数值分析6-数值积分

合集下载

积分的数值方法

积分的数值方法

b b
作为平均高度 f() 的近似值而获得的一种数值 积分方法。
中矩形公式是把 [a,b] 的中点处的函数值: a b f ( ) 2 作为平均高度f()的近似值而获得的一种数值积分 方法。 Simpson公式是以函数 f(x) 在 a, b, (a+b)/2 这三点的 函数值 f(a), f(b),
Pn ( x) f ( xk )lk ( x)
k 0 n
式中 这里
( x) lk ( x ) ( x xk )( xk ) j 0 xk x j
n j k
x xj
( x) ( x x0 )(x x1 )( x xn )
的近似值,即:
多项式Pn(x)易于求积,所以可取
b
y=f(x)
图3-1 数值积分 的几何意义
a
b
建立数值积分公式的途径比较多, 其中最常用的
有两种:
(1)由积分中值定理可知,对于连续函数f(x),在
积分区间[a,b]内存在一点ξ,使得:

因而
b
a
f ( x)dx (b a) f ( )
a, b
即所求的曲边梯形的面积恰好等于底为(b-a),高为
R( f ) f ( x) P( x)dx
b a
b
a
f ( n 1) ( ) ( x)dx (n 1)!
其中
a, b
当f(x)是次数不高于n的多项式时,有 f ( n1) ( x) 0 R ( f ) =0,求积公式(3-10)能成为准确的等式。由于 闭区间[a,b]上的连续函数可用多项式逼近,所以
x4
ex
6.40 6.389

