近世代数课件--2.10 不变子群,商群
《近世代数》PPT课件

a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示
;
• x的幂次表示
;
– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021
和
编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。
10 不变子群 商群

§10 不变子群 商群定义 设G 是一个群,N G ≤,称N 为群G 的子群,若,Na aN a G =∀∈.不变子群N 的一个左(右)陪集称为H 的一个陪集.N 是G 的不变子群,记为.N G例1 设G 为一个群,则G 和{}e 都是群G 的不变子群.{}{}{},.Ga aG G a e e a a ====例2 设G 是一个群,{}|,N n na an a G ==∀∈,则.N G,ea ae a G =∀∈,.e N N ∴∈≠∅12,n n N ∀∈,则1122,,,.n a an a G n a an G =∀∈=∀∈()()()()()()121212121212,.n n a n n a n an n a n an n a n n G ∴=====∀∈ 12.n n N ∴∈n N ∀∈,则,.na an a G =∀∈于是1,,a nan a G -=∀∈()1111,.n a n nan an a G ----==∀∈1,.n N N G -∴∈∴≤下证,.aN Na G =∀∈在aN 中任取一个元素an ,这里.n N ∈n N ∈故an na Na =∈.aN Na ∴⊂同理,.Na aN ⊂.aN Na ∴=.N G ∴该不变子群称为群G 的中心.例3 交换群G 的任一子群H 都是不变子群.设H G ≤,下证.aH Ha =ah aH ∀∈,这里h H ∈.因G 是交换群,故ah ha Ha =∈.aH Ha ∴⊂同理,.Ha aH ⊂例4 3,G S =设()()(){}1,123,132N =,则.N G()()()()()()111,1123123,==()()()1132132,=()()()()()()1231123,123123132,==()()()1231321,=()()()()()()1321132,1321231==都属于N ,N G ∴≤又()()()(){}()()()(){}()()()(){}()()()(){}11,123,132,11,123,132,1212,13,13,1212,13,23,N N N N ==== 故()()()()()()11231321123132,N N N N N N =====()()()()()()122313122313.N N N N N N =====.N G ∴定义 设G 是一个群,12,,,m S S S 为集合G 的m 个子集,则把集合{}121122|,,,m m m s s s s S s S s S ∈∈∈称为12,,,m S S S 的乘积,记为12.m S S S 易知()()123123.S S S S S S =这是因为在()123S S S 中任取一个元()123s s s ,这里112233,,s S s S s S ∈∈∈, ()()()123123123.s s s s s s S S S =∈()()123123S S S S S S ⊂.同理()()123123.S S S S S S ⊂定理1 设G 是一个群,N G ≤,则1,.N G nNa N a G -⇔=∴∈注:,,a b G S G ∀∈⊂,把{}{}a S b 记为aSb .把{}a S 记为aS .把{}S b 记为.Sb 易知{}|.aSb asb s S =∈证 “⇒”设N G ,a G ∀∈,则,aN Na G =∀∈.故()()()1111.aNa aN a Na a N aa Ne N ----=====“⇐”设1,aNa N a N -=∀∈,下证1.aNa N -=易知1.aNa N -⊂n N ∀∈,有()1111111.n aa n aa naa a a n a a -------⎡⎤===⎢⎥⎣⎦1a G -∈,()111.a n a N ---∴∈ 1.n aNa -∴∈11..N aNa aNa N --∴⊂∴=设G 是一个群,N G ,{}|S aN a G =∈(即S 为不变子群N 的所有陪集所成的集合),xN yN S ∀∈,这里,x y G ∈,规定S 的乘法如下:()()().xN yN xy N =这在逻辑上没有问题.设 ,xN x N yN y N ''==,下证()().xy N x y N ''=,,x xe xN x N y ye yN y N ''=∈==∈=()1212,,.x x n y y n n n N ''∴==∈12.xy x n y n ''=N G ,1n y Ny y N '''∴∈=,()()()()133123232,n y y n n N xy x n y n x y n n x y n n x y N ''''''''''∴=∈===∈. ()().xy N x y N ''∴=定理3 色环G 是一个群,N G ,{}|,S aN a G =∈则S 对于以上规定的乘法来说成为一个群.