土壤水分与空气
土壤水空气和热量之间的关系

土壤水空气和热量之间的关系分析土壤肥力要素水、气、热之间的关系。
由于土壤水分的重要作用,因此掌握土壤水的形态学观点和能量学观点。
土壤水的类型土壤学中的土壤水是指在一个大气压下,在105℃条件下能从土壤中分离出来的水分。
土壤中液态水数量最多,对植物的生长关系最为密切。
液态水类型的划分是根据水分受力的不同来划分的,这是水分研究的形态学观点。
这一观点在农业、水利、气象等学科和生产中广泛应用。
一、吸湿水土壤颗粒从空气中吸收的汽态水分子。
从室外取土,放在室内风干若干时间后,表面上看似乎干燥了,但把土壤放在烘箱中烘烤,土壤重量会减轻;再放置到常温常压下,土壤重量又会增加,这表明土壤吸收了空气中的水汽分子。
土壤的吸湿性是由土粒表面的分子引力作用所引起的,一般来说,土壤中吸湿水的多少,取决于土壤颗粒表面积大小和空气相对湿度。
由于这种作用的力非常大,最大可达一万个大气压,所以植物不能利用此水,称之为紧束缚水。
二、膜状水土粒吸足了吸湿水后,还有剩余的吸引力,可吸引一部分液态水成水膜状附着在土粒表面,这种水分称为膜状水。
重力不能使膜状水移动,但其自身可从水膜较厚处向水膜较薄处移动,植物可以利用此水。
但由于这种水的移动非常缓慢(0.2—0.4mm/d),不能及时供给植物生长需要,植物可利用的数量很少。
当植物发生永久萎蔫时,往往还有相当多的膜状水。
三、毛管水当把一个很细的管子(毛细管)插入水中后,水分可以上升的较高于水平面,并保持在毛细管中。
毛管水:由于毛管力的作用而保持在土壤中的液态水。
毛管水可以有毛管力小的方向移向毛管力大的方向,毛管力的大小可用Laplace公式计算:P = 2T/r式中的P为毛管力,T为水的表面张力,r为毛管半径。
根据毛管水是否与地下水相连,可分为2种类型:毛管悬着水:降水或灌溉后,由地表进入土壤被保存在土壤中的毛管水。
毛管上升水:或毛管支持水,土壤中受到地下水源支持并上升到一定高度的毛管水。
影响毛管上升水的因素:地下水水位和毛管孔隙状况毛管水上升高度用下式计算:H=75/d,d为土粒平均直径(上升高度与颗粒直径间关系见p142的附表)。
土壤中的四个因素决定着土壤肥力的高低

土壤中的四个因素决定着土壤肥力的高低1 土壤水分1.1 土壤水分类型土壤水分常以三种形式存在于土壤中,束缚水。
紧紧吸附在土粒表面,不能流动,也很难为作物根系吸收的水分叫束缚水。
土粒越细,吸附在土粒表面的束缚水越多;毛管水。
土粒之间小于的小孔隙叫毛细管,毛细管中的水可以在土壤中上下、左右移动,是供作物吸收利用的主要有效水。
因此,毛管水对作物生长发育最为重要;重力水。
是土粒之间大于大孔隙中的水分。
由于受重力作用只能向下流动,所以叫重力水。
在水稻田中,重力水是有效的水分。
在旱田中,重力水只能短期被植物利用,如较长期地充满着重力水(即地里积水),则土壤空气缺乏,对作物生长非常不利。
