近世代数课件-3-1环的定义
《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。
近世代数第四章-环与域题解讲解

第四章环与域§1 环的定义一、主要容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以与集M的幂集环.2.环中元素的运算规那么和环的非空子集S作成子环的充要条件:二、释疑解难1.设R是一个关于代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环〞).但不能记为R,·,十).因为这涉与对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即就是说,在环的定义里要留意两个代数运算的顺序.2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·〞作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).三、习题4.1解答1.2.3.4.5.6.7.8.证明:循环环必是交换环,并且其子环也是循环环.§4.2 环的零因子和特征一、主要容1.环的左、右零因子和特征的定义与例子.2.假设环R 无零因子且阶大于1,那么R 中所有非零元素对加法有一样的阶.而且这个一样的阶不是无限就是一个素数.这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶.3.整环(无零因子的交换环)的定义和例子. 二、释疑解难 1.由教材关于零因子定义直接可知,如果环有左零因子,那么R 也必然有右零因子.反之亦然.但是应注意,环中一个元素如果是一个左零因子,那么它不一定是一个右零因子.例如,教材例l 中的元素⎪⎪⎭⎫⎝⎛0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵),(00Q y x y x ∈∀⎪⎪⎭⎫ ⎝⎛对方阵普通加法与乘法作成的环.那么易知⎪⎪⎭⎫⎝⎛0001是R 的一个右零因子,但它却不是R 的左零因子.2.关于零因子的定义.关于零因子的定义,不同的书往往稍有差异,关键在于是否把环中的零元也算作零因子.本教材不把零元算作零因子,而有的书也把零元算作零因子.但把非牢的零因子称做真零因子.这种不算太大的差异,读者看参考书时请留意.3.关于整环的定义.整环的定义在不同的书中也常有差异.大致有以下4种定义方法: 定义1 无零因子的交换环称为整环(这是本教材的定义方法). 定义2 阶大于l 且无零因子的交换环,称为整环. 定义3 有单位元且无零因子的交换环,称为整环.定义4 阶大于1、有单位元且无零因子的交换环,称为整环.以上4种定义中,要求整环无零因子、交换是共同的,区别就在于是否要求有单位元和阶大于1.不同的定义方法各有利弊,不宜绝对肯定哪种定义方法好或不好.这种情况也许到某个时期会得到统一.但无论如何现在看不同参考书时应留意这种差异.本教材采用定义1的方法也有很多原因,现举一例。
近世代数课件-3.1. 加群、环的定义

欢迎大家来到本次近世代数课程,今天我们将学习加群和环的基本定义和性 质。
什么是加群
群的定义和性质
群是一个集合,具有封闭性、 结合律、单位元素和逆元素。
加法运算的封闭性
加法运算在集合内是封闭的, 即两个元素的和仍然属于该 集合。
加法运算的结合律
对于三个元素进行连续加法 运算时,结果与加法运算的 顺序无关。
加法运算的存在单位元素
加群中存在一个特殊元素,称为单位元素,它 与任何元素相加不改变元素的值。
加法运算的存在逆元素
加群中的每个元素都有一个对应的逆元素,使 得它们相加的结果等于单位元素。
什么是环
1
环的定义和性质
环是一个集合,具有加法运算和乘法运算,
加法运算和乘法运算的关系
2
ห้องสมุดไป่ตู้
同时满足封闭性、结合律和分配律。
加法运算是环的基本结构,而乘法运算是
在此基础上进一步定义的。
3
乘法运算的封闭性
乘法运算在集合内是封闭的,即两个元素
乘法运算的结合律
4
的乘积仍然属于该集合。
对于三个元素进行连续乘法运算时,结果
与乘法运算的顺序无关。
5
乘法运算的分配律
乘法运算在加法运算上满足分配律,即对 于任意三个元素的运算,结果在加法和乘 法之间保持一致。
近世代数第四章-环与域题解讲解

第四章环与域§1 环的定义一、主要容1.环与子环的定义和例子。