证 1)√2)()()()()()()(),xN yN zN xy N zN xy z N xyz N ===⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ ()()()()()()().xN yN zN xN yz N x yz N xyz N ===⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 3)()()().eN xN ex N xN ==4)()()()11.x N xN x x N eN --==定义 定理3中的群S 称为群G 的一个商群,记为/.G N 若G 为有限群,N G ,则/.GG N N =习题P741.假定群G 的不变子群N 的阶是2 ,证明,G 的中心包含.N 证 设C 为群G 的中心,则{}|,.C c G ca ac a G =∈=∀∈2,N =∴可设{},,N e n =其中e 为群G 的单位元.显然,.e C ∈N G ,∴1,.ana N G -∈∀∈显然,不存在a G ∈使得1anae -=,不然,.an a ae n e ===故1,ana n G -=∀∈,即 ,an na a G =∀∈,.n C N C ∴∈∴⊂2. 证明,两个不变子群的交集还是不变子群.证 设G 是一个群,12,N G N G ,则12.N N G ≤12n N N ∀∈,则1,n N ∈且2.n N ∈因12,N G N G ,故,a G ∀∈有 1112,.ana N ana N --∈∈112,.ana N N a G -∴∈∀∈ 12.N N G ∴3. 证明,指数是2的子群一定是不变子群.证 设G 是一个群,(),: 2.N G G N ≤=设a G ∈,但a N ∉,因():2G N =,故()()()(),eN aN Ne Na =∅=∅,且()()()().G eN aN Ne Na ==但.eN Ne N ==aN Na ∴=,或.b aN Na ∈=b G ∀∈,b eN ∈或.b aN Na ∈=若b eN ∈,则,.b Ne bN eN Ne Nb ∈===若b aN ∈,则b Na ∈,故.bN aN Na Nb ===∴由不变子群的定义得,.N G4.设H 是G 的子群,N 是G 的不变子群,证明,HN 是G 的子群. 证 在HN 中任取一个元素11h n ,22h n ,这里1212,,,.h h H n n N ∈∈ 则()11111221122.h n h n h n n h ---=但N G ,H G ≤,1111122212,,n n N Nh h N h h H ----∴∈=∈111111221212.h n n h h Nh h h N HNHN G ----∴∈=⊂∴≤ 5.举例证明,G 的不变子群N 的不变子群1N 未必是G 的不变子群(取4G S =). 解 取4G S =,()()()()()()(){}()()(){}11,1234,1324,1423,1,1234N N ==,则 1,N G N N ,但1N 不是G 的不变子群.。
近世代数学习课件

定义4 结合律:设“”是X上的一个
二元代数运算。如果a,b, c X
有:(a b) c a (b c)
则称此二元代数运算适合结合律。
交换律:若对a,b X 有: ab ba
则称此二元代数运算适合交换律。
定义5 设“”是非空集合S上的一个
近世代数 课件
教材:离散数学引论 王义和,哈工大出版社
参考教材: 1)近世代数, 熊全淹,武大
2)近世代数基础习题指导,北师大
3)离散数学及其在计算机中的应用
4)代数结构与组合数学
引言
一、近世代数的研究对象
代数最初主要研究的是数,以及由数所衍 生出来的对象,如代数方程的求根。数的 基本特征是可以进行加法、乘法等运算, 其共同点是对任两个数,通过相应法则可 唯一求得第三个数。而对于很多抽象的对 象也都具有类似数的这一特征,因此对于 它们的结构和性质的研究就导致了近世代 数的产生和发展。
同理:A为 M , , e 的非空子集,则
包含A的所有子幺半群的交成为由A生 成的子幺半群。
注:根据集合交的性质知道 由A生成的子(幺)半群 (A) 是包含A的所有子(幺)半群 中最小的,即对任意包含A的
子(幺)半群 A 有:A A
定义4 左(右)理想:半群 S ,
的一个非空子集A为S的一个左(右)
定义乘法“”:N N N
a b a b 1, a,b N,
其中*为普通乘法
定义6 设(S,,) 是具有两个二元
代数运算“”和“+”的代数系。
如果a,b, c S 有:
a (b+c) (a b) (a c)
则称“”对“+”满足左分配律。
如果a,b, c S 有:
近世代数精品课程25页PPT

•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
6பைடு நூலகம்最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
近世代数课件2

代数系统(S,⊙)是否 做成半群的判断方法就是检验代数 运算⊙在集合S上是否适合结合律.
