .1 D .-b 2、化简222a b a ab -+的结果为( )A .b a - B .a b a - C .a b a + D .b -3、化简:2222444m mn n m n-+-= . 题型6、通分:把下列各题中的分式通分:(1)ab h 3,b a k 222 (2))4(2+m n ,1652--m mn题型7、分式的运算。

1、化简:2111x x x x -+=++ .2、化简:224442x x x x x ++-=-- .3、计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= 4、化简ba a ab a -⋅-)(2的结果是 ( )A .b a - B .b a + C .b a -1 D .b a +1 4、化简a a a a a a 2422-⋅⎪⎭⎫ ⎝⎛+--的结果是( )A -4 B .4 C .2a D .-2a 6、化简11y x x y ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( )A .y x - B . x y - C . x y D .yx7、分式111(1)a a a +++的计算结果是( )A .11a + B .1a a + C .1a D .1a a + 8、化简22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+ D .82x + 9、化简:xx x x x 2)242(2-÷+-+ 10、化简:1a b a b b a ++--11、化简:35(2)482y y y y -÷+--- 12、化简:2414a ⎛⎫+ ⎪-⎝⎭·2a a +.13、计算:2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭14、先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.题型8、解分式方程:(1)32-x x +x235-=4 (2) 224x x -=21+x -1题型9、增根的用法 1、已知x=-2是分式方程21+x -42-x m =1的增根,则m= 2、当m = 时,关于x 的分式方程213x m x +=--无解。

第十六章分式复习教学案

第十六章分式复习教学案

第十六章分式一、知识目标:1、进一步理解分式的概念,掌握分式有意义、值为零、值为正(负)的条件。

2、进一步理解并掌握分式的基本性质。

3、能灵活地运用加、减、乘、除、乘方法则和运算律正确地进行计算。

4、加深对分式方程的概念的理解和应用。

5、总结优化解分式方程的方法,进一步提高计算的能力。

6、进一步提高列分式方程解决实际问题的能力。

二、能力目标:1、进一步培养学生的运算能力及有条理地思考问题的能力。

2、熟练准确的列与解分式方程。

三、本章知识结构框图:四、知识要点———经典例题———跟踪练习16.1 分式的意义:(一)知识要点:1、判别一个式子是分式的条件:。

2、①分式有意义的条件: 。

②分式无意义的条件: 。

③分式值为0的条件: 。

④分式值为正的条件: 。

⑤分式值为负的条件: 。

3、分式基本性质 :4、分式的约分①定义②确定公因式的步骤5、分式的通分①定义②确定最简公分母的步骤6、最简分式的定义7、分式的符号法则:(二)经典例题:例1:下列式子:① a 2,② 5y x +, ③ a -21,④ 1-πx 中,是分式的为 。

例2:写出分式222---x x x 有意义、无意义及值为0的条件? 例3:当 时,分式52+-x x 的值为正。

例4:下列等式从左到右的变形正确的是( )A 11++=a b a bB am bm a b =C a b a ab =2D 22ab a b = 例5:将分式的分子与分母中各项系数化为整数,则b a b a 213231++= 。

例6:若把分式xyy x 2+中的x 和y 都缩小3倍,那么分式的值( ) A 扩大3倍 B 不变 C 缩小3倍 D 缩小6倍例7:把下列各式通分(1)42-x x ,4412++-x x x (2) 221,,b a b a b b a ---16.2分式的运算:(一)知识要点:1、加、减、乘、除、乘方运算法则(1)同分母 (2)异分母 (3)乘法 (4)除法 (5)乘方2、两个规定:① ② 。

16分式复习教案.doc

16分式复习教案.doc

(3 ) 每公顷的产量=总产量土地面积第16章分式复习(一)教学年级:八年级教者:安富海一、教学目标:1、能将实际问题中的等量关系用分式方程表示,体会分式方程的模型思想。

2、经历“实际问题一分式方程模型一求解一解释解的合理性”的过程。

3、发展学生分析问题、解决问题的能力,培养学生的应用意识。

二、重点、难点:1.重点:能将实际问题中的等量关系用分式方程表示、分式方程概念2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、教学方法:讲解法、探究法四、教具准备:练习纸五、教学过程:一、知识回顾:1-形如会的式子叫做分式,其中A和B均为整式,且B中含有,分式会有意义的条件走,分式音等于车的条件是.2、分式的基本性质:分式的分子与分母都乘以(或除以) .分式的值用式子表示: ___________3、通分关键是找,约分与通分的依据都是:4、有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg和15000kg。

