椭圆与双曲线二级结论

合集下载

圆锥曲线常用的二级结论

圆锥曲线常用的二级结论

圆锥曲线常用的二级结论椭圆与双曲线对偶结论椭圆双曲线标准方程()222210x ya ba b+=>>焦点()()12,0,,0F c F c-()222210,0x ya ba b-=>>焦点()()12,0,,0F c F c-焦半径1020,PF a ex PF a ex=+=-e为离心率,x为点P的横坐标.1020,PF ex a PF ex a=+=-e为离心率,x为点P的横坐标.焦半径范围a c PF a c-≤≤+P为椭圆上一点,F为焦点.PF a c≥-P为双曲线上一点,F为焦点.通径过焦点与长轴垂直的弦称为通径.通径长为22ba过焦点与实轴垂直的弦称为通径.通径长为22ba如图,直线l过焦点1F与椭圆相交于,A B两点.则2ABF△的周长为4a.(即224F A F B AB a++=)如图,直线l过焦点1F与双曲线相交于,A B两点.则224F A F B AB a+-=.焦点弦倾斜角为α的直线l过焦点F与椭圆相交于,A B两点.焦点弦长()222222sinabABa b bα=-+.最长焦点弦为长轴,最短焦点弦为通径.倾斜角为α的直线l过焦点F与双曲线相交于,A B两点.焦点弦长()222222sinabABa b bα=+-.AF与BF 数量关系直线l过焦点F与椭圆相交于,A B两点,则2112aAF BF b+=.直线l过焦点F与双曲线相交于,A B两点,则2112aAF BF b+=.已知点P是椭圆上一点,O坐标原点,则b PO a≤≤.已知点P是双曲线上一点,O坐标原点,则PO a≥.焦三角形如图,P是椭圆上异于长轴端点的一点,已知12F PFθ∠=,12PF Fα∠=,21PF Fβ∠=,则(1)122tan2PF FS bθ=△;(2)离心率sinsin sineθαβ=+.如图,P是双曲线上异于实轴端点的一点,已知12F PFθ∠=,12PF Fα∠=,21PF Fβ∠=,则(1)1222cot2tan2PF FbS bθθ==△;(2)离心率sinsin sineθαβ=-.垂径定理如图,已知直线l与椭圆相交于,A B两点,点M为AB的中点,O为原点,则22OM ABbk ka=-.如图,已知直线l与双曲线相交于,A B两点,点M为AB的中点,O为原点,则22OM ABbk ka=.(注:直线l与双曲线的渐近线相交于,A B两点,其他条件不变,结论依然成立)周角定理如图,已知点,A B椭圆长轴端点(短轴端点),P是椭圆上异于,A B的一点,则22PA PBbk ka=-.推广:如图,已知点,A B是椭圆上关于原点对称的两点,P是椭圆上异于,A B的一点,若直线,PA PB的斜率存在且不为零,22PA PBbk ka=-如图,已知点,A B双曲线实轴端点,P是双曲线上异于,A B的一点,则22PA PBbk ka=.推广:如图,已知点,A B是双曲线上关于原点对称的两点,P是双曲线上异于,A B的一点,若直线,PA PB的斜率存在且不为零,22PA PBbk ka=.直线l过焦点(),0F c与椭圆相交于,A B两点,点2,0aPc⎛⎫⎪⎝⎭,则APF BPF∠=∠(即0PA PBk k+=).直线l过焦点(),0F c与双曲线相交于,A B两点,点2,0aPc⎛⎫⎪⎝⎭,则APF BPF∠=∠(即0PA PBk k+=).切线方程已知点()00,P x y是椭圆上一点,则椭圆在点P处的切线方程为00221x x y ya b+=.已知点()00,P x y是双曲线上一点,则双曲线在点P处的切线方程为00221x x y ya b-=.1.过定点(定点在双曲线外且不在渐近线上)的直线与双曲线交点个数问题:设斜率为k 的直线l 过定点()()0,0P t t ≠,双曲线方程为()222210,0x y a b a b-=>>,过点P 与双曲线相切时的斜率为0k . (1)当0bk a≤<时,直线l 与双曲线有两个交点,且这两交点在双曲线的两支上; (2)当bk a=时,直线l 与双曲线只有一个交点; (3)当0bk k a<<时,直线l 与双曲线有两个交点,且这两交点在双曲线的同一支上; (4)当0k k =时,直线l 与双曲线只有一个交点; (5)当0k k >时,直线l 与双曲线没有交点.2.如图,(),0F c 是双曲线()222210,0x y a b a b-=>>的焦点,过点F 作FH 垂直双曲线的其中一条渐近线,垂足为H ,O 为原点,则,OH a FH b ==.3.点P 是双曲线()222210,0x y a b a b-=>>上任意一点,则点P 到双曲线的渐近线的距离之积为定值2222a b a b +.4.点P 是双曲线()222210,0x y a b a b-=>>上任意一点,过点P 作双曲线的渐近线的平行线分别与渐近线相交于,M N 两点,O 为原点,则平行四边形OMPN 的面积为定值2ab.如图,抛物线方程为()20y px p =>,准线2p x =-与x 轴相交于点P ,过焦点,02p F ⎛⎫⎪⎝⎭的直线l 与抛物线相交于()11,A x y ,()22,B x y 两点,O 为原点,直线l 的倾斜角为α.1.212212,4.p x x y y p ⎧=⎪⎨⎪=-⎩2.焦半径:12p AF x =+,22pBF x =+,12AB x x p =++. 3.焦点弦:22sin p AB α=. 4.,AF BF 的数量关系:112AF BF p +=,22sin p AF BF α⋅=. 5.三角形AOB 的面积22sin AOBp S α=△. 6.以焦点弦AB 为直径的圆与准线相切;以焦半径AF 为直径的圆与y 轴相切. 7.直线,PA PB 的斜率之和为零(0PA PB k k +=),即APF BPF ∠=∠. 8.点,,A O N 三点共线;点,,B O M 三点共线.9.如图,点,A B 是抛物线()20y px p =>,O 为原点,若90AOB ∠=,则直线AB 过定点()2,0p .。