1.2 土壤水分的有效性土壤水分并不能全部被作物吸收利用,束缚水和重力水都是不能被作物利用的无效水,只有毛管水是能被作物利用的有效水。
当土壤中只存在着束缚水时,因作物不能利用,而表现出萎蔫,这时的土壤含水量叫萎蔫系数。
随着土壤水分的增加毛细管中开始充水,当土壤中毛细管全部充满水时的含水量,叫田间持水量。
土壤有效水的数量是田间持水量减去萎蔫系数的数值。
土壤有效水含量的多少,主要受土壤质地、结构、有机质含量的影响。
砂土和黏土有效水都低于壤土。
具有团粒结构的土壤毛细孔隙增加,有效水含量高。
2 土壤养分2.1 土壤养分的有效性根据作物吸收土壤养分的难易,可把土壤养分分为两类。
一类是速效态养分叫有效养分,另一类是迟效态养分又叫潜在养分。
速效态养分以离子、分子状态存在于土壤溶液中和土壤胶凿表面上,能够直接被作物吸收利用。
持效养分存在于土壤矿物质和有机质中,难溶于水而不能被作物直接吸收利用,需经化学作用和微生物作用,分解成可溶性的速效养分才能被吸收。
理想的土壤,不但要求养分种类齐全,含量高,而且要求速效和迟效各占一定比例,使养分能均衡持久地供给作物利用。
2.2 土壤养分的转化2.2.1 土壤中氮的转化各类土壤中一般全氮含量约为0.05%-0.2%。
土壤水分、空气和热量

1cm
19 ℃
(2)导热率的物理意义
导热率大则传热快,得热后迅速下传(失热后迅速补 给),引起的变温小。
导热率小则传热慢,得热后不易下传(失热后补给缓 慢),引起的变温大。
J s-1
1cm2
20 ℃
21 ℃ 21 ℃
1cm
19 ℃
20 ℃ 19.2 ℃
Question:土壤的导热率大小取决于什么? Answer:取决于土壤中的基本组成物质。
固相 50% 矿物质45% 水20-30% 空气
30-20% 孔隙50%
有机质5%
不同土壤组分的热容量
土壤组成物质
粗石英砂 高岭石 石灰 腐殖质 Fe2O3 Al2O3
土壤空气 土壤水分
重量热容量 (Jg-1℃-1)
0.745 0.975 0.895 0.682 0.908 1.996 1.004 4.184
一般作物根系的吸水力平均为1.5MPa。
2、土壤膜状水
土壤膜状水:吸湿水达到最大后,土壤还有剩余的引力吸 附液态水, 在吸湿水的外围形成一层水膜。
膜 状 水 示 意 图
土壤膜状水的有效性:
土壤膜状水
3.1MPa (靠近土壤内层)(无效水)
受到的引力
0.625 MPa (靠近土壤外层)(有效水)
一般作物根系的吸水力平均为1.5MPa。
取容积为1的土壤,设它吸收(放出)的热量为 ⊿Q,引起的温度变化为⊿T ,则根据定义Cv=⊿Q/⊿T, 这就是容积热容量。
转换公式一下:⊿T=⊿Q/Cv, 当不同的物质吸收或放出相同热量时候,热容量越 大的物质,升、降温缓慢, 即温度变化小,反之亦然。
Question:土壤的热容量大小取决于什么?