已知第一块试验由每公顷的产量比第二块少3000kg,分别求这两块试验田每公顷的产量。

1)你能找出这一问题中的等量关系吗?(1)第一块试验田每公顷的产量+3000kg=第二块试验田每公顷的产量(2)第一块试验由的面积=第二块试验田的面积2)如果设第一块试验田每公顷的产量为xkg,那么第二块试验田每公顷的产量是()kgo第一块试验田的面积为(),第二块试验田的面积23. 分式QX F X 的最简公分母-4m 2n 2.4.化简 2m 3 5.1 _() 在括号内填入适当的单项式,使等式成立:xy 2xy2 6. 计 12005 7某班a 名同学参加植树活动,其中男生b 名(bva).若只由男每人需植树15若只由女生完成,则每人需.1、当8910、下列各f ,土弓4.当其中分式共有( )A 、B 、C 、D 11、使分式A 、B 、D 、拜0且12、当x 为任意实数下列分式一定有意义1 A.—— X 2 -2 2 B.—— +1 C . D.(i )(L + _L )+M m n n a 2-l + l^ x 2 X+ 12'.北 X3) 根据题意,可得方程:(二、知识应用 时,分式白没有意义. 一种病菌的直径为0.0000036m,用科学记数法表示为. Q b 已知a 2—6a+9与|b —1|互为相反数,则( ------------------ ):(□+/?)= b a b 若非零实数a, b 满足4a 2+b 2=4ab,则一= 。

华东师大版数学八年级下册第十六章《分式》复习教学设计

华东师大版数学八年级下册第十六章《分式》复习教学设计
5.引导学生探索分式方程的解法,重点讲解线性分式方程的求解步骤,并逐步过渡到复杂情况下的分式方程。
(三)学生小组讨论
在小组讨论环节,我会将学生分成若干小组,每组针对以下问题进行讨论:
1.分式的性质有哪些?它们在分式运算中有什么作用?
2.通分和约分的具体步骤是什么?在实际运算中如何快速找到最简公分母?
-利用实物或多媒体展示分式的实际情境,如分数的切割问题,让学生直观感受分式的意义。
-设计互动环节,如小组讨论分式的性质,通过学生自主发现和总结,加深对分式的理解。
-创设数学实验,让学生在操作中发现分式的运算规律,从而提高他们对分式的认识。
2.针对分式运算的难点,我计划:
-采用直观的教学方法,如用图形表示分式,帮助学生理解通分和约分的原理。
2.培养学生对待数学问题的积极态度,敢于面对和解决复杂问题,形成坚毅的数学学习品质。
3.通过分式知识在科学、技术、工程等领域中的应用,让学生认识到数学的社会价值,增强学习数学的责任感和使命感。
4.培养学生的批判性思维,敢于对已有的解题方法提出质疑,并尝试创新解题思路。
5.强化学生间的互助与交流,让学生在合作中学会尊重他人,理解团队协作的重要性。
(二)讲授新知
在讲授新知的环节,我会按照以下步骤进行:
1.明确分式的定义,解释分子、分母的概念,并通过具体的数学例子进行说明。
2.讲解分式的基本性质,如分子分母的符号变换、分式的乘除法规则等,结合板书和图形辅助,让学生直观理解。
3.通过互动提问,检查学生对分式性质的理解程度,并及时解答学生的疑问。
4.介绍分式运算中的通分和约分方法,通过例题演示,让学生跟随解题步骤,逐步掌握运算技巧。
例题:计算以下分式的值:
(a) 2/3 ÷ 4/5