微重点 椭圆、双曲线的二级结论的应用

微重点 椭圆、双曲线的二级结论的应用

微重点 椭圆、双曲线的二级结论的应用椭圆、双曲线是高中数学的重要内容之一,知识的综合性较强,因而解题时需要运用多种基础知识,采用多种数学手段,熟记各种定义、基本公式.法则固然很重要,但要做到迅速、准确地解题,还要掌握一些常用结论,正确灵活地运用这些结论,一些复杂的问题便能迎刃而解.考点一 焦点三角形核心提炼焦点三角形的面积公式:P 为椭圆(或双曲线)上异于长轴端点的一点,F 1,F 2且∠F 1PF 2=θ, 则椭圆中12PF F S △=b 2·tan θ2,双曲线中12PF F S △=b 2tan θ2.例1 (2022·临川模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),其左、右焦点分别为F 1,F 2,其离心率为e =12,点P 为该椭圆上一点,且满足∠F 1PF 2=π3,已知△F 1PF 2的内切圆的面积为3π,则该椭圆的长轴长为( ) A .2 B .4 C .6 D .12 答案 D解析 由e =12,得c a =12,即a =2c .①设△F 1PF 2的内切圆的半径为r , 因为△F 1PF 2的内切圆的面积为3π, 所以πr 2=3π,解得r =3(舍负),在△F 1PF 2中,根据椭圆的定义及焦点三角形的面积公式, 知12F PF S △=b 2tan ∠F 1PF 22=12r (2a +2c ),即33b 2=3(a +c ),② 又a 2=b 2+c 2,③联立①②③得c =3,a =6,b =33, 所以该椭圆的长轴长为2a =2×6=12. 易错提醒 (1)要注意公式中θ的含义.(2)椭圆、双曲线的面积公式不一样,易混淆.跟踪演练1 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 设双曲线C 2的方程为x 2a 22-y 2b 22=1,则有a 22+b 22=c 22=c 21=4-1=3.又四边形AF 1BF 2为矩形, 所以△AF 1F 2的面积为b 21tan 45°=b 22tan 45°, 即b 22=b 21=1.所以a 22=c 22-b 22=3-1=2.故双曲线的离心率e =c 2a 2=32=62. 考点二 焦半径的数量关系核心提炼焦半径的数量关系式:直线l 过焦点F 与椭圆相交于A ,B 两点,则1|AF |+1|BF |=2ab 2,同理,双曲线中,1|AF |+1|BF |=2ab 2.例2 已知双曲线C 的左、右焦点分别为F 1(-7,0),F 2(7,0),过F 2的直线与C 的右支交于A ,B 两点.若AF 2--→=2F 2B --→,|AB |=|F 1B |,则双曲线C 的方程为________. 答案 x 23-y 24=1解析 如图,令|F 2B |=t ,则|AF 2|=2t ,∴|AB |=3t ,|F 1B |=3t , 又1|AF 2|+1|BF 2|=2a b2, ∴12t +1t =2a b 2, 即32t =2a b2, 又|F 1B |-|F 2B |=2a ,∴3t -t =2a ,∴2t =2a ,∴t =a , ∴32a =2ab 2,即3b 2=4a 2, 又c =7,∴a 2+b 2=7, 解得b 2=4,a 2=3,故双曲线C 的方程为x 23-y 24=1.易错提醒 公式的前提是直线AB 过焦点F ,焦点F 不在直线AB 上时,公式不成立. 跟踪演练2 已知椭圆C :x 216+y 24=1,过右焦点F 2的直线交椭圆于A ,B 两点,且|AF 2|=2,则|AB |=______,cos ∠F 1AB =________. 答案 83 -13解析 由椭圆方程知a =4,b =2,|AF 2|=2,又1|AF 2|+1|BF 2|=2a b2, 即12+1|BF 2|=84, 解得|BF 2|=23,∴|AB |=|AF 2|+|BF 2|=83,由椭圆定义知|AF 1|=8-2=6,|BF 1|=8-23=223,在△AF 1B 中,由余弦定理,得 cos ∠F 1AB =62+⎝⎛⎭⎫832-⎝⎛⎭⎫22322×6×83=-13.考点三 周角定理核心提炼周角定理:已知点P 为椭圆(或双曲线)上异于顶点的任一点,A ,B 为长轴(或实轴)端点,则椭圆中k P A ·k PB =-b 2a 2,双曲线中k P A ·k PB =b 2a2.