在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环.2.环中元素的运算规则和环的非空子集S作成子环的充要条件:二、释疑解难1.设R是一个关于代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即就是说,在环的定义里要留意两个代数运算的顺序.2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).三、习题4.1解答1.2.3.4.5.6.7.8.证明:循环环必是交换环,并且其子环也是循环环.§4.2 环的零因子和特征一、主要容1.环的左、右零因子和特征的定义与例子.2.若环R无零因子且阶大于1,则R中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数.这就是说,阶大于l且无零因子的环的特征不是无限就是一个素数.有单位元的环的特征就是单位元在加群中的阶.3.整环(无零因子的交换环)的定义和例子.二、释疑解难1.由教材关于零因子定义直接可知,如果环有左零因子,则R也必然有右零因子.反之亦然.但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l中的元素⎪⎪⎭⎫⎝⎛1就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵),(Qyxyx∈∀⎪⎪⎭⎫⎝⎛对方阵普通加法与乘法作成的环.则易知⎪⎪⎭⎫⎝⎛0001是R 的一个右零因子,但它却不是R 的左零因子.2.关于零因子的定义.关于零因子的定义,不同的书往往稍有差异,关键在于是否把环中的零元也算作零因子.本教材不把零元算作零因子,而有的书也把零元算作零因子.但把非牢的零因子称做真零因子.这种不算太大的差异,读者看参考书时请留意.3.关于整环的定义.整环的定义在不同的书中也常有差异.大致有以下4种定义方法: 定义1 无零因子的交换环称为整环(这是本教材的定义方法). 定义2 阶大于l 且无零因子的交换环,称为整环. 定义3 有单位元且无零因子的交换环,称为整环.定义4 阶大于1、有单位元且无零因子的交换环,称为整环.以上4种定义中,要求整环无零因子、交换是共同的,区别就在于是否要求有单位元和阶大于1.不同的定义方法各有利弊,不宜绝对肯定哪种定义方法好或不好.这种情况也许到某个时期会得到统一.但无论如何现在看不同参考书时应留意这种差异.本教材采用定义1的方法也有很多原因,现举一例。
近世代数课件(全)--3-1-环的定义与性质

,则
n
n
(1) a( ai ) aai
i 1
i 1
n
n
(2) ( ai )a aia
i 1
i 1
n
m
nm
(3) ( ai )( bj ) aibj
i 1
j 1
i1 j1
(4) (ma)(nb) (mn)ab
2020/9/27
三、子环
定义4 若环 R 的非空子集 S 关于环 R 的加法与乘法也做成环,称 S 为 R 的子环
3.除环和域
定义 8 设 R 为有单位元 1R 的环,
a( 0) R ,如果存在 b R ,使得
,则称
a
为
ab ba 1R R 的可逆元,并称
b
为
a
的逆元.
•若a 可逆, 则 a 的逆元唯一, 且 a 的逆元也可逆.可逆元 a 的唯一的
逆元记作 a1 ,且 (a1 )1 a.
2020/9/27
两个消去律成立.即设 a, b, c R, b 0
,如果 ab cb 或 ba bc ,则 a c.
2020/9/27
2.整环 定义 7 一个交换的,有单位元 1R 且
1R 0 的无零因子环 R 称为整环.
例 6 整数环, 高斯整环 都是整环, 而偶数环为 无零因子环.
2020/9/27
2020/9/27
不是左零因子也不是右零因子的元素, 叫做正则元.
2020/9/27
例5
设 M M2(R),
A
1 0
1 0
,
B
1 1
1
1
都是 M 的非零元,而 AB 0 ,所以 A, B
分别为 M 的左右零因子.
近世代数课件(全)--3-1-环的定义与性质

,如果 ab cb 或 ba bc ,则 a c.
2024/7/18
2.整环 定义 7 一个交换的,有单位元 1R 且
1R 0 的无零因子环 R 称为整环.
例 6 整数环, 高斯整环 都是整环, 而偶数环为 无零因子环.
2024/7/18
例7
Z 的可逆元仅有1, -1;
2Z 由于没有单位元,所以它没有可逆元.
例 8 A Mn( K ) 可逆当且仅当 | A | 0. 例 9 试求高斯整环 Z[i] 的可逆元. 解 可逆元只有 1, 1, i, i
2024/7/18
定义9
设 R 是有单位元的环,且 1R 0 .如果 R 中每个非零元都可逆,则称 R 为除环.
,则
n
n
(1) a( ai ) aai
i 1
i 1
n
n
(2) ( ai )a aia
i 1
i 1
n
m
nm
(3) ( ai )( bj ) aibj
i 1
j 1
i1 j1
(4) (ma)(nb) (mn)ab
2024/7/18
三、子环
定义4 若环 R 的非空子集 S 关于环 R 的加法与乘法也做成环,称 S 为 R 的子环
同样,有理数集,实数集,复数集关 于数的加法与乘法构成有单位元 的交换环
2024/7/18
定理1
设 R 是一个环,如果 R 有单位元,则
单位元是唯一的.
R 的单位元常记作 1R .
2024/7/18
二、环的性质 性质1. 规定减法:
a b a (b),a, b R
,则有移项法则:
近世代数(3-1)
环同态(续)
定理3.8.3 设φ:R~R*是环同态,则 (1)R的子环S在φ下的象S*也是R*的子环. (2)R的理想A在φ下的象A*也是R*的理想. (3)反之,R*的子环S*在φ之下的逆象S={xR| φ(x)S*}是R的子环. (4)R*的理想A*在φ下的逆象A={xR| φ(x)A*}是R的理想. 证 简单地验证.
