材料力学性能-考前复习总结(前三章)
材料力学性能总结

材料力学性能总结第一篇:材料力学性能总结材料力学性能第一章二节.弹变1,。
弹性变形:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。
这种可恢复的变形称为弹性变形。
2.弹性模量:表征材料对弹性变形的抗力3.弹性性能与特征是原子间结合力的宏观体现,本质上决定于晶体的电子结构,而不依赖于显微组织,因此,弹性模量是对组织不敏感的性能指标。
4.比例极限σp:应力与应变成直线关系的最大应力。
5.弹性极限σe:由弹性变形过渡到弹性塑性变形的应力。
6.弹性比功: 表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。
7.力学性能指标:反映材料某些力学行为发生能力或抗力的大小。
8.弹性变形特点:应力与应变成比例,产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状9.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象,称为滞弹性。
10.循环韧性:指在塑性区加载时材料吸收不可逆变形功的能力。
11.循环韧性应用:减振、消振元件。
12.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象,称为包申格效应。
13.包申格应变:指在给定应力下,正向加载与反向加载两应力-应变曲线之间的应变差。
14.消除包申格效应:预先进行较大的塑性变形。
在第二次反向受力前先使金属材料于回复或再结晶温度下退火。
三节:塑性1.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力.2.影响材料屈服强度的因素:㈠内在因素.1.金属本性及晶格类型.主滑移面位错密度大,屈服强度大。
2.晶粒大小和亚结构.晶界对位错运动具有阻碍作用。
晶粒小可以产生细晶强化。
都会使强度增加。
3.溶质原子: 溶质元素溶入金属晶格形成固溶体,产生固溶强化。
4,第二相.a.不可变形的第二相绕过机制.留下一个位错环对后续位错产生斥力, b.可以变形的第二相切过机制.由于,质点与基体间晶格错排及位错切过第二相质点产生新界面需要做功,使强度增加。
(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
工程材料力学性能各章节复习知识点

工程材料力学性能各个章节主要复习知识点第一章弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。
滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。
包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。
塑性:指金属材料断裂前发生塑性变形的能力。
脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。
韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。
应力、应变;真应力,真应变概念。
穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。
拉伸断口形貌特征?①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。
用肉眼或放大镜观察时,断口呈纤维状,灰暗色。
纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。
其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。
②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。
板状矩形拉伸试样断口呈人字形花样。
人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。
韧、脆性断裂区别?韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆拉伸断口三要素?纤维区,放射区和剪切唇。
缺口试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪几种形式?磨损、腐蚀和断裂是材料的三种主要失效方式。
材料的形变强化规律是什么?层错能越低,n越大,形变强化增强效果越大退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。
在某些合金中,增强效果随合金元素含量的增加而下降。
材料的晶粒变粗,增强效果提高。
第二章应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmaxσmax缺口敏感度:缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb的比值表示缺口敏感度,即为NSR=σbnσb第三章低温脆性:在实验温度低于某一温度t2时,会由韧性状态变为脆性状态,冲击吸收功明显降低,断裂机理由微孔聚集性变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。
(完整版)材料力学复习重点汇总

6.有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相重合并得到的裂纹长度【新P74;旧P86】。
五、试述应力场强度因子的意义及典型裂纹 的表达式
答:应力场强度因子 :表示应力场的强弱程度。 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子 有关,对于某一确定的点,其应力分量由 确定, 越大,则应力场各点应力分量也越大,这样 就可以表示应力场的强弱程度,称 为应力场强度因子。 “I”表示I型裂纹。 几种裂纹的 表达式,无限大板穿透裂纹: ;有限宽板穿透裂纹: ;有限宽板单边直裂纹: 当b a时, ;受弯单边裂纹梁: ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸: ;无限大物体表面有半椭圆裂纹,远处均匀受拉伸:A点的 。
六、试述冲击载荷作用下金属变形和断裂的特点。
冲击载荷下,瞬时作用于位错的应力相当高,结果使位错运动速率增加,因为位错宽度及其能量与位错运动速率有关,运动速率越大,则能量越大,宽度越小,故派纳力越大。结果滑移临界切应力增大,金属产生附加强化。
由于冲击载荷下应力水平比较高,将使许多位错源同时开动,增加了位错密度和滑移系数目,出现孪晶,减少了位错运动自由行程的平均长度,增加了点缺陷的浓度。这些原因导致金属材料在冲击载荷作用下塑性变形极不均匀且难以充分进行,使材料屈服强度和抗拉强度提高,塑性和韧性下降,导致脆性断裂。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
材料力学性能复习总结