例3 已知椭圆C :x 22+y 2=1的左、右两个顶点为A ,B ,点M 1,M 2,…,M 5是AB 的六等分点,分别过这五点作斜率为k (k ≠0)的一组平行线,交椭圆C 于P 1,P 2,…,P 10,则直线AP 1,AP 2,…,AP 10,这10条直线的斜率乘积为( ) A .-116B .-132C.164D.11 024答案 B解析 由椭圆的性质可得11·AP BP k k=22·AP BP k k =-b 2a2=-12.由椭圆的对称性可得11010111012·.BP AP BP AP AP AP k k k k k k =-=,=,同理可得293847561····=.2AP AP AP AP AP AP AP AP k k k k k k k k -===∴直线AP 1,AP 2,…,AP 10这10条直线的斜率乘积为⎝⎛⎭⎫-125=-132. 规律方法 周角定理的推广:A ,B 两点为椭圆(双曲线)上关于原点对称的两点,P 为椭圆(双曲线)上异于A ,B 的任一点,则椭圆中k P A ·k PB =-b 2a 2,双曲线中k P A ·k PB =b 2a2.跟踪演练3 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上、下顶点分别为A ,B ,直线AF 2与该椭圆交于A ,M 两点,若∠F 1AF 2=90°,则直线BM 的斜率为( ) A.13 B.12 C .-1 D .-12 答案 B解析 ∵∠F 1AF 2=90°,∴△F 1AF 2为等腰直角三角形,∴b =c , ∴a 2=2b 2=2c 2, ∴b 2a 2=12, 且∠AF 2O =45°,∴k MA =-1, 又k MA ·k MB =-b 2a 2=-12,∴k MB =12.考点四 过圆锥曲线上点的切线方程核心提炼已知点P (x 0,y 0)为椭圆(或双曲线)上任一点,则过点P 与圆锥曲线相切的切线方程为椭圆中x 0xa 2+y 0y b 2=1,双曲线中x 0x a 2-y 0y b2=1.例4 已知椭圆C :x 24+y 2=1.如图,设直线l 与圆O :x 2+y 2=R 2(1<R <2)相切于点A ,与椭圆C 相切于点B ,则|AB |的最大值为________.答案 1解析 连接OA ,OB ,如图所示.设B (x 0,y 0),所以过点B 与椭圆相切的直线方程为x 0x4+y 0y =1,即x 0x +4y 0y -4=0, 又R 2=|OA |2=16x 20+16y 20, R 为圆半径,R ∈(1,2),|AB |2=|OB |2-R 2=x 20+y 20-16x 20+16y 20, 又x 24+y 20=1, 所以x 20=4-4y 20, 所以|AB |2=4-3y 20-43y 20+1=5-(3y 20+1)-43y 20+1≤5-24=1, 当且仅当3y 20+1=43y 20+1, 即y 20=13,x 20=83时,等号成立, 所以|AB |max =1, 此时R 2=16x 20+16y 20=2, 即R =2∈(1,2), 故当R =2时,|AB |max =1.规律方法 (1)该切线方程的前提是点P 在圆锥曲线上.(2)类比可得过圆(x -a )2+(y -b )2上一点P (x 0,y 0)的切线方程为(x 0-a )(x -a )+(y 0-b )·(y -b )=1.跟踪演练4 已知F 为椭圆C :x 23+y 22=1的右焦点,点A 是直线x =3上的动点,过点A 作椭圆C 的切线AM ,AN ,切点分别为M ,N ,则|MF |+|NF |-|MN |的值为( ) A .3 B .2 C .1 D .0 答案 D解析 由已知可得F (1,0), 设M (x 1,y 1),N (x 2,y 2),A (3,t )则切线AM ,AN 的方程分别为x 1x 3+y 1y2=1,x 2x 3+y 2y2=1, 因为切线AM ,AN 过点A (3,t ), 所以x 1+ty 12=1,x 2+ty 22=1,所以直线MN 的方程为x +ty2=1,因为F (1,0), 所以1+t ×02=1,所以点F (1,0)在直线MN 上, 所以M ,N ,F 三点共线, 所以|MF |+|NF |-|MN |=0.专题强化练1.