八年级数学(下)十六章—分式教案

八年级数学(下)十六章—分式教案

八年级数学(下)十六章—分式教案第一篇:八年级数学(下)十六章—分式教案16.2.1分式的乘除(二)一、教学目标:熟练地进行分式乘除法的混合运算.二、重点、难点1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.三、例、习题的意图分析1.P17页例4是分式乘除法的混合运算.分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2,P17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.四、课堂引入计算(1)y÷x⋅(-y)(2)3x÷(-3x)⋅(-1) xyx4yy2x五、例题讲解(P17)例4.计算[分析] 是分式乘除法的混合运算.分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1)3ab322xy2⋅(-8xy9ab)⋅2)÷3x(-4b)=3ab32xy3ab32⋅(-8xy9ab⋅2-4b3x(先把除法统一成乘法运算)=2xy9ab3x⋅8xy24b(判断运算的符号)=16b9ax23(约分到最简分式)2x-6(x+3)(x-2)3-x(2)4-4x+4x2x-6⋅2÷(x+3)⋅1=4-4x+4x2x+3⋅(x+3)(x-2)3-x(先把除法统一成乘法运算)=2(x-3)(2-x)2⋅1x+31x+3⋅(x+3)(x-2)3-x(x+3)(x-2)-(x-3)(分子、分母中的多项式分解因式)2x-2=2(x-3)(x-2)2⋅⋅ =-2ab5c2ab224六、随堂练习计算(1)3(x-y)(y-x)23b216a4÷bc2a2⋅(-)(2)÷(-6abc)÷226220c331030ab(3)3⋅(x-y)÷9y-x(4)(xy-x)÷x-2xy+yxy⋅x-yx2七、课后练习计算(1)-8xy⋅y-4y+42y-62243x4y6÷(-xy6z2)(2)a-6a+94-bxyy-xy222÷3-a2+b3a-9⋅a2(3)⋅1y+3÷12-6y9-y2(4)x+xyx-xy22÷(x+y)÷16.2.1分式的乘除(三)一、教学目标:理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析1.P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好.分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入计算下列各题:(1)()=ba2ab⋅ab=()(2)()=bana3ab⋅ab⋅ab=()(3)()=ba4ab⋅ab⋅ab⋅ab=()[提问]由以上计算的结果你能推出()(n为正整数)的结果吗?b五、例题讲解(P17)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1.判断下列各式是否成立,并改正.(1)(b32a)=2b522a(2)(-3b2a)=2-9b4a22(3)(2y-3x)=38y9x33(4)(3xx-b)=29x222x-b2.计算(1)(5x23y2)(2)(23ab-2c32)(3)(xyy3a323xy)÷(-2ay2x2)3(4)(xy-z2)÷(3-xz32)5)(-2ba22)⋅(-2x)÷(-xy)(6)(-4y2x)⋅(-23x2y)÷(-33x2ay)2七、课后练习c3计算(1)(-c43)3(2)(-ab22)n+1(3)(ab2)÷(2a-b2-a3a4222()⋅()⋅(a-b))÷()(4) 3abb-acab16.2.2分式的加减(一)一、教学目标(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.三、例、习题的意图分析1. P18问题3是一个工程问题,题意比较简单,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的1n+1n+3.这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.P19[观察]是为了让学生回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让学生自己说出分式的加减法法则.3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,第二个分式的分子式个单项式,不涉及到分子变号的问题,比较简单,所以要补充分子是多项式的例题,教师要强调分子相减时第二个多项式注意变号;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简单,教师应适当补充一些题,以供学生练习,巩固分式的加减法法则.(4)P21例7是一道物理的电路题,学生首先要有并联电路总电阻R与各支路电阻R1, R2, …, Rn的关系为111111.若知道这个公式,就比较容易地用含有R1的式子表示R2,列出1,下面的计算就是=++⋅⋅⋅+=+RR1R2RnRR1R1+50异分母的分式加法的运算了,得到1R=2R1+50R1(R1+50),再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的知识若不熟悉,就为数学计算设置了难点.鉴于以上分析,教师在讲这道题时要根据学生的物理知识掌握的情况,以及学生的具体掌握异分母的分式加法的运算的情况,可以考虑是否放在例8之后讲.四、课堂堂引入1.出示P18问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3.分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出12xy23,13xy42,19xy2的最简公分母是什么?你能说出最简公分母的确定方法吗?五、例题讲解(P20)例6.计算[分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.(补充)例.计算(1)x+3yx-y22-x+2yx-y22+2x-3yx-y22[分析] 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.解:x+3yx-y22-x+2yx-y1-x6+2x22+2x-3yx-y6x-9222 =(x+3y)-(x+2y)+(2x-3y)x-y22=2x-2yx-y22=2(x-y)(x-y)(x+y)=2x+y(2)1x-3+-[分析] 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式.解:1x-3+1-x6+2x-6x-92=1x-3+1-x2(x+3)-6(x+3)(x-3)=2(x+3)+(1-x)(x-3)-122(x+3)(x-3)=-(x-6x+9)2(x+3)(x-3)2=-(x-3)22(x+3)(x-3)3a+2b5ab-2=-x-32x+6-b-a5ab2m+2nn-mnm-n2mn-m1a+36a2六随堂练习计算(1)+a+b5ab-2(2)7a-8ba-b-+(3)+-9(4)3a-6ba+b5a-6ba-b+4a-5ba+b--3b-aa-b22七、课后练习计算(1)b25a+6b3abc23b-4a3bac2a+3b3cba2(2)1-a+2ba-b22-3a-4bb-a22(3)a-b+a2b-a+a+b+1(4)16x-4y-6x-4y-3x4y-6x2216.2.2分式的加减(二)一、教学目标:明确分式混合运算的顺序,熟练地进行分式的混合运算.二、重点、难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.三、例、习题的意图分析1.P21例8是分式的混合运算.分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.例8只有一道题,训练的力度不够,所以应补充一些练习题,使学生熟练掌握分式的混合运算.2.P22页练习1:写出第18页问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.