6
多项式3.6.3 设R是一个有单位元的交换环, x1,…,xn是R上的无关未定元α1…,αn是R上的 任意元,则有环同态R[x1…,xn]~R[α1…αn]. 特别地,R[x] ~R[α]. 注 无关未定元含义: ax2+bx+c=0a、b、c=0 例 Z[x] ~Z(i), Q(x) ~Q[ 2 ]
7
理想
重点 注意理想是一个子环,但子环不一定是 理想,熟悉主理想的结构。 定义1 环R的子集A 满足下列二条件: (1)每a,bA有a-bA (2)每rR,a A有raA,则A称为R的理想. 定义2 设R是一个环,a1,a2,…,anR,将R的包含 元素a1,a2,…,an的最小理想 ,称为由a1,a2,…,an生 成的理想,记为(a1,a2,…,an)由一个元a生成的理 想称为主理想,记为(a).
4
子环(续)
定理3.5.4(扩补定理)设R是一个环,S是R的 子环,环S1 S且S1∩(R-S)=,则存在另一个 环R1R使S1 是R1的子环. 图示
S R
S1 R1
5
多项式环
要点 与《高等代数》中域上的多项式环不同 点是:本节从一个一般的交换环R出发构造多 项式环R[x]。 定义1 设R0是一个有单位元的交换环,R是R0 的子环且含 R0的单位元,α∈R0 ,把R0的元 n i a i 称为α在R上的多项式,全体多项式组成 i 0 R0的子环,称为多项式环,记为R[x]。 同样可定义多元多项式环R[x,y]=R[x]([y]), R[x1,…xn]等。
近世代数课件-3-1环的定义
近世代数
第三章 环
环是具有两种代数运算的代数系,它也是 近世代数的一个重要分支。
本章介绍环的一些初步理论。
2020/4/27
3.1 环的定义
本节教学目的与要求: 记住环的定义,掌握环的相关概念和相应分类以及一些特
2020/4/27
18:21
三、环的分类—分类性质
2020/4/27
18:21
三、环的分类—分类性质
2020/4/27
18:21
三、环的分类—分类性质
2020/4/27
18:21
四、环的特征
(环R的特征实质上是所有非零元在加法群中的阶的最小公倍数)
2020/4/27
18:21
四、环的特征
(即在有单位元的环R中,环的特征等于乘法单位元在加法群中的阶) (2) 当R 是至少含有两个元素的无零因子环时,n是素数。
殊环的特殊性质,并能熟练判定一个给定的代数系是否是环.
一. 环的定义及常见的环 二. 环的初步性质 三. 环的分类及其分类性质 四. 环的特征
2020/4/27
一、环的定义
2020/4/27
18:21
一、环的定义 注1:
注2:
2020/4/27
18:21
一、环的定义
2020/4/27
18:21
2020/4/27
18:21
作业:P75第4,9题。
2020/4/27
18:21
三、环的分类
2020/4/27
18:21
三、环的分类
2020/4/27
18:21
近世代数基础第三章环与域
近世代数基础第三章环与域第三章环与域本章主要讨论两种代数系统,在⾼代中看到了,全体整数作⼀个环,全体有理数,全体实数或全体复数都作⼀个域,由此可见,环与域这两个概念的重要性。
§3.1 加群、环的意义●课时安排约1课时●教学内容本书P80-84定义:⼀个交换群叫做⼀个加群,假如我们把这个群的代数运算叫做加法,并且⽤符号+来表⽰。
在群中有零元、负元定义:⼀个集R叫做⼀个环,假如:1、R是⼀个加群;‘2、R对乘法运算封闭3、适合结合律4、两个分配律成⽴●教学重点加群和环的定义●教学难点环的运算性质的证明●教学要求了解加群和环的关系●布置作业P84 2●精选习题P84 1§3.2 交换律、单位元、零因⼦、整环●课时安排约1课时●教学内容本书P84-P89定义:⼀个环R叫做⼀个交环环,假如ab=ba不管a1b是R的哪两个元定义:⼀个环R的⼀个元e叫做⼀个单位元。
假如对R的任意元a来说,都有:ea = ae = a例1:书上P85定义:⼀个有单位元环的⼀个元b叫做a的⼀个逆元。
假如:ba=ab=1例2:P86定义:若是在⼀个环⾥a≠0,b≠0,但ab=0则a是环的⼀个左零因⼦,b是⼀个右零因⼦。
例3:P88定理:在⼀个没有零因⼦的环⾥两个消去律都成⽴。
a≠0,ab=ac=>b=c a≠0,ba=ca=>b=c反之也成⽴推论:在⼀个环⾥如果有⼀个消去律成⽴,那么另⼀个消去律也成⽴。
定义:⼀个环R叫做⼀个整环,假如:1、乘法适合交换律:ab=ba;2、R有单位元1:|a=a|=a3、R没有零因⼦:ab=0=>a=0或b=0●教学重点交换环、整环、单位元、零因⼦●教学难点剩余类环和定理的证明●教学要求掌握以上内容●布置作业P89 1,2,5●精选习题P89 3,4§3.3 除环、域●课时安排约1课时●教学内容P89-93例1:P90例2:P90定义:⼀个环R叫做⼀个除环,假如:1、R⾄少包含⼀个不等于零的元;2、R有⼀个单位元;3、R的每⼀个不等于零的元有⼀个逆元。
近世代数主理想环.ppt
(1)
/ (r m)2 (s n)2 1 1 1 1. (2)
44 2
现在令 . 显然 0 N. 于是N 中绝对值最小的非零元,故 0. 从而 ( ).,因此 N () 。
a ( p) ( p) 或 b ( p) ( p) 即 a ( p) 或 b ( p) 亦即 p | a 或 p | b 这说明 K 中的不可约元都是素元。
综上,由定理 4.2.3 知 K 是唯一分解环。
注意:这个定理的逆命题不成立,即一个唯一分解环 不一定是一个主理想环。
In our classes, all the mobile phones should be switched off !