过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上一点P 作双曲线C 的切线l ,若直线OP 与直线l 的斜率均存在,且斜率之积为25,则双曲线C 的离心率为( )A.295B.303C.355D.305答案 C解析 设P (x 0,y 0),由于双曲线C 在点P (x 0,y 0)处的切线方程为xx 0a 2-yy 0b 2=1,故切线l 的斜率k =b 2x 0a 2y 0,因为k ·k OP =25,则b 2x 0a 2y 0·y 0x 0=25,则b 2a 2=25, 即双曲线C 的离心率e =1+25=355. 2.(2022·保定模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l :y =kx (k ≠0)与C 交于M ,N 两点,且四边形MF 1NF 2的面积为8a 2.若点M 关于点F 2的对称点为M ′,且|M ′N |=|MN |,则C 的离心率是( ) A. 3 B. 5 C .3 D .5 答案 B解析 如图,由对称性知MN 与F 1F 2互相平分,∴四边形MF 2NF 1为平行四边形, ∵F 2为MM ′的中点,且|MN |=|M ′N |, ∴NF 2⊥MF 2,∴四边形MF 2NF 1为矩形, ∴1224NF F S a △=,又12NF F S △=b 2tan π4=4a 2,即b 2=4a 2,∴c 2-a 2=4a 2,即c 2=5a 2,即e =ca= 5.3.椭圆C :x 29+y 24=1的左、右焦点分别为F 1,F 2,过F 2作直线交椭圆于A ,B 两点,且AF 2--→=2F 2B --→,则△AF 1B 的外接圆面积为( ) A.5π2 B .4π C .9π D.25π4答案 D解析 如图,a =3,b =2,c =5,令|F 2B |=t ,则|AF 2|=2t , ∵1|AF 2|+1|BF 2|=2a b2, ∴1t +12t =32⇒t =1, ∴|BF 2|=1,|AF 2|=2,由椭圆定义知|BF 1|=5,|AF 1|=4,∴△ABF 1中,|AB |=3,|AF 1|=4,|BF 1|=5, ∴AF 1⊥AB ,∴△ABF 1外接圆半径R =|BF 1|2=52,其面积为25π4.4.(2022·石家庄模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),过原点O 的直线交C 于A ,B两点(点B 在右支上),双曲线右支上一点P (异于点B )满足BA →·BP →=0,直线P A 交x 轴于点D ,若∠ADO =∠AOD ,则双曲线C 的离心率为( ) A. 2 B .2 C. 3 D .3 答案 A 解析 如图,∵BA →·BP →=0,∴BA ⊥BP ,令k AB =k , ∵∠ADO =∠AOD , ∴k AP =-k AB =-k , 又BA ⊥BP ,∴k PB =-1k ,依题意知k PB ·k P A =b 2a 2,∴-1k ·(-k )=b 2a 2,∴b 2a2=1,即e = 2. 5.(多选)(2022·济宁模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是C 上异于A 1,A 2的一点,则下列结论正确的是( )A .若C 的离心率为12,则直线P A 1与P A 2的斜率之积为-43B .若PF 1⊥PF 2,则△PF 1F 2的面积为b 2C .若C 上存在四个点P 使得PF 1⊥PF 2,则C 的离心率的取值范围是⎝⎛⎭⎫0,22 D .若|PF 1|≤2b 恒成立,则C 的离心率的取值范围是⎝⎛⎦⎤0,35 答案 BD解析 设P (x 0,y 0),所以x 20a 2+y 20b2=1,∵e =c a =12,∴a =2c ,∴a 2=43b 2,∴12·PA PA k k =-b 2a 2=-34, ∴选项A 错误;若PF 1⊥PF 2,△PF 1F 2的面积为b 2tan π4=b 2,∴选项B 正确;若C 上存在四个点P 使得PF 1⊥PF 2,即C 上存在四个点P 使得△PF 1F 2的面积为b 2, ∴12·2c ·b >b 2,∴c >b ,∴c 2>a 2-c 2, ∴e ∈⎝⎛⎭⎫22,1,∴选项C 错误;若|PF 1|≤2b 恒成立,∴a +c ≤2b , ∴a 2+c 2+2ac ≤4b 2=4(a 2-c 2), ∴5e 2+2e -3≤0,∴0<e ≤35,∴选项D 正确.6.