四、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.五、例题讲解(P21)例8.计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(补充)计算(1)(x+2x-2x2-x-1x-4x+42)÷4-xx[分析] 这道题先做括号里的减法,再把除法转化成乘法,把分母的“-”号提到分式本身的前边..解:(x+2x-2x2-x-1x-4x+42)÷4-xx=[xx+2x(x-2)2-x-1(x-2)22]⋅x-(x-4)⋅x1x-4x+42=[(x+2)(x-2)x(x-2)2-2x(x-1)x(x-2)2]⋅-(x-4)=x-4-x+xx(x-2)2-(x-4)=-(2)xx-y⋅yx+y-xyx-y444÷x222x+y[分析] 这道题先做乘除,再做减法,把分子的“-”号提到分式本身的前边.解:xx-y⋅y2x+y-xyx-y444÷x222x+y=xx-y⋅y2x+y-xy(x+y)(x-y)22224⋅x+yx222=xy2(x-y)(x+y)⋅-xyx-y222=xy(y-x)(x-y)(x+y)=-xyx+y六、随堂练习计算(1)(x2x-2+42-x)÷x+22x(2)(aa-b-bb-a)÷(1a-1b)(3)(3a-2-+12a-4a-12)÷(2a-2-1a+2)七、课后练习1.计算(1)(1+1x1y1zxyxy+yz+zxyx-y)(1-1xx+y-)(2)(1a-24a2a+2a-2a2a-4 a+42)⋅a-2a÷4-aa2(3)(++)⋅2.计算(a+2)÷,并求出当a=-1的值.16.2.3整数指数幂一、教学目标:1.知道负整数指数幂a-n=1an(a≠0,n是正整数).2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.二、重点、难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2.P24观察是为了引出同底数的幂的乘法:am⋅an=am+n,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3.P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5.P25最后一段是介绍会用科学计数法表示小于1的数.用科学计算法表示小于1的数,运用了负整数指数幂的知识.用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.四、课堂引入1.回忆正整数指数幂的运算性质:mnm+n(1)同底数的幂的乘法:a⋅a=a(m,n是正整数);(2)幂的乘方:(a)=anmnmnn(m,n是正整数);n(3)积的乘方:(ab)=ab(n是正整数);(4)同底数的幂的除法:aanm÷an=am-n(a≠0,m,n是正整数,m>n);(5)商的乘方:()=n(n是正整数);bb2.回忆0指数幂的规定,即当a≠0时,a=1.3.你还记得1纳米=10-9米,即1纳米=4.计算当a≠0时,a÷a=350an11029米吗?1a2aa35=a33a⋅a=3,再假设正整数指数幂的运算性质a53-5m÷an=am-n(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a÷a=a=a-2.于是得到a-2=1a2(a≠0),就规定负整数指数幂的运算性质:当n是正整数时,a-n=1an(a≠0).五、例题讲解(P24)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10.判断下列等式是否正确?[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、随堂练习1.填空(1)-22=(2)(-2)2=(3)(-2)0=(4)20=(5)2-3=(6)(-2)-3= 2.计算(1)(xy)(2)xy ·(xy)3-222-2-2(3)(3xy)÷(xy)2-2 2-23七、课后练习1.用科学计数法表示下列各数:0.000 04,-0.034, 0.000 000 45, 0.003 009 2.计算(1)(3×10-8)×(4×103)(2)(2×10-3)2÷(10-3)316.3分式方程(一)一、教学目标:1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、重点、难点1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、例、习题的意图分析1. P31思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P32的归纳明确地总结了解分式方程的基本思路和做法.3.P33思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P33的归纳出检验增根的方法.4.P34讨论提出P33的归纳出检验增根的方法的理论根据是什么?5.教材P38习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数.这种方程的解必须验根.四、课堂引入1.回忆一元一次方程的解法,并且解方程x+24-2x-36=12.提出本章引言的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程10020+v=6020-v.像这样分母中含未知数的方程叫做分式方程.五、例题讲解(P34)例1.解方程[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化为整式方程,整式方程的解必须验根这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P34)例2.解方程 [分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.六、随堂练习解方程(1)3x=2x-6(2)2x+1+3x-1=6x-12(3)x+1x-1-4x-12=1(4)2x2x-1+xx-2=2七、课后练习1.解方程(1)25+x-11+x=0(2)63x-82x+9x+3=1-14x-78-3x-2x(3)2x+x2+3x-x2-4x-12=0(4)1x+1-52x+2=-342.X为何值时,代数式-x-3的值等于2?16.3分式方程(二)一、教学目标:1.会分析题意找出等量关系.2.会列出可化为一元一次方程的分式方程解决实际问题.二、重点、难点1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.三、例、习题的意图分析本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米,完成.用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度设为未知数x千米/时,以及提速后列车行驶(x+50)千米所用的时间.这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.四、例题讲解P35例3 分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.等量关系是:甲队单独做的工作量+两队共同做的工作量=1路程P36例4 分析:是一道行程问题的应用题, 基本关系是:速度=.这题用字母表示已知数(量).等量关系时间是:提速前所用的时间=提速后所用的时间五、随堂练习1.学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.2.一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?3.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.六、课后练习1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快,结果于下午451时到达,求原计划行军的速度。