数值分析知识点总结

数值分析知识点总结

数值分析知识点总结数值分析是计算数值解的方法和理论,它研究的是如何利用计算机对数学问题进行数值计算和数值逼近。

数值分析包括了数值方法的设计、分析和实现,以及误差分析和计算复杂性分析等方面。

下面是数值分析的一些重要知识点的总结。

1.数值算法:数值算法是解决数学问题的计算方法,它由一系列具体的计算步骤组成。

常见的数值算法有插值、数值积分、数值微分、常微分方程数值解法等。

2.数值稳定性:数值稳定性是指数值算法在计算过程中对误差的敏感程度。

一个数值算法如果对输入数据的微小扰动具有较大的响应,就称为不稳定算法;反之,如果对输入数据的微小扰动具有较小的响应,就称为稳定算法。

3.四舍五入误差:在浮点数计算中,由于计算机表示的限制,涉及舍入运算的计算可能会引入误差。

四舍五入误差是指在进行舍入运算时,取最近的浮点数近似值所引入的误差。

4.条件数:条件数是用来衡量数值问题的不稳定性的一个指标。

它描述了输入数据的微小扰动在计算结果中的放大程度。

条件数的大小决定了数值算法的数值稳定性,通常越大表示问题越不稳定。

5.插值:插值是基于已知数据点,构造插值函数来近似未知数据点的方法。

常用的插值方法有线性插值、多项式插值和样条插值等。

6. 数值积分:数值积分是用数值方法进行积分计算的一种方法。

常见的数值积分方法有梯形法则、Simpson法则和Gauss-Legendre积分法等。

7.数值微分:数值微分是通过数值方法来计算函数的导数的一种方法。

常用的数值微分方法有中心差分法和前向差分法等。

8. 常微分方程数值解法:常微分方程数值解法用于求解常微分方程的近似解。

常用的常微分方程数值解法有Euler法、Runge-Kutta法和Adams法等。

9.误差分析:误差分析是对数值算法计算结果误差的研究。

可以通过理论分析或实验方法来估计误差,并找到减小误差的方法。

10.计算复杂性分析:计算复杂性分析是对数值算法运行时间和计算资源的需求进行评估的方法。

《数值分析》课程教案

《数值分析》课程教案

《数值分析》课程教案数值分析课程教案一、课程介绍本课程旨在介绍数值分析的基本概念、方法和技巧,以及其在科学计算和工程应用中的实际应用。

通过本课程的研究,学生将了解和掌握数值分析的基本原理和技术,以及解决实际问题的实用方法。

二、教学目标- 了解数值分析的基本概念和发展历程- 掌握数值计算的基本方法和技巧- 理解数值算法的稳定性和收敛性- 能够利用数值分析方法解决实际问题三、教学内容1. 数值计算的基本概念和方法- 数值计算的历史和发展- 数值计算的误差与精度- 数值计算的舍入误差与截断误差- 数值计算的有效数字和有效位数2. 插值与逼近- 插值多项式和插值方法- 最小二乘逼近和曲线拟合3. 数值微积分- 数值积分的基本原理和方法- 数值求解常微分方程的方法4. 线性方程组的数值解法- 直接解法和迭代解法- 线性方程组的稳定性和收敛性5. 非线性方程的数值解法- 迭代法和牛顿法- 非线性方程的稳定性和收敛性6. 数值特征值问题- 特征值和特征向量的基本概念- 幂迭代法和QR方法7. 数值积分与数值微分- 数值积分的基本原理和方法- 数值微分的基本原理和方法四、教学方法1. 理论讲授:通过课堂授课,讲解数值分析的基本概念、原理和方法。

2. 上机实践:通过实际的数值计算和编程实践,巩固和应用所学的数值分析知识。

3. 课堂讨论:组织学生进行课堂讨论,加深对数值分析问题的理解和思考能力。

五、考核方式1. 平时表现:包括课堂参与和作业完成情况。

2. 期中考试:对学生对于数值分析概念、原理和方法的理解程度进行考查。

3. 期末项目:要求学生通过上机实验和编程实践,解决一个实际问题,并进行分析和报告。

六、参考教材1. 《数值分析》(第三版),贾岩. 高等教育出版社,2020年。

2. 《数值计算方法》,李刚. 清华大学出版社,2018年。

以上是《数值分析》课程教案的概要内容。

通过本课程的研究,学生将能够掌握数值分析的基本原理和技术,并应用于实际问题的解决中。

数值方法中的数值微分和数值积分

数值方法中的数值微分和数值积分

泰勒展开法:将函数 在某点处展开成泰勒 级数,然后利用级数 的各项系数计算数值 微分
牛顿插值法:利用牛 顿插值多项式计算数 值微分,其思想是通 过构造插值多项式ห้องสมุดไป่ตู้ 逼近导数函数
数值微分的误差分析
数值微分的基本概念
数值微分误差的来源
数值微分误差的估计
减小误差的方法
数值微分的应用
计算物理量的变化 率
应用领域的比较
数值微分的应用领域:主要应用于求解微分方程的近似解,例如在物理学、 工程学和经济学等领域。
数值积分的应用领域:主要应用于求解定积分、不定积分等积分问题,例 如在计算面积、体积、物理实验数据处理等领域。
比较:数值微分和数值积分在应用领域上存在差异,但两者都是数值计算 中的重要工具,可以相互补充。
矩形法:将积分区 间划分为若干个小 的矩形,用矩形面 积的和近似积分
梯形法:将积分区 间划分为若干个小 的梯形,用梯形面 积的和近似积分
辛普森法:将积分 区间划分为若干个 等分的子区间,用 抛物线面积的和近 似积分
牛顿-莱布尼茨法 :利用定积分的定 义和牛顿-莱布尼 茨公式,通过求和 的方式计算定积分
预测函数的变化趋 势
优化问题中的梯度 计算
机器学习中的梯度 下降算法
Part Three
数值积分
数值积分的概念
数值积分定义:用数值方法近似计算定积分的值 常用方法:矩形法、梯形法、辛普森法等 近似误差:与使用的数值方法有关,通常误差随迭代次数增加而减小 应用领域:科学计算、工程、数学建模等
数值积分的计算方法
数值积分的误差分析
算法稳定性:数值积分方法的稳定性和误差控制 步长选择:步长对误差的影响和最佳步长选择 收敛性:数值积分方法的收敛速度和误差收敛性 误差来源:数值积分中误差的来源和减小误差的方法