(多选)(2022·广州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,P 为双曲线的左支上一点,且直线P A 1与P A 2的斜率之积等于3,则下列说法正确的是( ) A .双曲线C 的离心率为2B .若PF 1⊥PF 2,且12PF F S △=3,则a =2C .以线段PF 1,A 1A 2为直径的两个圆外切D .若点P 在第二象限,则∠PF 1A 2=2∠P A 2F 1 答案 ACD解析 对于A ,设P (x ,y ),则y 2=b 2⎝⎛⎭⎫x 2a 2-1,因为A 1(-a ,0),A 2(a ,0),所以12·PA PA k k =b 2a 2=3, 得e =1+b 2a2=2,故A 正确; 对于B ,因为c a=2, 所以c =2a ,根据双曲线的定义可得|PF 2|-|PF 1|=2a ,又因为PF 1⊥PF 2,所以△PF 1F 2的面积为b 2tan π4=b 2=3, 又b 2a2=3,所以a =1,故B 错误; 对于C ,设PF 1的中点为O 1,O 为原点.因为OO 1为△PF 1F 2的中位线,所以|OO 1|=12|PF 2|=12(|PF 1|+2a )=12|PF 1|+a , 则可知以线段PF 1,A 1A 2为直径的两个圆外切,故C 正确;对于D ,设P (x 0,y 0),则x 0<-a ,y 0>0.因为e =2,所以c =2a ,b =3a ,则渐近线方程为y =±3x ,所以∠P A 2F 1∈⎝⎛⎭⎫0,π3, ∠PF 1A 2∈⎝⎛⎭⎫0,2π3. 又tan ∠PF 1A 2=y 0x 0+c =y 0x 0+2a, tan ∠P A 2F 1=-y 0x 0-a, 所以tan 2∠P A 2F 1=-2y 0x 0-a 1-⎝⎛⎭⎫y 0x 0-a 2 =-2y 0(x 0-a )(x 0-a )2-y 20 =-2y 0(x 0-a )(x 0-a )2-b 2⎝⎛⎭⎫x 20a 2-1=-2y 0(x 0-a )(x 0-a )2-3a 2⎝⎛⎭⎫x 20a 2-1 =-2y 0(x 0-a )(x 0-a )2-3(x 20-a 2) =y 0x 0+2a =tan ∠PF 1A 2, 因为2∠P A 2F 1∈⎝⎛⎭⎫0,2π3, 所以∠PF 1A 2=2∠P A 2F 1,故D 正确. 7.椭圆C :x 2a 2+y 2b2=1(a >b >0)上存在两点M ,N 关于直线l :x -y +1=0对称,且线段MN 中点的纵坐标为-13,则椭圆的离心率e =________. 答案 32解析 如图,设MN 的中点为Q ,∴y Q =-13, ∴x Q =y Q -1=-43, ∴Q ⎝⎛⎭⎫-43,-13,∴k OQ =14, M ,N 关于直线l 对称,∴MN ⊥l ,∴k MN =-1,由点差法可得k MN =-b 2a 2·x Q y Q, 又k OQ =y Q x Q, ∴k OQ ·k MN =-b 2a2, ∴14×(-1)=-b 2a 2,∴b 2a 2=14, 即a 2=4b 2=4(a 2-c 2),即3a 2=4c 2,∴e =32. 8.(2022·成都模拟)经过椭圆x 22+y 2=1中心的直线与椭圆相交于M ,N 两点(点M 在第一象限),过点M 作x 轴的垂线,垂足为点E ,设直线NE 与椭圆的另一个交点为P ,则cos ∠NMP 的值是________.答案 0解析 设M (x 1,y 1)(x 1>0,y 1>0),P (x 0,y 0),则N (-x 1,-y 1),E (x 1,0),所以k MN =y 1x 1,k PN =k EN =y 1+y 0x 1+x 0=y 12x 1, k PM =y 1-y 0x 1-x 0, k PN ×k PM =y 1-y 0x 1-x 0·y 1+y 0x 1+x 0=y 21-y 20x 21-x 20=-12, 所以k PN =-12k PM =y 12x 1, 所以k PM =-x 1y 1. 所以k MN ×k PM =y 1x 1×⎝⎛⎭⎫-x 1y 1=-1, 所以MN ⊥MP ,所以cos ∠NMP =cos π2=0.。