土壤水气热三者之间的关系

土壤水气热三者之间的关系土壤、水、气、热是地球上四个最基本的物质。
而这四者之间的关系也是极为密切的。
在生态学中,土壤水气热的交互作用是非常重要的,它们之间的关系对于生态系统的健康和稳定起着至关重要的作用。
土壤是生态系统的基础,是生命的根基。
土壤是由无机物质、有机物质和微生物组成的。
土壤中的无机物质包括矿物质和土壤颗粒,而有机物质则包括腐殖质、生物残体和生物体等。
这些物质的存在和相互作用决定了土壤的性质和质量。
土壤中的水分和空气含量也对土壤的性质和功能产生了重要影响。
土壤中的水分对于植物的生长发育和生态系统的稳定性起着至关重要的作用。
当土壤中的水分含量不足时,植物的生长会受到限制,生态系统的稳定性也会受到影响。
水是生态系统中另一个重要的因素。
水可以滋润大地,调节气温,维持生态平衡。
水的循环过程也是非常复杂的。
在生态系统中,水的循环过程主要包括蒸发、降水和地下水循环。
在这些过程中,水分子与空气分子的相互作用起着重要的作用。
空气中的水分子在水的循环中扮演着至关重要的角色。
水分子与空气分子的相互作用对于水分子的蒸发和降水过程起着重要的作用。
气体是生态系统中的另一个重要组成部分。
在大气中,氧气、氢气、氮气、二氧化碳等气体分子相互作用,形成了大气层。
气体的温度和压力也对生态系统的稳定性产生了影响。
气体的温度和压力的变化会影响生态系统中的生物、土壤和水的性质和功能。
热是生态系统中最基本的能量形式,是生态系统中的另一个重要因素。
热的传递和转移对于生态系统的稳定性产生了重要影响。
热的传递和转移的过程中,热与空气、水和土壤分子的相互作用起着重要的作用。
热的传递和转移对于生态系统中的生物、土壤和水的性质和功能产生了重要影响。
热的传递和转移的过程中,热会影响土壤中的水分和空气含量,进而影响植物的生长和生态系统的稳定性。
土壤、水、气、热四者之间的相互作用是生态系统中必不可少的部分。
这些物质的存在和相互作用对于生态系统的健康和稳定起着至关重要的作用。
土壤空气、土壤热量及水气热调节

项目 对照 自然含水量 9.90
化肥 11.76
猪粪 15.08
秸秆 14.10
化肥+猪 粪
16.92
化肥+秸 秆
15.71
田间持水量 25.00 28.40 30.98 29.12 31.23 31.41
饱和含水量 35.18 35.10 39.23 36.90 40.71 40.68
34/42
2.6.1.2 土壤空气调节
对于粘质土壤的通气不良可采取合理耕作结合增 施有机肥料,以改善土壤结构、增加土壤通气孔隙。
对于地势低洼、地下水位高的易涝地区的土壤通 气不良应加强土壤水分管理,建立完整的排水系统,降 低地下水位,及时排除渍涝。
对于因降(灌)水量大而造成的土壤过湿、表土 板结而影响通气的,应及时中耕、松土,破除地结皮等, 土壤通气性就会大大改善。
K =λ /Cv
式中:K为土壤导温率;
λ 为导热率;
Cv为土壤容积热容量。
26/42
27/42
土壤组成与土壤的热特性
重量
导热率
土壤组 成分
容积热容量 (J·cm-3·K-1)
热容量 (J·g-1·K-1)
(J·cm-1·s-1·K-1)
土壤
空气
0.0013
1.00 0.00021-0.00025
28/42