数值分析MATLAB编程——数值积分法

数值分析MATLAB编程——数值积分法

数值分析MATLAB编程——数值积分法1、调用函数--f.Mfunction y=f(x)%------------------------------------------------------------函数1 y=sqrt(4-sin(x)*sin(x));%------------------------------------------------------------函数2 %y=sin(x)/x;%if x==0% y=0;%end%------------------------------------------------------------函数3 %y=exp(x)/(4+x*x);%------------------------------------------------------------函数4 %y=(log(1+x))/(1+x*x);2、复合梯形公式--tixing.M%复合梯形公式clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');h=(b-a)/n;x=a:h:b;T=0;for k=1:n;T=0.5*h*(f(x(k))+f(x(k+1)))+T;endT=vpa(T,8)3、复合Simpson公式--simpson.M%复合Simpson公式clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');h=(b-a)/n;x=a:h:b;S=0;for k=1:n;xx=(x(k)+x(k+1))/2;S=(1/6)*h*(f(x(k))+4*f(xx)+f(x(k+1)))+S;endS=vpa(S,8)4、Romberg算法--romberg.M%Romberg算法clear alla=input('请输入积分下限:');b=input('请输入积分上限:');n=input('区间n等分:');num=0:n;R=[num'];h=b-a;T=h*(f(a)+f(b))/2;t(1)=T;for i=2:n+1;u=h/2;H=0;x=a+u;while x<b;H=H+f(x);x=x+h;endt(i)=(T+h*H)/2;T=t(i);h=u;endR=[R,t'];for i=2:n+1for j=n+1:-1:1if j>=it(j)=(4^(i-1)*t(j)-t(j-1))/(4^(i-1)-1);elset(j)=0;endendR=[R,t'];endR=vpa(R,8)R(n,n)5、变步长算法(以复化梯形公式为例)--tixing2.M%复合梯形公式,确定最佳步长format longclear alla=input('请输入积分下限:');b=input('请输入积分上限:');eps=input('请输入误差:');k=1;T1=(b-a)*(f(a)+f(b))/2;T2=(T1+(b-a)*(f((a+b)/2)))/2; while abs((T1-T2)/3)>=epsM=0;n=2^k;h=(b-a)/n;T1=T2;x=a:h:b;for i=1:n;xx=(x(i)+x(i+1))/2;M=M+f(xx);endT2=(T1+h*M)/2;k=k+1;endT=vpa(T2,8)n=2^k。

数值分析第四版第四章数值积分与数值微分精品PPT课件

数值分析第四版第四章数值积分与数值微分精品PPT课件

b
n
b
R( f ) f (x)dx a
在a,b内存在一点 ,使得
b
I ( f ) f (x)dx (b a) f ( )
a
f ?
称 f 为 f x 在区间 a,b上的平均高度.
3、求积公式的构造
➢ 若简单选取区间端点或中点的函数值作为平均高度,则 可得一点求积公式如下:
左矩形公式: I f f ab a
中矩形公式:Biblioteka nAk b ak 0
n
k 0
Ak xk
1 2
b2 a2
n
k 0
Ak
xk m
1 m 1
bm1 am1
§2 插值型求积公式
一、定义
在积分区间 a,b上,取 n 1个节点 xi , i 0,1, 2,..., n
作f x 的 n 次代数插值多项式(拉格朗日插值公式):
2 式(两点求积公式)
I f f a f b b a
2
y
f b
f a Oa
f x
bx

若取三点,a,b, c
ab 2
并令 f
f
a4 f
c
f
b
6
则可得Simpson公式(三点求积公式)
I f b a f a 4 f c f b
6
➢ 一般地 ,取区间 a,b 内 n 1 个点xi,i 0,1, 2,..., n
2. 有些被积函数其原函数虽然可以用初等函数表示,但表达 式相当复杂,计算极不方便.
例如函数:
x2 2x2 3
并不复杂,但它的原函数却十分复杂:
1 x 2 2x 2 3 3 x 2x 2 3 9 ln( 2 x 2x 2 3 )