高中数学圆锥曲线二级结论大全

高中数学圆锥曲线二级结论大全

高中数学圆锥曲线二级结论大全高中数学圆锥曲线是高中数学的重要内容之一,涵盖了椭圆、双曲线和抛物线三种曲线的性质和应用。

本文将为大家总结并介绍圆锥曲线的二级结论,包括椭圆、双曲线和抛物线的定义、特点、性质以及相关的公式和图像。

一、椭圆1. 定义:椭圆是平面上到两个固定点F1、F2的距离之和为常数2a的点的轨迹。

称F1、F2为椭圆的焦点,连结两焦点的线段称为主轴,垂直于主轴且通过椭圆中心的直线称为次轴,主轴的长度2a称为椭圆的长轴。

2. 特点:(1)椭圆的离心率e小于1;(2)对称性:椭圆关于椭圆的长轴、短轴的对称轴对称;(3)椭圆的焦距等于长轴的一半,即F1F2 = 2ae = 2a;(4)椭圆的直径与长轴和短轴之间满足关系d = √(a² - b²),其中d为椭圆上两个焦点的距离。

3. 公式和图像:椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标。

椭圆的图像为平面上一个闭合的曲线,长轴与x轴平行或与y轴平行,短轴在y轴或x轴上。

椭圆沿长轴上下对称。

二、双曲线1. 定义:双曲线是平面上到两个固定点F1、F2的距离之差为常数2a的点的轨迹。

称F1、F2为双曲线的焦点,连结两焦点的线段称为主轴,垂直于主轴且通过双曲线中心的直线称为次轴,主轴的长度2a称为双曲线的长轴。

2. 特点:(1)双曲线的离心率e大于1;(2)对称性:双曲线关于双曲线的长轴、短轴的对称轴对称;(3)双曲线的焦距等于长轴的一半,即F1F2 = 2ae = 2a;(4)双曲线的直径与长轴和短轴之间满足关系 d = √(a² + b²),其中d为双曲线上两个焦点的距离。

3. 公式和图像:双曲线的标准方程为(x-h)²/a² - (y-k)²/b² = 1,其中(h,k)为双曲线的中心坐标。

圆锥曲线中的几个常用二级结论

圆锥曲线中的几个常用二级结论

结论 2 椭圆、双曲线共焦点
已知 F1,F2 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F1PF2=θ,e1, e2 分别是椭圆和双曲线的离心率,则sien2122θ+coes2222θ=1.
2 (1)已知共焦点的椭圆和双曲线,焦点为 F1,F2,记它们其中的一个交点为 P,
且∠F1PF2=23π,则该椭圆离心率 e1 与双曲线离心率 e2 必定满足的关系式为( C )
点,F1,F2 分别为左、右焦点,若∠F1PF2=θ,∠PF1F2=α,∠PF2F1
=β,则
S△PF1F2= b2θ,离心率 tan2
e=|sinαs-inθsinβ|x22+by22=1(a>b>0)上的一点,F1,F2 分别为左、右焦点,若 P→F1·P→F2=0,tan∠PF1F2=12,则椭圆的离心率为___3_5__.
【解析】 因为 tan∠PF1F2=12,P→F1·P→F2=0,所以 sin∠PF1F2=sinα= 15,sin∠PF2F1
=sinβ=
25,sin∠F1PF2=sinθ=1,所以
e=sinαs+inθsinβ=
1
1 +
2

35.
55
3 (2)已知 F1,F2 是双曲线x42-y2=1 的两个焦点,点 P 在双曲线上,且P→F1· P→F2=0,则△PF1F2 的面积为__1___.
2 (2)已知 F1,F2 为椭圆 C1:ax221+by221=1(a1>b1>0)与双曲线 C2:ax222-by222=1(a2>
0,b2>0)的公共焦点,M 是它们的一个公共点,且∠F1MF2=π3,e1,e2 分别为 C1,
C2 的离心率,则 e1e2 的最小值为
( A)

高中数学课件-拓展视野13 椭圆、双曲线中的二级结论

高中数学课件-拓展视野13 椭圆、双曲线中的二级结论

(2)双曲线ax22-by22=1(a,b>0)的焦半径公式
|PF1|=|ex0+a|,|PF2|=|ex0-a|,F1,F2 分别为双曲线的左右焦点,P(x0,
y0)为双曲线上任意一点.
3
3.双曲线的渐近线的相关结论 (1)若双曲线的渐近线方程为 y=±bax(a>0,b>0),即ax±by=0,则双曲 线的方程可设为ax22-by22=λ(λ≠0). (2)双曲线的焦点到其渐近线的距离等于虚半轴长 b. (3)双曲线ax22-by22=1(a>0,b>0)的渐近线 y=±bax 的斜率 k 与离心率 e 的关系:e= 1+(ba)2= 1+k2.
5
(2)若 P 是双曲线上不同于实轴两端点的任意一点,F1,F2 分别为双曲 线的左、右焦点,则 S△PF1F2= b2θ,其中 θ 为∠F1PF2.
tan2
6
典例 (1)双曲线ax22-by22=1(a>0,b>0)的渐近线方程为 y=±2x,则该双
曲线的离心率为( D )
35
A.5
B. 5
5 C. 2
13
尝试训练 2 已知双曲线1x62 -y92=1 的左、右焦点分别为 F1,F2,若在 双曲线的右支上有一个点 P,满足|PF1|=3|PF2|,则点 P 的横坐标为 ________.
设点 P 的横坐标为 x0,由双曲线焦半径公式有 |PF1|=a+ex0,|PF2|=ex0-a, 结合条件|PF1|=3|PF2|, 则 ex0+a=3(ex0-a), 又 a=4,c=5,可得 e=54,所以 x0=352. 答案:352
的双曲线方程是( D ) A1x82 -1y22 =1
B.1x22 -1y82 =1
C.1y82 -1x22 =1