2.5.3 土壤温度与作物生长 2.5.3.1 土壤温度与种子萌发 2.5.3.2 土壤温度与作物根系生长 2.5.3.3 土壤温度与作物营养生长和生殖生长 2.5.3.4 土壤温度影响养分转化与吸收 此外,土壤有机质的转化、养分的释放以及土壤 中水、气的运动等也都受到土壤温度的影响。
29/42
2.6 土壤水、气、热的调节与氧化还原性 2.6.1 土壤水、气、热的调节 2.6.2 土壤氧化还原性质
土壤的组成和性质

土壤的组成和性质一、土壤的组成土壤是环境中特有的组成部分,是位于陆地表面呈连续分布,具有肥力并能生长植物的疏松层,它是一个复杂的体系。
它的组成包括固相(矿物质、有机质)、液相(土壤水分或溶液)和气相(土壤空气)等三相物质四种成分有机地组合在一起构成的一种特殊物质。
按容积计,在较理想的土壤中,矿物质约占38—45%,有机质约占5—12%, 土壤孔隙约占50%, 土壤水分和空气存在于土壤孔隙内,三相之间亦经常变动而相互消长。
按重量计,矿物质可占固相部分的90—95%以上,有机质约占1 —10%左右。
(一)土壤矿物质土壤矿物质来源于地壳岩石(母岩)和母质,它对土壤的性质、结构和功能影响很大。
土壤中的矿物质由岩石风化和成土过程中形成的不同大小的矿物颗粒(或土粒)组成的。
自然界的土壤都是由很多大小不同的土粒,按不同的比例组合而成,各粒级在土壤中所占的相对比例或重量百分数称为土壤的机械组成,也叫土壤质地。
(二)土壤有机质进入土壤中的有机物质包括植物、动物及微生物等死亡残体,经分解转化逐渐形成有机质,即腐殖质,土壤腐殖质是土壤有机质的主要部分,约占有机质总量的50—65%。
腐殖质不是单一分子的有机质,而是在组成、结构和性质上具有共同特征,又有差异的一系列高分子有机化合物,腐殖质在土壤中可以呈腐殖酸或腐殖酸盐类存在,亦可以铁、铝的凝胶状态存在,也可与粘粒紧密结合,以有机-无机复合体等形态存在。
这些存在形态对土壤一系列的物理化学性质有很大影响,对土壤肥力有重大作用。
土壤有机质的化学组成包括:糖类(碳水化合物)、木质素、有机氮、脂肪、蜡质、单宁、木栓质、角质、有机磷及灰分等。
土壤中的有机质组成二、土壤的物理化学性质一)土壤的物理性质土壤结构:一般把土壤颗粒(包括单独颗粒、复粒和团聚体)的空间排列方式及其稳定程度,孔隙的分布和结合的状况称为土壤的结构。
土壤中的ca\卩6!3+等多价阳离子及有机质,腐殖质都有胶结剂的作用,参与土壤颗粒的团聚。
土壤的物质组成及特性(下)

3.2土壤热量状况
3.2.2 土壤热学性质 土壤热容量 ①概念: 重量热容量——单位重量土壤增减1℃所需要或放出的热量。 也称比热C,单位为 卡/g· 度。 容积热容量——单位容积土壤增减1℃所需要或放出的热量。 也称热容量W,单位为 卡/cm3· 度。 W = C ×容重 一般土壤热容量愈大,土温变幅愈小,土温愈稳定。 ②土壤三相物质的热容量比较:土壤空气的容积热容量极小,土壤 水分的容积热容量最大,约为固相物质的2倍。 土壤愈湿,土壤热容量愈大。因此,当春天土壤过湿时,可通 过耕作或排水降低热容量的方式,促使土温快速上升。
3.3土壤水分
土壤水分类型、水分常数及其有效性图示
3.3土壤水分 3.3.4 土壤水的能量——土水势
自然界中所有物质的自发和普遍的趋势 是:由势能较高处向较低处运动。土壤水分 亦从自由能高的地方向自由能低的地方移动。 土水势通常用单位容积土壤水分的势能值表 示,单位为帕(Pa)。
3、毛管水