数值微分与数值积分

数值微分与数值积分

数值微分与数值积分数值微分和数值积分是数值分析中两个重要的概念和技术。

它们在数学与工程领域中都有着广泛的应用。

本文将介绍数值微分和数值积分的概念、原理和应用。

1. 数值微分数值微分是指通过数值计算方法来逼近函数的导数。

在实际计算中,我们常常需要求解某一函数在特定点的导数值,这时数值微分就能派上用场了。

一种常用的数值微分方法是有限差分法。

它基于函数在离给定点很近的两个点上的函数值来逼近导数。

我们可以通过选取合适的差分间距h来求得函数在该点的导数值。

有限差分法的一般形式可以表示为:f'(x) ≈ (f(x+h) - f(x))/h其中,f'(x)是函数f(x)在点x处的导数值,h是差分间距。

数值微分方法有很多种,比如前向差分、后向差分和中心差分等。

根据实际需求和计算精度的要求,我们可以选择合适的数值微分方法来进行计算。

2. 数值积分数值积分是指通过数值计算方法来近似计算函数的定积分。

在实际问题中,我们经常需要求解函数在某一区间上的积分值,而数值积分可以提供一个快速而准确的近似。

一种常见的数值积分方法是复合梯形法。

它将积分区间分割成若干个小区间,然后在每个小区间上应用梯形面积的计算公式。

最后将所有小区间上的梯形面积相加,即可得到整个积分区间上的积分值。

复合梯形法的一般形式可以表示为:∫[a, b] f(x)dx ≈ h/2 * [f(a) + 2∑(i=1 to n-1)f(x_i) + f(b)]其中,[a, b]是积分区间,h是分割的小区间宽度,n是划分的小区间个数,x_i表示第i个小区间的起始点。

除了复合梯形法,还有其他常用的数值积分方法,比如复合辛普森法、龙贝格积分法等。

根据被积函数的性质和计算精度要求,我们可以选择合适的数值积分方法来进行计算。

3. 数值微分和数值积分的应用数值微分和数值积分在科学研究和工程实践中具有广泛的应用。

以下是一些常见的应用领域:3.1 物理学在物理学中,我们经常需要对物体的位置、速度和加速度进行计算。

数值分析-高斯求积分

数值分析-高斯求积分

p( x)ωn ( x)dx
Ak p( xk )ωn ( xk ) 0
a
k1
即ωn( x)与任意次数不超过n 1的多项式p( x)
在[a, b]上正交
充分性:如果w(x)与任意次数不超过n-1的多项式正 交,则其零点必为Gauss点
设f ( x)为任意次数不超过2n 1次的多项式,
用n ( x)除f ( x)得
3.6 高斯(Gauss)型求积公式
主要内容
• 具有(n+1)个求积节点的Newton-Cotes公式,
b
n
f ( x)dx
Ak f ( xk )
a
k1
至少具有n阶代数精度
•在确定求积公式求积系数Ak的过程中限定求积节点 为等分节点,简化了处理过程,但也降低了求积公 式的代数精度
去掉求积节点 为等分节点的限制条件,会有什么 结果??
1v( x)du(n 1)( x)
-1
1
1
u(n 1)( x)v ( x)d x
-1
v(1)u(n 1) (1) v(1)u(n 1) (1)
1
u(n 1) ( x)v ( x)d x
-1
v (1)u(n 2) (1)
1
u(n 2) ( x)v ( x)d x
-1
v(1)u(n 1) (1) v (1)u(n 2) (1)
a
证明: 必要性: 若x1, x2 ,, xn是高斯点,则求积公式
b
f ( x)dx
a
n
Ak f ( xk )具有2n 1次代数精度
k1
作多项式, ωn( x) ( x x1)( x x2 ) ( x xn ), 设p( x)为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知n+1个点以及在这些点上的函数值 求解此函数在某个区间的积分值 如何衡量这个公式的好坏?
代数精度
如果对于所有次数不超过 m 的多项式 f (x) ,公式
定义
b
n
f ( x)dx
a
Ak f ( xk )
k0
精确成立,但对于某一次数为 m+1 的多项式不精确成
立,则称该求积公式的代数精度为 m 次。
第二章 数值积分
数值积分引言
计算定积分
I[ f ]
b
f ( x) dx
a
微积分基本公式:ab f ( x)dx F (b) F (a)
但是在许多实际计算问题中
(1) f (x) 表达式较复杂,原函数难求!甚至有时不能用初 等函数表示。如 f ( x) sin x , f ( x) ex2
如何求解求积公式
思考题
如果求积节点并没有确定,则待定参数有几个? 有2n+2个
能够达到的代数精度是多少? 2n+1个
此时的方程为非线性方程
插值型求积公式
基本思想
由已知的n+1个点以及在这n+1个点上的函数值, 作拉格朗日插值,得到pn(x)