设(S , o)是一个半群, Φ ≠ T ⊆ S , 则称(T , o)是(S , o)的一个 子半群 ⇔ ∀a, b ∈ T , 有a o b ∈ T .
26
设 是 个 空 合若 S 一 非 集 , 1)在 上 在 个 数 算 ” S 存 一 代 运 “ ; 2)代 运 “ ” 集 S上 合 合 数 算 在 合 适 结 律 (也 ∀ ,b,c∈S,有 a b) c =a (b c).) 即a ( 则 集 S关 代 运 做 一 半 , 称 合 于 数 算 成 个 群 记 半 (S,. 作 群 )
37
M n(R)(实数域R上全体n阶矩阵组成 的集合)关于矩阵的乘法、加法能否做成M n(R) 上的半群、交换半群吗?若把M n(R)换为On(R), 其中 n(R) = {A∈ M n(R) AA′ = A′A = I}, 结果如 O 何?若把M n(R)换为GLn(R), 其中 ( GLn(R) = {A∈ M n(R) A ≠ 0} 另一表示形式: GL n, R)),结果如何?若把M n(R)换为SLn(R), ( ),结 其中SLn(R) = {A∈ M n(R) A = 1},结果如何?
16
GLn( R) = {A ∈ M n( R) A ≠ 0} 关于矩阵的乘法、加法能否做成 ?(另 GLn( R)上的代数系统?(另一表 示形式:GL n, R)) (
17
有理数集合关于规定 ⊕:Q × Q → Q, ∀a, b ∈ Q, 有a ⊕ b = a + b + ab 能否做成有理数集合Q上 的代数系统?
29
在半群(S, o)中, 任取n n ≥ 3)个元a1, a2,L, an, ( 只要不改变元素次序,则 a1 o a2 oLo an的任一计算方法 所得结果均相同.
近世代数讲义子群

§3 子 群
设 G 是一个群. 显然,{e} 和 G 都是 G 的子群.{e} 和 G 都称为 G 的平凡子群. 若 H 是 G 的子群并且集合 H 是集合 G 的真子 集,则称 H 为 G 的真子群.
注意 若 G 是一个群, H 和 K 都是 G 的子群, 并且 K H ,则由子群的定义可知, K 也是 H 的 子群.
iI
Si 和 Si 分别称为 S 的这族子集的交(集)和并
§3 子 群
代数运算“ '”如下: a'b ab , a, b S .
我们约定,将“ ”在 S 上的限制“ '”也记作 “ ”.显而易见,当 A 上的代数运算“ ”适 合结合律时, S 上的代数运算“ ”也适合结 合律.
2020/8/13
数学与计算科学学院Company Logo
§3 子 群
2020/8/13
数学与计算科学学院Company Logo
§3 子 群
定理 3.3 设 G 是一个群, H 是 G 的一个 非空子集.那么, H 为 G 的子群的充分必要条件 是:
(1) ab H , a, b H ; (2) a1 H , a H . 证明 先证明必要性.假设 H 是 G 的子群. 首先,根据子群的定义, H 满足条件(1). 其次,
例 2 设 P 是一个数域, nN .于是, SLn (P ) 是 GLn (P ) 的子群.(参看§2 的例 2).若令 H 表示数域 P 上全体 n 级可逆的上三角形矩阵构成的集合, K 表示 数域 P 上全体 n 级可逆的对角形矩阵构成的集合,则 H 是 GLn (P ) 的子群, K 是 H 的子群.