• 当土壤含水量超过最大分子持水量时,水分子不 再受土粒表面引力的作用,而是靠毛管引力(水 的表面张力和水分子浸润力的合力)而保持在土 壤的毛管孔隙中,这部分的水就称为毛管水。 • 毛管水具有自由水的特点,能溶解溶质,移动速 度快,可以满足作物的需要,是作物可以利用的 土壤水分的主要形态。
• 根据毛管水与地下水的联系情况和所处的 地形部位,可以将其分为毛管上升水和毛 管悬着水。
(1)毛管悬着水
• 降雨或灌溉以后,由于毛管力的作用而保 留在土壤上层的水分,称为毛管悬着水。 • 毛管悬着水达到最大量时的含水量,称为 田间持水量。 • 田间持水量是旱地土壤有效水的上限。(2)毛管上升水Fra bibliotek4、重力水
• 当土壤水份超过田间持水量时,多余的水份不能 为毛管所保持而在重力作用下沿着大孔隙向下渗 漏,这部分水就称为重力水。 • 重力水对作物是有效的,但由于它渗漏很快,不 能被保持,所以对旱作而言是无效的。 • 当重力水达到饱和,即土壤孔隙全部充满水份时, 土壤的含水量就称为饱和持水量。
土壤水分、空气、热量(1)

2.土壤空气调节
• 对于一般旱作来说,发生通气不良、供氧不足的情况 很少。土壤通气不良主要发生在那些质地粘重、通气 孔隙度不足10%、气体交换缓慢的粘质土壤上。对于 此类土壤可采取合理耕作结合增施有机肥料,以改善 土壤结构、增加土壤通气孔隙。土体中水分过多不仅 空气容量减少,而且阻碍土壤空气与大气的气体交换, 这是地势低洼、地下水位高的易涝地区土壤通气性差 的主要原因,对此应加强土壤水分管理,建立完整的 排水系统,降低地下水位,及时排除渍涝。至于那些 主要是由降(灌)水量大而造成的土壤过湿、表土板结而 影响通气的,则应及时中耕、松土,破除地结皮等, 土壤通气性就会大大改善。
壤水的收人大于支出,则土壤水分含量增加;反之,土壤水的支出
大于收入,则土壤水分含量降低。在农业生产实践中,土壤水分平 衡的作用主要表现为:
①计算作物日耗水量 例如,某玉米地在6月15日灌水前根层土壤 含水量厚度为70mm,然后灌水55mm。6月25日测定同一根层的含 水量厚度为81mm,假设灌水后的这段时间内无降雨过程,也没有 土壤水分的深层渗漏,则在此期间玉米的日耗水量为:
• (1)土水势 • (2)土壤水吸力 • (3)土壤水分特征曲线
(1)土水势 土水势(soil water potential)表示土壤水分在土—水平衡体系 中所具有的能态。通常用水势(ψw)表示。由于土壤水分受到各 种吸力的作用,有时还存在附加压力,所以其水势必然与参 比系统不同,两者之差为土水势的量度。通常规定纯水池参 比系统的水势能为零,因此,土水势一般为负值,它主要由 以下几个分势组成。 基质势(matric potential) 通常用ψm表示。对于非饱和土壤 而言,由于基质吸力对水分的吸持,完成这一过程需要环境 对它做功,所以基质势为负值;而饱和的土壤水不受基质吸 持,故其基质势为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
节次及标题:三、土壤水分和空气教学目的:掌握土壤水分和空气,土壤水分的类型及有效性;通土壤气性;教学难点: 土壤水分的类型及有效性;通土壤气性。
教学重点:土壤水分的类型及有效性;通土壤气性。