华师大版数学八年级下册第16章《分式》(第2课时)单元复习教学设计

华师大版数学八年级下册第16章《分式》(第2课时)单元复习教学设计

华师大版数学八年级下册第16章《分式》(第2课时)单元复习教学设计一. 教材分析华师大版数学八年级下册第16章《分式》(第2课时)的单元复习,主要是对分式的概念、分式的运算、分式的性质等内容进行复习。

本节课的内容是分式的重要概念和性质,以及分式的基本运算方法。

通过复习,使学生能够熟练掌握分式的相关知识,提高解决实际问题的能力。

二. 学情分析学生在之前的学习中已经掌握了分式的基本概念和运算方法,但对分式的性质的理解还不够深入。

此外,部分学生在分式运算时,容易出错,对分式的混合运算还不够熟练。

因此,在复习过程中,需要引导学生深入理解分式的性质,并通过大量的练习,提高运算的准确性。

三. 教学目标1.理解分式的概念,掌握分式的性质;2.熟练掌握分式的基本运算方法;3.提高解决实际问题的能力。

四. 教学重难点1.分式的性质的理解和运用;2.分式混合运算的准确性。

五. 教学方法采用讲练结合的方法,通过引导、讨论、练习等方式,帮助学生深入理解分式的性质,提高运算能力。

六. 教学准备1.PPT课件;2.练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解分式的性质,通过示例,让学生理解分式的性质,并能够运用到实际问题中。

3.操练(10分钟)进行分式的基本运算练习,让学生在实践中掌握分式的运算方法。

4.巩固(10分钟)通过一些分式运算的题目,巩固学生对分式性质和运算方法的理解。

5.拓展(5分钟)引导学生思考分式在实际问题中的应用,提高解决实际问题的能力。

6.小结(5分钟)对本节课的主要内容进行小结,帮助学生形成知识体系。

7.家庭作业(5分钟)布置一些分式运算的练习题,要求学生在课后进行练习。

8.板书(5分钟)板书本节课的主要内容和重点。

教学过程中每个环节的时间安排仅供参考,具体时间根据实际情况灵活调整。

在本节课的教学过程中,我尽力引导学生深入理解分式的性质,并通过大量的练习,提高他们的运算能力。

16章分式复习教案

16章分式复习教案

生的主观能动性.二、寓思与练,讨论交流1:当x取什么数时,下列分式有意义?思路点拨:(1)令5x+1=0,相应求出x的值,然后x不取这个值时分式必有意义.(•x≠- );(2)由于无论x取何值x2+2的值均大于零,因此,x取任何实数,此分式都有意义;(3)因为任何数的平方均为非负数,则m2≥0,所以m≠0即可.演练题2:当x取什么数,下列分式的值为零?思路点拨:令分子等于零,由此求出x的值,此时应考虑分母是否等于零,•若等于零,则分式无意义,应舍去.(1)x=- ;(2)x=2.【活动方略】教师活动:引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,巩固深化1.x为何值时,的值为零;(x〒5)2.x为何值时,没有意义;(x=9)3.x为何值时,的值等于1.(a=2)4.课本P42复习题16第6题.四、范例学习,提高认知例1计算.思路点拨:按法则进行分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进行;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化.例2计算.思路点拨:(1)•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.(2)对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性.学生活动:参与例1、例2的分析,同老师一道领会算理,掌握正确的学习方法.例3解分式方程:1- [x=2]思路点拨:解分式方程基本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建设,每天比原计划增加25%,可提前10天完成任务,问原计划每天生产多少台?(80台)思路点拨:工程问题常用的关系式是时间=,设原计划每天生产x台,•列式=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建(一)复习并问题导入 1复习练习1.(02苏州)某农场挖一条960m 长的渠道,开工后每天比原计划多挖20m ,结果提前4天完成了任务.若设原计划每天挖xm ,则根据题意可列出方程( )A. 960960204x x -+=B. 960209604x x +-=C. 960960204x x --=D. 960209604x x--= 2.(03苏州)为了绿化江山,某村计划在荒山上种植1200棵树,原计划每天种x 棵,由于邻村的支援,每天比原计划多种了40棵,结果提前了5天完成了任务,则可以列出方程为( )A )x 1200-401200+x =5 B )401200-x -x1200=5 C )401200+x -x 1200=5 D )x1200-401200-x =5(二)创新练习题讲解与练习巩固1 、 购一年期债券,到期后本利只获2700元,如果债券年利率12.5%,&127;那么利息是多少元?解:(1)设利息为x 元,则本金为(2700-x)元,依题意列分式方程为:解此方程得 x=300 经检验x=300答:利息为300元. 合作交流解法,学以致用.[练习]一组学生乘汽车去春游,预计共需车费120元,后来人数增加了41,费用仍不变,这样每人少摊3元,原来这组学生的人数是多少个?本题是策略问题,应让学生合作交流解法.注意分类讨论思想.合作。