b
b
bn
a f ( x )dx a pn ( x )dx a
a
6
2
辛甫生 公式
一般求积公式
更一般地,可以用 f (x) 在 [a, b] 上的一些离散点
上的值加权平均作为 f () 的近似值,从而构造出
b
n
f (x)dx
a
Ak f (xk )
求积节点
k 0
求积系数
机械求积法:求积系数仅仅与结点xk的选取有关,而不 依赖于被积函数f(x)的具体形式
机械求积的问题描述
lk ( x ) y k dx
k 0
n
b
a yk lk ( x )dx
k 0
n
b
yk a lk ( x )dx
k 0
插值型求积公式
设 f (x) 在节点
上的函数
值为 f (xi),作 n 次拉格朗日插值多项式
n
于是有
Pn ( x) li ( x) f ( xi ) i0
要验证一个求积公式具有 m 次代数精度,只需验证
对 f (x)=1, x, x2, … , xm 精确成立,但对 f (x)=xm+1 不
精确成立即可,即:
n
k
0
n
k0
Ak Ak
xkk x m 1
k
b a
xk dx bk1 ak1 ( k =
k 1
b x m1 dx bm2 a m2
b
f ( x)dx A0 f (a) A1 f (b)
(5)
a
式中含有两个待定参数 A0,A1, 令它对于 f( x)=1,f( x)= x 准确成立,有
如何求解求积公式
A0
A1
ba
A0a
A1b
1 (b2 2
a2)
解之得 A0=A1=(b-a)/2.这说明,形如(5)且 具有一次代数精度的求积公式必为梯形公式 (1).这一论断从几何角度来看是十分明显的.
举例(一)
例:试确定系数 i ,使得下面的求积公式具有尽可能
高的代数精度,并求出此求积公式的代数精度。
1
解:将
f
f(
(x)=1 1,
x)dx 0 f (1) 1 f (0) 2 f (1)
x, x2 代入求积公式,使其精确成立得
0 0
1
2 2
( b1 (b2
a1 a2
) )
/ /
a
m2
0,
1,

,
m
)
证明两种说法的等价性
已知:求积公式对于xk(k=0,1,…,m)均能准确成立 求证:求积公式对于对于次数不超过m的多项式均能准确成立 证明:
由已知条件知
b
f ( x)dx
a
b x k dx
a
n
Aj f ( x j )
n
Aj
x
k j
j0
j0
(k=0,1,…,m)

数值求积的基本思想
✓ 分别用 f (a),f (b) 和 f (a b) 2 近似 f () 可得
b
a f ( x)dx (b a) f (a)
b
a f ( x)dx (b a) f (b)
左矩形公式 右矩形公式
b f ( x)dx (b a) f a b
a
2
中矩形公式
求积公式的基本思想
1 2
2 0
0
2 (b3 a3 ) / 3 2 / 3
解得 0 =1/3, 1 =4/3, 2 =1/3,所以求积公式为
1
f ( x)dx [ f (1) 4 f (0) f (1) ] 3 1
易验证该公式对 f (x)=x3 也精确成立,但对f (x)=x4 不精
确成立,所以此求积公式具有 3 次代数精度。
矩形和梯形公式的代数精度
容易验证:
✓左矩形公式 和 右矩形公式 具有 零次 代数精度 ✓中矩形公式 和 梯形公式 具有 一次 代数精度 ✓辛甫生公式具有 三次 代数精度
特别地,具有 m ( 0 ) 次代数精度的求积公式满足:
n
Ai b a,
i0
如何求解求积公式
我们可以用代数精度作为标准来构造求积公式. 譬如两点公式
✓ 若用 f (a) 和 f (b) 的算术平均值近似 f (),则可得
b f ( x)dx (b a) [ f (a) f (b)]
a
2
梯形公式
✓ 若用 f (a) , f ([a+b]/2)和 f (b) 的加权平均值近似 f (),
则可得
b f ( x)dx (b a) [ f (a) 4 f ( a b ) f (b)]
b
a (a0
a1x
am xm )dx
a0
b
a 1dx a1
b a
x
dx
am
b xmdx
a
n
n
n
a0 Aj 1a1 Aj x j am Aj x j m
j0
j0
j0
n
Aj (a0 a1x j am x j m ) j0
n
Aj f (x j ) j0
即:求积公式对于对于次数不超过m的多项式均能准确成立
x
(2) f (x) 表达式未知,只有通过测量或实验得来的数据表。
此时需要利用数值方法来近似计算定积分。
数值积分的几何意义
数值求积的基本思想
依据积分中值定理,对于连续函数 f(x),在[a,b]内 存在一点ξ,成立
b
a f ( x)dx (b a所 求曲边梯形的面积 I.问题在于点 ξ 的具体位置一般是 不知道的,因而难以准确地算出 f(ξ)的值.我们称 f ( ξ)为区间[ a,b]上的平均高度.这样,只要对平 均高度 f(ξ)提供一种算法,相应地便获得一种数值 求积方法.
相关文档
最新文档