教学关键:概念授课类型:理论课 授课方法:讲述式 教学时数:2学时 <一> 组织教学:1. 检查人数:2. 复习提问:1)土壤 土壤肥力 土壤质地2)土壤由哪几部分组成?<二>新课讲授:四、土壤水分和空气土壤水分和空气存在于土壤孔隙中,二者彼此消长,即水多气少,水少气多。
(一) 土壤水分(壤有效水的上限,二者的差值称为土壤有效最大含水量。
二)土壤含水量的表示方法1.质量含水量%100%100(%)221⨯-=⨯=W W W 烘干土质量土壤水质量土壤质量含水量2.容积含水量三)土壤水分的存在形态1.吸湿水 吸湿水是指土粒表面靠分子引力从空气中吸附的气态水并保持在土粒表面的水分。
属无效水。
2.膜状水 膜状水是指土粒靠吸湿水外层剩余的分子引力从液态水中吸附一层极薄的水膜。
吸湿水和膜状水又合称为束缚水。
3.毛管水 毛管水是指土壤依靠毛管引力的作用将水分保持在毛管孔隙中的水分。
分为毛管悬着水和毛管上升水两种。
4.重力水 重力水是指存在于土壤大孔隙中,受到重力作用又能向下移动的水分。
四)土壤水分的有效性1.水分常数 土壤吸湿系数、萎蔫系数、毛管持水量、田间持水量、全蓄水量等土壤水分常数。
2.水分有效性 通常情况下将萎蔫系数看作土壤有效水的下限,将田间持水量看作土容重质量含水量土壤总容积土壤水容积土壤容积含水量⨯=⨯=(%)100(%)3.相对含水量土壤水并不是纯水,而是含有多种无机盐与有机物的稀薄溶液。
(二)土壤空气1.组成特点:①土壤空气中CO 2含量高于大气;②土壤空气中的O 2低于大气;③土壤空气中的水汽含量高于大气;④土壤空气中还原性气体高于大气;⑤土壤空气成分随时、空而变化。
2.土壤通气性概念:土壤空气与大气之间常通过扩散作用和整体交换形式不断地进行气体交换,这种性能称之为土壤通气性。
作用:①影响种子萌发。
②影响植物根系的发育与吸收功能。
③影响土壤养分状况。
④影响作物的抗病性。
调节:通过深耕结合施用有机肥料、合理排灌、适时中耕等措施来调节土壤的通气状况,改善土壤水、肥、气、热条件,给植物生长创造适宜的环境条件。
<三>小结:一、土壤水分土壤含水量的表示方法土壤水分的存在形态土壤水分的有效性二、土壤空气<四>作业:1.土壤吸湿系数、萎蔫系数、毛管持水量、田间持水量、全蓄水量、毛管水、土壤通气性2. 试述土壤水分的存在形态有哪些?土壤含水量的表示方法有哪些?节次级标题:第二节土壤的基本性质教学目标:◆掌握:土壤胶体、土壤保肥性、土壤供肥性、土壤缓冲性、土壤空隙性、土壤结构、土壤耕性等基本概念;土壤的基本组成及各组分的特性。
教学重点:◆土壤结构的类型。
◆土壤团粒结构在土壤肥力上的作用及创造土壤团粒结构的农业措施。
◆土壤酸碱性及其在土壤肥力上的作用。
◆土壤耕性的判断与改良。
教学难点:◆土壤结构的类型与特点。
◆土壤胶体。
教学关键:概念授课类型:理论课授课方法:讲述式教学时数:6学时土壤物理性质包括土壤孔隙性、土壤结构性、土壤物理机械性和土壤耕性等,土壤化学性质包括土壤保肥性、土壤供肥性、土壤酸碱性、土壤缓冲性等。
一、土壤孔隙性与结构性(一)土壤孔隙性1.概念土壤孔隙性是指土壤孔隙的数量、大小、比例和性质的总称。
2.土壤密度土壤密度是指单位体积土粒(不包括粒间孔隙)的烘干土重量,单位是gcm-3或tm-3。
一般情况下,把土壤的密度视为常数,即为2.65 gcm -3。
3.土壤容重 土壤容重是指在田间自然状态下,单位体积土壤(包括粒间孔隙)的烘干土重量,单位也是gcm -3 或tm -3。
4.土壤孔隙度 土壤孔隙度是指单位体积土壤中孔隙体积占土壤总体积的百分数。