华东师大版八年级下册 第十六章 分式 章节复习教案

华东师大版八年级下册 第十六章 分式 章节复习教案

本章热点专题训练教学目标:【知识与技能】1.使学生进一步熟悉分式的意义及分式的运算.2.会解分式方程,利用分式方程解决实际问题.【过程与方法】通过复习,发展学生的代数表达能力、运算能力和有条理地思考问题的能力.【情感态度】提高学生解决实际问题的能力,培养学生的符号感,提高分析问题和解决问题的能力.【教学重点】会解分式方程,并利用分式方程解决实际问题.【教学难点】会解分式方程,并利用分式方程解决实际问题.教学过程一、知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二、释疑解惑,加深理解1.分式概念形如A/B ,其中分母B 中含有字母,分数是整式而不是分式.2.分式的基本性质分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:.A M A M AB AB B M B M⨯÷==⨯÷, 分式的约分和通分:(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式. 求几个分式的最简公分母的步骤:(1)取各分式的分母中系数最小公倍数;(2)各分式的分母中所有字母或因式都要取到;(3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.(5)各个分式的分母都是多项式,并且可以分解因式.这时,可先把各分式的分母中的多项式分解因式,再确定各分式的最简公分母,最后通分.3.分式的运算(1)同分母分式的加减法法则:同分母的分式相加减,分母不变,分子相加减.(2)异分母分式的加减法法则:异分母的分式相加减,先通分,变为同分母后再加减.(3)分式的四则混合运算顺序与分数的四则运算顺序一样,先乘方,再乘除,最后加减,有括号要先算括号内的.有些题目先运用乘法分配律,再计算更简便些.4.分式方程分式方程的概念:分母中含有未知数的方程叫做分式方程.分式方程的解法:①去分母,方程两边同时乘以最简公分母,将分式方程化为整式方程;②按解整式方程的步骤求出未知数的值;③验根.5.分式方程的应用列分式方程与列整式方程解应用题一样,应仔细审题,找出反映应用题中所有数量关系的等式,恰当地设出未知数,列出方程.与整式方程不同的是求得方程的解后,应进行两次检验,一是检验是否是增根,二是检验是否符合题意.6.零指数幂与负整数指数幂零指数幂:任何不等于零的数的零次幂都等于1.即:a0=1(a≠0)负整数指数幂:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数.1nnaa-=(a≠0,n是正整数)7.科学记数法:我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤|a|<10.【教学说明】通过学生的回顾与思考,加深学生对解分式方程的步骤及解应用题的步骤的认识.三、典例精析,复习新知1.解分式方程:1122x x x-=-- 解:方程两边同乘x-2,得1=-(1-x)1=-1+x∴x=2检验:将x=2代入x-2=2-2=0∴x=2为原方程的增根.2.有一道题:“先化简,再求值:()22241244x x x x x -+÷+--其中,x=-3”. 小玲做题时把“x=-3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?解:原式计算的结果等于x 2+4,所以不论x 的值是+3还是-3结果都为13.3.一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.解:设前一小时的速度为xkm/小时,则一小时后的速度为1.5xkm/小时,由题意得:()18018021 1.53x x x --+=, 解这个方程为x=60,经检验,x=60是所列方程的根,答:前一小时的速度为60km/小时.四、复习训练,巩固提高1.用科学记数法表示下列各数:0.00004,-0.034,0.00000045,0.003009解:(1)4×10-5 (2)-3.4×10-2 (3)4.5×10-7 (4)3.009×10-32.计算(1)(3×10-8)×(4×103)(2)(2×10-3)2÷(10-3)3解:(1)1.2×10-4(2)4×1033.先化简,再求值: ()11422a a a a a -+÷--,其中a=13. 4.某车间加工1200个零件,采用了新工艺后,工效是原来的1.5倍,这样加工零件就少用10小时,采用新工艺前、后每小时分别加工多少个零件?解:设采用新工艺前每小时加工x 个零件,则采用新工艺后每小时加工1.5x 个零件.由题意得1800-1200=15x15x=600x=40(个)经检验:x=40是方程的解∴1.5x=60(个)答:采用新工艺前、后每时分别加工40个、60个零件【教学说明】让学生能从具体的情境中抽象出数量关系和变化规律,并用符号表示,发展学生的符号感.通过解决生活中的实际问题,提高分析问题和解决问题的能力.五、师生互动,课堂小结通过复习,你对本章的知识还有哪些疑惑? 课后作业1.布置作业:教材“复习题”中第3、6、7、8题.2.完成本课时对应练习.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章分式一、知识目标:1、进一步理解分式的概念,掌握分式有意义、值为零、值为正(负)的条件。