上课啦!
The class is begin!
第四章 整环里的因子分解
第 28 讲
第四章 整环里的因子分解 §3 主理想环
在这一节和下一节,我们介绍两种特殊的唯一分解 环,那就是主理想环和欧氏环,它们对我们判断一个整 环是不是唯一分解环有一定帮助。
引理 1 设 K 是一个主理想环,若在序列 a1, a2 ,..., ai ,... (ai K ) (1)中, 每个元素都是前一个元素的真因子,则这个序列一定是有限序列。
证明:作主理想 (a1)、(a2 )、(a3 )... 因 ai1 是 ai 的真因子,对这些元素中的每一 个 作 主 理 想 , 必 得 (a1) (a2 ) (a3) ... , 令 N (a1) (a2 ) (a3) ... 则 a、b N 及 r K 总有 a (ai ), b (a j ) 其中 i, j 为某两个正整数,假设 i j , 则 (ai ) (a j ) ,从而 a (a j ) ,于是 a b, ra (a j ) N 因此 N 是 K 的一个理想, 因为 K 是主理想环,所以 N (d) 于是 d N (ak ) 从而 d 属于某个 (an ) 下证 an 是序列(1)中最后一个元素。若不然,设在(1)中还有 an1则由于 d (an ) , an1 N (d ) 因此 an | d, d | an1 。从而 an | an1 ,这与 an1是 an 的真因子矛盾。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/27
18:21
四、环的特征
(环R的特征实质上是所有非零元在加法群中的阶的最小公倍数)
2020/4/27
18:21
四、环的特征
(即在有单位元的环R中,环的特征等于乘法单位元在加法群中的阶) (2) 当R 是至少含有两个元素的无零因子环时,n是素数。
2020/4/27
18:21
作业:P75第4,9题。
近世代数
第三章 环
环是具有两种代数运算的代数系,它也是 近世代数的一个重要分支。
本章介绍环的一些初步理论。
2020/4/27
3.1 环的定义
本节教学目的与要求: 记住环的定义,掌握环的相关概念和相应分类以及一些特
殊环的特殊性质,并能熟练判定一个给定的代数系是否是环.
一. 环的定义及常见的环 二. 环的初步性质 三. 环的分类及其分类性质 四. 环的特征
2020/4/27
18:21
三、环的分类—分类性质
2020/4/27
18:21
三、环的分类—分类性质
2020/4/27
18:21
三、环的分类—分类性质
2020/4/27
18:21
三、环的分类—分类性质
2020/4/27
18:21
三、环的分类—分类性质
2020/4/27
18:21
三、环的分类—分类性质
2020/4/27
18:21
2020/4/27
18:21
二、环的初步性质
2020/4/27
18:21
三、环的分类
2020/4/27
18:21
三、环的分类
注:
2020/4/27
18:21
三、环的分类
2020/4/27
18:21
三、环的分类
பைடு நூலகம்
2020/4/27
18:21
三、环的分类—分类性质
2020/4/27
18:21
三、环的分类
2020/4/27
一、环的定义
2020/4/27
18:21
一、环的定义 注1:
注2:
2020/4/27
18:21
一、环的定义
2020/4/27
18:21
一、环的定义
2020/4/27
18:21
一、环的定义
2020/4/27
18:21
一、环的定义
2020/4/27
18:21
二、环的初步性质