实际工作中,可根据土壤密度和容重计算得出。
土壤孔隙度的变幅一般在30%~60%之间,适宜的孔隙度为50%~60%。
土壤孔隙度(%)= (密度容重-1)⨯100 5.土壤孔隙类型 根据土壤孔隙的通透性和持水能力,将其分为三种类型,如表所示。
土壤孔隙类型及性质6.土壤孔隙性与植物生长的关系适宜于植物生长发育的耕作层土壤孔隙状况为:总孔隙度为50%~56%,通气孔隙度在10%以上,如能达到15%~20%更好,毛管孔隙度与非毛管孔隙度之比为2:1为宜,无效孔隙度要求尽量低。
对于植物生长发育而言,在同一土体内孔隙的垂直分布应为“上虚下实”。
(二)土壤结构性1.概念土壤中的土粒,一般不呈单粒状态存在(沙土例外),而是相互胶结成各种形状和大小不一的土团存在于土壤中,这种土团称为结构体或团聚体。
土壤结构性是指土壤结构体的种类、数量及其在土壤中的排列方式等状况。
2.土壤结构体的类型及特性按照结构体的大小、形状和发育程度可分为以下几类。
(1)团粒与粒状结构团粒结构是指近似球形且直径大小在0.25~10 mm之间的土壤结构体,俗称“蚂蚁蛋”、“米糁子”等,常出现在有机质含量较高、质地适中的土壤中。
图土壤结构的主要类型1—块状结构 2—柱状结构 3—棱柱状结构 4—团粒结构5—微团粒结构 6—核状结构 7—片状结构(2)块状与核状结构这两种结构近似立方体形状。
一般块状结构大小不一,边面不明显,结构体内部较紧实,俗称“坷垃”。
而核状结构的直径一般小于3cm,棱角多,内部紧实坚硬,泡水不散,俗称“蒜瓣土”,多出现在有机质缺乏的黏土中。
(3)柱状与棱柱状结构是指近似直立、体形较大的长方体结构,俗称“立土”。
如果顶端平圆而少棱的称柱状结构,多出现在典型碱土的下层;如果边面棱角明显的称棱柱状结构,多出现在质地黏重而水分又经常变化的下层土壤中。
(4)片状结构是指形状扁平、成层排列的结构体,俗称“卧土”。
如果地表在遇雨或灌溉后出现的结皮、结壳,称为“板结”现象。
3.团粒结构形成:团粒结构一般要经过多次(多级)的复合、团聚而形成,可概括如下几步:单粒→复粒(初级微团聚体)→微团粒(二级、三级微团聚体)→团粒(大团聚体)。
作用:①团粒结构土壤的大小孔隙兼备。
②能够协调水分和空气的矛盾。
③能协调保肥与供肥性能④具有良好的物理性和耕性。
培育:①通过深耕,使土体破裂松散,适时适当耕、锄、耱、镇压等耕作措施,结合施用有机肥料促进团粒结构的形成;②通过种植绿肥或牧草,实行合理轮作倒茬增加团粒结构;③采用沟灌、喷灌、滴灌和地下灌溉等节水灌溉技术,并结合深耕进行晒垡、冻垡,可充分利用干湿交替、冻融交替作用,有利于团粒形成;④施用胡敏酸、树脂胶、纤维素黏胶等土壤结构改良剂来促进团粒结构的形成。
二、土壤耕性(一)土壤耕性的含义土壤耕性是指耕作土壤中土壤所表现的各种性质以及在耕作后土壤的生产性能。
它是土壤各种理化性质,特别是物理机械性在耕作时的表现;同时也反映土壤的熟化程度。
(二)土壤耕性的表现1.耕作的难易程度。
群众常将省工省劲易耕的土壤称为“土轻”、“口松”、“绵软”,而将费工费劲难耕土壤称为“土重”、“口紧”、“僵硬”。
2.耕作质量的好坏。
耕性良好的土壤,耕作时阻力小,耕后疏松、细碎、平整,有利于作物的出苗和根系的发育。
3.宜耕期的长短。
宜耕期是指保持适宜耕作的土壤含水量的时间。