2020/8/13
数学与计算科学学院Company Logo
近世代数基础 第二章 群论

第二章群论群是最简单,最重要,有广泛应用的代数系统。
在本章里主要研究具有某种特殊的群存在,结构和构造等。
学习中我们从群的定义开如直到同态基本定理和不变子群,共讲十一个问题,它是以下几章的基础,本章开头提出的十一问题是:一、群在的定义及其基本性质七、循环群;二、单位元、逆元、消去律;八、子群;三、有限群的另一定义;九、子群的陪集;四、群的同态;十、不变子群、商群;五、变换群;十一、同态与不变子群。
六、置换群;§2.1 群的定义●课时安排约1课时●教学内容《近世代数基础》张禾瑞著P31-35群的思想:第一,它有满足结合律的代数运算;第二,这个代数运算具有逆运算。
定义:一个非空集合G对一个叫做乘法的代数过算来说作成一个群,则等价于下列条件: (1)(G,·)有单位元,且G中每一个元有逆元。
(2)(G,·)有左单位元,且G 中每个元有左逆元;(3)(G,·)有右单位元,且G 中每个元有右逆元;(4)a,b∈G,方程a.x=b和y.a=b在G中都有解,是一个有限整数;不然的话,这个群叫做无限群,有限群的元素个数叫做这个群的阶。
定义:对 a,b∈G来说,满足ab=ba条件的群叫做交换群。
例 1:证明若G包含一个元g,且乘法是gg=g,则G对于这个第六法来说作成一个群。
例2:设G是一个全体整数的集合,证明G对于普通加法来说作成一个群。
例3:设G是所有不等于零的整数集合,证明G对于普通乘法来说不作成一个群。
习题选讲:P38 1,3●教学重点群的定义,基本特点,群的思想方法,群的判定常用的方法。
●教学难点群定义,群的判定常用的方法,利用群的定义证明性质和判定。
●教学要求理解群的定义,掌握群定义中的四个等价条件,和群的判定方法,多训练(做题)。
●布置作业 P35 1,3(2)●教学辅导一、掌握三个基本概念(1)群的最本质的特点(2)群的思想方法主要体现在包含的方面。
(3)代数系充(G,·)是群当且仅当(i)结合律成立(ii)方程ax=b,ya=b在G中有解,其 a,b∈G.二、精选习题:(1)在群G中方程ax=b,ya=b, a,b∈G都有解,这个解是()乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)(2)设(G,·)为半群,如果方程ax=b与ya=b a,b∈G在G中有解,(不要求唯一性)则G()。
近世代数群的概念课件

反身性
任何元素与自己相乘的结果仍为该元素本身。
可交换性
对于任意$a, b$在群中,有$a cdot b = b cdot a$。
可结合性
对于任意$a, b, c$在群中,有$(a cdot b) cdot c = a cdot (b cdot c)$。
子群与商群
子群
一个子群是一个集合在某个二元运算 下构成一个群,且该子集是原群的非 空子集。
05
有限群的结构
有限群的分 类
阿贝尔群和非阿贝尔群
01
根据群中元素的乘法是否满足交换律,可以将有限群分为阿贝
尔群和非阿贝尔群。
循环群和非循环群
02
根据群中是否存在循环子群,可以将有限群分为循环群和非循
环群。
素数阶群和非素数阶群
03
根据群的阶是否为素数,可以将有限群分为素数阶群和非素数
阶群。
有限群的Sylow定理
近世代数群的概念
目 录
• 群的定义与性质 • 群的表示与同态 • 循环群与交换群 • 群的扩张与直积 • 有限群的结构 • 群的应用
contents
01
群的定义与性质
群的定 义
群的定义
一个群是由一个集合和一个 在其上的二元运算所组成, 满足结合律、存在单位元、 存在逆元的代数系统。
结合律
群中的二元运算满足结合律, 即对于任意$a, b, c$在群中, 有$(a cdot b) cdot c = a cdot (b cdot c)$。
单位元
群中存在一个元素$e$,使 得对于任意$a$在群中,有 $e cdot a = a cdot e = a$。
逆元
对于任意$a$在群中,存在 一个元素$b$,使得$a cdot b = b cdot a = e$,其中 $e$是单位元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S1S2
Sm
定理1 一个群 G 的一个子群 N 是一个不变子 群的充分而且必要条件是:
aNa 1 N
对于 G 的任意一个元 a 都对.
证明 …………证完
a 1 Na N ?
注5. aNa 1 N 可以换成
定理2 一个群 G 的一个子群 N 是一个不变子 群的充分而且必要条件是: n N ana 1 N a G , 证明 这个条件的必要性是显然的,是定理1 的直接结果.我们证明它也是充分的. 条件 ana 1 N 意味着
注9. a 1na N 等价于‥‥‥??
小结:
n N .下面条件等价: 群 G 的一个子群 N , a G ,
1. aN Na 2. aNa 1 N 3. a 1na N 4. aNa1 N
注意: 不变子群不具有传递性.