2、进一步理解并掌握分式的基本性质。

3、能灵活地运用加、减、乘、除、乘方法则和运算律正确地进行计算。

4、加深对分式方程的概念的理解和应用。

5、总结优化解分式方程的方法,进一步提高计算的能力。

6、进一步提高列分式方程解决实际问题的能力。

二、能力目标:1、进一步培养学生的运算能力及有条理地思考问题的能力。

2、熟练准确的列与解分式方程。

三、本章知识结构框图:四、知识要点———经典例题———跟踪练习16.1 分式的意义:(一)知识要点:1、判别一个式子是分式的条件:。

2、①分式有意义的条件:。

②分式无意义的条件:。

③分式值为0的条件:。

④分式值为正的条件:。

⑤分式值为负的条件:。

3、分式基本性质:4、分式的约分①定义②确定公因式的步骤5、分式的通分①定义②确定最简公分母的步骤 6、最简分式的定义 7、分式的符号法则: (二)经典例题:例1:下列式子:① a 2,②5y x +, ③a-21,④1-πx中,是分式的为 。

例2:写出分式222---x x x 有意义、无意义及值为0的条件?例3:当 时,分式52+-x x的值为正。

例4:下列等式从左到右的变形正确的是( ) A11++=a b a b Bambm ab =Cab aab =2D22ab ab =例5:将分式的分子与分母中各项系数化为整数,则b a b a 213231++= 。

例6:若把分式xyy x 2+中的x 和y 都缩小3倍,那么分式的值( )A 扩大3倍B 不变C 缩小3倍D 缩小6倍例7:把下列各式通分 (1)42-x x ,4412++-x x x (2) 221,,ba b a bb a ---16.2分式的运算: (一)知识要点:1、加、减、乘、除、乘方运算法则(1)同分母 (2)异分母 (3)乘法 (4)除法 (5)乘方2、两个规定:① ② 。

3、五条性质:① ② ③ ④ ⑤4、分式混合运算的运算顺序: 。

5、科学记数法:①较大的数 ,②较小的数 。

(二)经典例题: 例1:已知511=-yx,求分式yxy x y xy x 272-+++-的值。

例2:已知0569422=+++-b b a a ,求ba 11-的值。

例3:x 克盐溶解在a 克水中,取这种盐水m 克,其中含盐 克。

例4:已知0152=++x x ,求22-+x x 的值。

例5:使代数式4233-+÷-+x x x x 有意义的x 的值是 。

例6:已知x 是整数,且分式1222---x x x 的值是整数,求出所有符合条件的x 的值。

例7,:某项工作,甲单独做需要a 天完成,在甲做了c 天(c <a )后,剩下的工作由乙单独完成还需b 天,若开始就由甲乙共同合作,则完成这项任务需 天。

例8:(1)32000000用科学记数法表示为 。

(2)0.0000326用科学记数法表示为 。

例9:若022231,31,3,3.0⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=-=-=--d c b a ,按由大到小依次排列为 。

例10:计算 ① 41441222--÷+--a a a a a②x x x x x x -+-----212252③ 4)223(2-÷+--x x x x x x ④ )11()11(222baba-÷+⑤ 3122)x 2-(4---÷yz z xy ⑥)105()102(323---⨯⨯⨯⑦231)2008(41-+⎪⎭⎫ ⎝⎛---+- ⑧ 已知:53=b a ,求222ba bb a a b a a ---++的值。

16.3分式方程及应用: (一)知识要点:1、分式方程的意义 。

2、如何检验?3、解分式方程的一般步骤?4、列方程解应用题的一般步骤? (二)经典例题:例1:在下列方程中,关于x 的分式方程的个数有 个。

①0432212=+-x x ;②4=ax ;③4=xa ;④1392=+-x x ;⑤621=+x ;⑥211=++-ax ax例2:若关于x 的分式方程131=---xx a x 无解,求a 的值。

例3:当a 为何值时,方程()()1221221+-+=+----x x ax x x x x 的解是负数?例4:解分式方程 (1)112142-=-++-xx x ; (2)1=++-bx a ax x ()0≠+b a例5:列方程解应用题(1)一项工程要在限期内完成。

如果甲队单独做,恰好在规定日期内完成;如果乙队单独做,需要超过规定日期5天完成,如果两队合作4天后,剩下的工程由乙队单独做,正好在规定日期内完成,请问规定日期是多少天?(2)A 、B 两地相距40千米,甲骑自行车从A 地出发1小时候,乙也从A 地出发,用相当于甲的1.5倍速度追赶,当追到B 地时,甲比乙先到20分钟,求甲乙两人的速度。

(3)某项工程甲乙两个工程队合作24天可以完成,需费用120万元;若甲单独做20天后,剩下的工程由乙做,还需40天才能完成,这样需要费用110万元,问:① 甲乙两队单独完成此项工程,各需多少天? ② 甲乙两队单独完成此项工程,各需多少万元?例6:已知122432+--=--+x B x A x x x ,其中A 、B 为常数,求4A —B 的值。