圆锥曲线的常用二级结论

圆锥曲线的常用二级结论

圆锥曲线的常用二级结论圆锥曲线是由平面上一固定点(焦点)和一条固定直线(准线)构成的几何图形。

它们包括椭圆、双曲线和抛物线。

在学习圆锥曲线的过程中,常用的二级结论有以下几个:一、椭圆的性质1. 椭圆的离心率小于1:椭圆是由一个固定点(焦点)到平面上所有点到另一个固定点(焦点)的距离之和等于一个常数的所有点构成的集合。

这个常数就是椭圆的长轴长度,而短轴长度等于长轴长度乘以离心率。

因此,椭圆的离心率小于1。

2. 椭圆的两个焦点在长轴上:椭圆的两个焦点与长轴垂直,并且它们都在长轴上。

3. 椭圆是对称图形:椭圆具有对称性,即如果将它绕着中心旋转180度,它仍然保持不变。

4. 椭圆的周长公式:设椭圆长轴为2a,短轴为2b,则椭圆周长公式为C=π(a+b)。

二、双曲线的性质1. 双曲线的离心率大于1:双曲线是由一个固定点(焦点)到平面上所有点到另一个固定点(焦点)的距离之差等于一个常数的所有点构成的集合。

这个常数就是双曲线的长轴长度,而短轴长度等于长轴长度乘以离心率。

因此,双曲线的离心率大于1。

2. 双曲线有两条渐近线:双曲线有两条渐近线,它们与双曲线趋近于无限远时重合。

3. 双曲线不具有对称性:与椭圆不同,双曲线不具有对称性。

4. 双曲线的渐近线方程:设双曲线方程为x^2/a^2-y^2/b^2=1,则它的两条渐近线方程分别为y=±(b/a)x。

三、抛物线的性质1. 抛物线是对称图形:抛物线具有轴对称性,即如果将它绕着轴旋转180度,它仍然保持不变。

2. 抛物线焦点和准线相等距离:抛物线是由平面上所有点到一条直线(准线)的距离等于这些点到一个固定点(焦点)的距离的所有点构成的集合。

它的焦点和准线相等距离。

3. 抛物线方程:设抛物线方程为y=ax^2+bx+c,则它的焦点坐标为(-b/2a,1/4a),准线方程为y=-1/4a。

4. 抛物线与直线交点坐标:如果抛物线与直线y=kx+m相交,则交点坐标为(x,y)=(k^2a+bk+c-m,-ka^2-kb+m)。

数学解析几何二级结论公式

数学解析几何二级结论公式

数学解析几何二级结论公式一、椭圆部分。

1. 焦半径公式。

- 对于椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),设F_1,F_2为左右焦点,P(x,y)为椭圆上一点。

- 当P在椭圆上时,| PF_1|=a + ex,| PF_2|=a - ex(其中e=(c)/(a),c=√(a^2)-b^{2})。

- 对于椭圆frac{y^2}{a^2}+frac{x^2}{b^2} = 1(a>b>0),设F_1,F_2为上下焦点,P(x,y)为椭圆上一点。

- | PF_1|=a+ey,| PF_2|=a - ey(其中e=(c)/(a),c=√(a^2)-b^{2})。

2. 椭圆的切线方程。

- 过椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1上一点P(x_0,y_0)的切线方程为frac{x_0x}{a^2}+frac{y_0y}{b^2} = 1。

- 过椭圆frac{y^2}{a^2}+frac{x^2}{b^2} = 1上一点P(x_0,y_0)的切线方程为frac{y_0y}{a^2}+frac{x_0x}{b^2} = 1。

3. 中点弦结论(点差法)- 设椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),弦AB的中点为M(x_0,y_0)。

- 设A(x_1,y_1),B(x_2,y_2),将A、B两点代入椭圆方程相减得:k_AB=-frac{b^2x_0}{a^2y_0}(k_AB为弦AB的斜率)。

二、双曲线部分。

1. 焦半径公式。

- 对于双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1,设F_1,F_2为左右焦点,P(x,y)为双曲线上一点。

- 当P在双曲线右支上时,| PF_1|=ex + a,| PF_2|=ex - a(其中e=(c)/(a),c=√(a^2)+b^{2})。

圆锥曲线常用的二级结论和椭圆与双曲线对偶结论

圆锥曲线常用的二级结论和椭圆与双曲线对偶结论

圆锥曲线常用的二级结论:
1.零点定理:设F1,F2为椭圆E的两个焦点,P为椭圆上一点,则PF1 + PF2 = 2a(a
为椭圆长轴的一半);对于双曲线,PF1 - PF2 = 2a,其中a为双曲线的长轴的一半。