10.4 商群
不变子群所以重要,是因为这种子群的陪 集,对于某种与原来的群有密切关系的代数 运算来说,也作成一个群.
aNa1 N
(*)
1
因为 a …………证完
1
也是 G 的元,在(*)中以 a
代a ,
注6. 要测验一个子群是不是不变子群,用 定理2的条件一般比较方便. 注7. 用定理2的条件可以改写成 a G , n N a 1na N 注8 .
ana 1 N
等价于 aNa1 N
AB {ab a A, b B} , A1 {a1 a A}
容易证明:
( AB)C A( BC ) ,A( B
C ) ( AB) ( AC )
( AB)1 B1 A1 , ( A1 )1 A
Sm 的乘积用符号 由于结合律成立, S1,S2,…,
来表示.
我们看一个群 G 的一个不变子群 N 的所有 陪集作成一个集合
G / N {aN , bN , cN } {aN a G}
(1) (2) (3)
aN 相对 G / N :是一个元素, aN 相对 G :是一
个子集.
aN
有不同的表示方式. 和 yN 的
( xN )( yN ) ( xy) N
G的阶 G N 的阶 N的阶
从商群的角度重新认识剩余类加群 Z n
第一,回忆剩余类加群。
第二,重新认识 Z n 。设
G Z (整数加群)
N (n) {kn k Z}(由n生成的循环群)
• 作业: • P74: 2,3,4源自Ⅳ. eN 是单位元,因为
eNxN (ex) N xN
Ⅴ
xN 有逆元 x 1 N
,因为
x1 NxN ( x1 x) N eN
证完
定义 一个群 G 的一个不变子群 N 的陪集所 作成的群叫做一个商群.这个群我们用符号 G N 来表示. 因为 N 的指数就是 N 的陪集的个数,我们显 然有,商群 G N 的元的个数等于 N 的指数.当 G 是有限群的时候,
注1. 一个不变子群 N 的一个左(或右)陪集叫做 N 的一个陪集. 注2. aN Na意味着: an na 吗? 反过来呢? 注3. aN Na在元素间意味着什么? 注4. 不变子群又称为正规子群
10.2 例子
例1 一个任意群 G 的子群 G 和 e 总是不变子群,因 为对于任意 G 的元 a 来说,
G 的子集的乘积,计算两个陪集 xN
成绩
定理3 一个不变子群的陪集对于上边 规定的乘法来说作成一个群.
证明
我们证明群定义的条件Ⅰ,Ⅱ,Ⅳ,Ⅴ 能被满足. Ⅰ.显然. Ⅱ. ( xNyN ) zN [( xy) N ]zN ( xyz) N
xN ( yNzN ) xN[( yz) N ] ( xyz) N
为 G 的每一个元 a 可以和任意一元 x交换,xa ax , 所以对于一个子群 H来说, Ha aH
例4 G S .那么 3
,(123) ,(132)} 是一个不变子群.
N {(1)
注5. 从这个例子可以总结出一般性结论吗?
10.3 等价条件
现在复习一下群 G 的子集的乘积: 设A,B是群 G 的两个非空子集,规定
10.1 定义
这一节里要讲到一种重要的子群,就是不变子群.
给了一个群 G ,一个子群 H ,那么 H 的一个右陪 集 Ha 未必等于 H 的左陪集 aH ,这一点我们在上一节 的例2里已经看到.
定义 一个群 G 的一个子群 N 叫做一个不变子 群,假如对于 G 的每一个元 a 来说,都有
aN Na
na an n1a n1ann1 n1nan1 an1
这就是说,N是一个子群. (2) . G 的每一个元 a 可以同 N 的每一个元 n 交换,所以 Na aN,即 N 是不变子群.
aN Na
这个不变子群
C
叫做 G 的中心.
例3 一个交换群 G 的每一个子群 H 都是不变子群.因
Ga aG G
ea ae a
na an, 例2 C 刚好包含群 G 的所有有以下性质的元 n , 不管 a 是 G 的哪一个元 证明: C 是 G 的一个不变子群.
证明:
(1) C 是子群.因为 e N ,所以 N 是非空的. 又 n1a an1 ,n2a an2 n1n2a an1n2