16.4 分式中的规律问题(一)知识要点:对于规律性题目的解题思路与方法:1、按照顺序(数字或式子)标号序号,①、②、③、④……2、先竖看,看等号左右两边的结构,找出哪些是变化的,哪些是固定不变的。

变化的部分有什么规律,特别是和序号的关系。

(比如等差、等比、序号平方等。

)3、再横看,看变化的部分有什么规律,特别是和序号的关系。

4、根据上面探索到的规律写出答案。

(二)经典例题: 例1:观察下列关系式:()()2111211+-+=++x x x x ;()()3121321+-+=++x x x x ;()()4131431+-+=++x x x x ;……你可以归纳出的一般结论是 .(1)利用上述结论,计算:()())100)(99(1.........)3)(2(1211+++++++++x x x x x x .(2)计算:99001 (12)16121++++的值。

(3)计算:99991 (35)115131++++的值。

1、下列各式:t 1,4x ,π3+a ,ba b a -+,11+x,)(31b a -,是分式的有______ 个。

2、当x__ _时,分式325+x 有意义。

3、当x__ __时,分式912-+x x 无意义。

4、当x_____ _时,分式22+-x x 的值为0 。

5、分式22-+b b a 的值为0,则a 、b 满足条件是_____________ _______。

6、如果分式的值为负数,则x 的取值范围是 。

7、将分式的分子与分母中各项系数化为整数,则yx y x 5.121.0-+= 。

8、下列计算正确的是( ) A236x xx = B0=++yx y xCxxyx y x 12=++ D214222=xyy x9、把分式ba a-2中的a 和b 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、不能确定x211-1、一艘船顺流航行了n 千米用了m 小时,如果逆流航速是顺溜航速的qp ,那么这艘船逆流航行t 小时走了 千米。

2、已知x 为整数,且918232322-++-++x x xx 为整数,则x 的值是( )A x=0 ,B 最多2个,C 正数 ,D 最多4个 3、已知31=+-a a ,则22-+a a 等于 。

4、把下面数字表示成科学记数法的形式。

1600000= 0.00000608= 5、某工厂库存原材料x 吨,原计划每天用a 吨,若现在每天少用b 吨,则可以多用 天。

6、计算下列各题: ① xy y x 2263÷② 2224aab ba ab a b a --⋅+-③ b cc b a bb a +-+ ④ ba bba b a ÷-+∙-+2222a a-3ba 32b -a 2)(⑤ 332223)2(n m n m ---∙ ⑥ 21-25)103()103(⨯÷⨯-⑭ 12004125.02)21(032-++⨯---7、已知432z y x ==,求222zy x xz yz xy ++++的值。

8、已知:023=-b a ,求⎪⎭⎫ ⎝⎛+--÷⎪⎭⎫ ⎝⎛--+b a a a b b a aa b 11的值。

9、先将121222-+÷-+x x x x x 进行化简,然后请你在0、-1、1、2、-2这个5个数中,给x 选择一个你喜欢的数值代入,求出原式的值。

跟踪练习(三)1、下列各式中,是分式方程的是( ) A 、 5=+Y X ; B 、3252z y x -=+; C 、x1 ; D 、5=+x y2、(2012·鸡西)若关于x 的分式方程xx x m 2132=--+有增根,则m 的值为 。

3、已知关于x 的方程323-=--x m x x 的解是正数,求m 的取值范围。

4、解分式方程 (1) 2121x x x+=+ (2)4223=-+-xx x(3)1637222-=--+x xx xx ; (4)1=+-x n xm ()n m ≠5、填空:(1)一箱苹果售价a 元,箱子与苹果的总质量m kg ,箱子的质量为n kg ,则每千克苹果的售价是_________元。

(2)有两块小麦田,第一块a 公顷,每公顷收小麦x 千克,第二块b 公顷,每公顷收小麦y 千克,则这两块小麦田每公顷收小麦_________千克。

(3)列车原来的速度是a km/h,现准备把速度提高b km/h,从甲地到乙地的行驶路程为s km ,则列车提速后比提速前早到_________h 。

(4)一项工程甲单独做ah 完成,乙单独做bh 完成,甲乙两人一起完成这项工程需要的时间是_______h 。

6、一个工人生产零件,计划30天完成,若每天多生产5个,则在26天里完成且多生产10个,若设原计划每天生产x 个,则这个工人原计划每天生产多少个零件?根据题意可列方程( ) A 、2651030=+-x x B 、2651030=++x x C 、1026530+=+x x D 、31802180=--xx7、几名同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设参加旅游的学生共有x 人,则根据题意可列方程( ) A 、32180180=+-x x B 、31802180=-+xx C 、32180180=--x xD 、31802180=--xx8、某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?9、某厂第一车间加工一批毛衣,4天完成了任务的一半,这时,第二车间加入,两车间共同工作两天后就完成了任务并超额完成任务的121,求第二车间单独加工这批毛衣所用的天数。

相关文档
最新文档