2.切线定理:设点P(x0,y0)在曲线C上,则C在点P处的切线方程为F_x(x0,y0)
x + F_y(x0,y0)y = F(x0,y0),其中F(x,y)为曲线C的方程,F_x和F_y为它的偏导数。

3.法线定理:设点P(x0,y0)在曲线C上,则C在点P处的法线方程为F_y(x0,y0)
x - F_x(x0,y0)y = F_y(x0,y0)x0 - F_x(x0,y0)y0。

4.离心率计算公式:设椭圆E的长轴为a,短轴为b,则椭圆的离心率为e = √(a² - b²)
/ a。

5.弦长定理:对于椭圆E,设以焦点F1,F2为端点的弦所对应的直角顶点为P,则弦PF1
+ PF2的长度等于椭圆长轴的长度;对于双曲线,弦PF1 - PF2的长度等于双曲线长轴的长度。

椭圆与双曲线的对偶结论:
1.椭圆E的对称中心为它所包围的正方形的中心,长、短半轴分别为正方形的对角线之
一和另外一边。

2.椭圆的纵轴端点为它所包围正方形的中心连通它上下角的一条直线,椭圆的焦点在这
条直线上。

3.双曲线的渐近线为对应椭圆的渐近线的转置。

4.对于椭圆E的焦点F和双曲线H的焦距f,有e² = 1 + f² / b²。

把椭圆的参数a,b
换成双曲线的参数a,b,即可得到双曲线的离心率计算公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭 圆
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直
径的圆,除去长轴的两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.
6. 若000(,)P x y 在椭圆22
221x y a b
+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切
点弦P 1P 2的直线方程是00221x x y y
a b
+=.
7. 椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点
12F PF γ∠=,则椭圆的焦点角形的面积为122tan
2
F PF S b γ
∆=.
8. 椭圆22
221x y a b
+=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和
AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和
A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
11. AB 是椭圆22
221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则
2
2OM AB b k k a ⋅=-,
即0
20
2y a x b K AB -=。

双曲线
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.
2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴
为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.
4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:
P 在左支)
5. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)上,则过0P 的双曲线的切线方程
是00221x x y y a b
-=. 6. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)外 ,则过Po 作双曲线的两条切
线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y
a b
-=.
7. 双曲线22
221x y a b
-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意
一点12F PF γ∠=,则双曲线的焦点角形的面积为122
t
2
F PF S b co γ
∆=.
8. 双曲线22
221x y a b
-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c
当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.
当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--
9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,
连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶
点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
11. AB 是双曲线22
221x y a b
-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB
的中点,则0202y a x b K K AB OM =⋅,即020
2y a x b K AB =。

12. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)内,则被Po 所平分的中点弦的方
程是22
00002222x x y y x y a b a b
-=-.
13. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程
是22002222x x y y x y a b a b
-=-. 椭圆与双曲线的对偶性质--
椭 圆
1. 椭圆22
221x y a b
+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直
线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22
221x y a b
-=.
2. 过椭圆22
221x y a b
+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线
交椭圆于B,C 两点,则直线BC 有定向且20
20BC b x k a y =(常数).
3. 若P 为椭圆22
221x y a b
+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点,
12PF F α∠=, 21PF F β∠=,则
tan t 22
a c co a c αβ
-=+. 4. 设椭圆22
221x y a b
+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上
任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有
sin sin sin c
e a
αβγ==+.
5. 若椭圆22
221x y a b
+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0
<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.
6. P 为椭圆22
221x y a b
+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,
则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.
7. 椭圆22
0022
()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222
200()A a B b Ax By C +≥++. 8. 已知椭圆22
221x y a b
+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且
OP OQ ⊥.(1)2222
1111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是22
22
a b a b
+.
9. 过椭圆22
221x y a b
+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦
MN 的垂直平分线交x 轴于P ,则
||||2PF e
MN =. 10. 已知椭圆22
221x y a b
+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平
分线与x 轴相交于点0(,0)P x , 则2222
0a b a b x a a ---<<. 11. 设P 点是椭圆22
221x y a b
+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点
记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122
tan 2
PF F S b γ∆=.
12. 设A 、B 是椭圆22
221x y a b
+=( a >b >0)的长轴两端点,P 是椭圆上的一点,
PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有
(1)22222|cos |||s ab PA a c co αγ=-.(2) 2
tan tan 1e αβ=-.(3) 222
2
2cot PAB a b S b a
γ∆=-. 13. 已知椭圆22
221x y a b
+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F
的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.
14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应
焦点的连线必与切线垂直.
15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦
半径互相垂直.
16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数
e(离心率).
(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.。

相关文档
最新文档