如沙质土宜耕期长,表现为“干好耕,湿好耕,不干不湿更好耕”;黏质土则相反,宜耕期很短,表现为“早上软,晌午硬,到了下午锄不动”。
(三)宜耕期的选择1.看土验墒。
雨后或灌溉后,地表呈“喜鹊斑”状态,外白(干)、里灰(湿),外黄里黑,半干半湿,水分正相当,此时可耕。
2.手摸验墒。
用手抓起二指深处的土壤紧握手中能成团,稍有湿印但不黏手心,不成土饼,呈松软状态。
松开土团自由落地,能散开即宜耕。
3.试耕,耕后土壤不黏农具,可为犁抛散,即可耕。
(四)土壤耕性的改良改良耕性措施是:①增施有机肥料。
因为有机质可降低黏土的黏结性和黏着性,减少耕作阻力;②通过掺沙掺黏,改良土壤质地;③创造良好的土壤结构;④掌握宜耕含水量和宜耕时期。
三、土壤保肥性与供肥性(一)土壤胶体1.概念土壤胶体是指1~1000 nm之间(长、宽、高三个方向上至少有一个方向在此范围内)的土壤颗粒。
2.种类根据微粒核的组成物质不同,可以将土壤胶体分为三大类:无机胶体、有机胶体、有机-无机复合胶体。
3.土壤胶体特性(1)有巨大的比表面和表面能。
(2)带有一定的电荷,根据电荷产生机制不同,可将土壤胶体产生电荷,分为永久电荷和可变电荷。
(3)具有一定的凝聚性和分散性。
4.土壤吸收性能根据土壤对不同形态物质吸收、保持方式的不同,可分为以下六种类型:(1)机械吸收作用机械吸收作用是指土壤对进入土体的固体颗粒的机械阻留作用。
(2)物理吸收作用物理吸收作用是指土壤对分子态物质的吸附保持作用。
(3)化学吸收作用化学吸收作用是指易溶性盐在土壤中转变为难溶性盐而保存在土壤中的过程,也称化学固定。
(4)离子交换吸收作用离子交换吸收作用是指土壤溶液中的阳离子或阴离子与土壤胶粒表面扩散层中的阳离子或阴离子进行交换后而保存在土壤中的作用,又称物理化学吸收作用。
离子交换吸收作用是土壤保肥供肥最重要的方式。
(5)生物吸收作用生物吸收作用是指土壤中的微生物、植物根系以及一些小动物可将土壤中的速效养分吸收保留在体内的过程。
(二)土壤保肥性土壤保肥性是指土壤吸持各种离子、分子、气体和粗悬浮物质的能力。
阳离子交换吸收作用是土壤保肥的主要机理。
1.阳离子交换吸收作用概念:阳离子交换吸收作用是指土壤溶液中的阳离子与土壤胶粒表面扩散层中的阳离子进行交换后而保存在土壤中的作用。
特点:①可逆反应;②等电荷交换;③反应迅速;④受质量作用定律支配。
2.阴离子交换吸收作用概念:阴离子交换作用是指土壤中带正电荷胶体所吸收的阴离子与土壤溶液中的阴离子相互交换的作用。
类型:根据被土壤吸收的难易程度可分为三类:(1)易被土壤吸收的阴离子,如磷酸根离子(H2PO4-、HPO42-、PO43-),硅酸根离子(HSiO3-、SiO32-)及某些有机酸的阴离子。
(2)很少被吸收甚至不能被吸收的阴离子,如Cl-、NO3-、NO2-等。
(3)介于上述二者之间的阴离子,如SO42-、CO32-、HCO3-以及某些有机酸的阴离子。
3.离子交换作用对土壤肥力影响:①影响土壤保肥性与供肥性。
②影响土壤酸碱性。
③影响土壤物理性质和耕性。
④影响土壤缓冲性和稳肥性。
(三)土壤的供肥性1.概念土壤在作物整个生育期内,持续不断地供应作物生长发育所必需的各种速效养分的能力和特性,称为土壤供肥性。
2.土壤供肥性表现①作物长相。
②土壤形态。
③施肥效应。
④室内化验结果。
3.原理土壤供肥性常与土壤中速效养分含量、迟效养分转化成速效养分的速率、交换性离子有效度等有关。