材料力学性能复习总结材料力学性能是指材料在外力作用下所表现出的力学特性和性能。
在材料力学性能的学习中,不仅需要了解材料的基本力学性质,还需要掌握材料的破坏机制、变形行为以及材料的力学性能测试方法等方面的知识。
以下是对材料力学性能复习的总结。
1.材料的破坏机制和破坏形态材料的破坏机制是指材料在受力作用下发生破坏的方式和过程。
常见的破坏机制有拉伸破坏、压缩破坏、剪切破坏等。
拉伸破坏时,材料会发生断裂;压缩破坏时,材料会出现压缩变形和压碎现象;剪切破坏时,材料会出现剪切变形和断裂等。
材料的破坏形态是指材料在受力作用下发生的形态变化。
常见的破坏形态有脆性断裂、塑性变形和疲劳破坏等。
脆性断裂是指材料在受静态或低应力下发生迅速断裂的性质;塑性变形是指材料在受力作用下发生塑性流动,而不发生断裂;疲劳破坏是指材料在反复受力下产生裂纹并最终导致断裂。
2.材料的变形行为和变形机制材料的变形行为是指材料在受力作用下发生的形变现象。
常见的变形行为有弹性变形、塑性变形和粘弹性变形等。
弹性变形是指材料在受力作用下发生的可逆性变形。
材料在弹性变形时能够恢复到原始形状和尺寸。
弹性变形的机制是原子之间的键能发生弹性形变,即在受力作用下原子间的距离发生变化,但不改变原子间的相对位置。
塑性变形是指材料在受力作用下发生的不可逆性变形。
材料在塑性变形时会发生晶格的滑移和位错的运动。
塑性变形的机制是原子间的键能发生塑性形变,即原子间的相对位置发生改变。
粘弹性变形是指材料在受力作用下表现出介于弹性变形和塑性变形之间的性质。
材料在粘弹性变形时有一部分能量会被消耗掉,导致材料的不完全恢复。
粘弹性变形的机制是在外力作用下,分子间的键发生的弹性形变和分子间的长距离位移。
3.材料力学性能的测试方法拉伸试验是指将材料置于拉力下进行测试。
通过拉伸试验可以了解材料的弹性性能、破坏强度、延展性以及断裂形态等。
压缩试验是指将材料置于压力下进行测试。
通过压缩试验可以了解材料的强度和刚度等。
材料力学性能重点总结

名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收弹性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%—4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力.常见塑性变形方式:滑移和孪生6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。
7比例极限:应力与应变保持正比关系的应力最高限。
8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈服强度.9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂过程,在裂纹扩展过程中不断的消耗能量.韧性断裂的断裂面一般平行于最大切应力并于主应力成45度角。
10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。
断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。
11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。
12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。
13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓“缺口效应“①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向.8缺口敏感度:有缺口强度的抗拉强度σbm与等截面尺寸光滑试样的抗拉强度σb的比值。
NSR=σbn / σs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
《材料的力学性能》课程笔记

《材料的力学性能》课程笔记第一章:材料在拉伸下的力学性能1.1 拉伸试验与应力应变曲线拉伸试验是评估材料在拉伸载荷下的力学性能的基本方法。
在拉伸试验中,将材料试样固定在拉伸试验机上,然后对试样施加拉伸载荷,直至试样断裂。
通过记录拉伸过程中载荷与试样长度变化的关系,可以得到应力应变曲线。
应力应变曲线是描述材料在拉伸过程中应力与应变之间关系的曲线。
它通常包括弹性变形阶段、塑性变形阶段和断裂阶段。
通过应力应变曲线,可以获得材料的弹性模量、屈服强度、断裂强度等力学性能参数。
在弹性变形阶段,应力与应变呈线性关系,符合胡克定律。
弹性模量是描述材料在弹性变形阶段刚度的指标,它定义为应力与应变的比值。
弹性模量越大,材料的刚度越高。
在塑性变形阶段,应力与应变不再呈线性关系,材料发生永久形变。
屈服强度是描述材料开始发生塑性变形的应力水平。
屈服强度越大,材料的抗变形能力越强。
在断裂阶段,应力达到最大值,材料发生断裂。
断裂强度是描述材料在断裂时的应力水平。
断裂强度越大,材料的抗断裂能力越强。
1.2 工程应力指标工程应力是描述材料在拉伸过程中承受的应力的一种指标。
它定义为拉伸载荷与原始横截面积的比值。
工程应力的单位通常是Pa(帕斯卡)或MPa(兆帕斯卡)。
工程应力可以用来评估材料在拉伸过程中的承载能力。
在工程设计中,通常使用工程应力来计算和确定材料的尺寸和结构的安全性。
1.3 工程应变指标与典型的拉伸应力-应变曲线工程应变是描述材料在拉伸过程中发生的形变的一种指标。
它定义为试样长度变化与原始长度的比值。
工程应变的无量纲,通常以百分比表示。
典型的拉伸应力-应变曲线展示了材料在拉伸过程中的力学行为。
在弹性变形阶段,应力与应变呈线性关系,符合胡克定律。
在塑性变形阶段,应力与应变不再呈线性关系,材料发生永久形变。
在断裂阶段,应力达到最大值,材料发生断裂。
通过分析拉伸应力-应变曲线,可以获得材料的弹性模量、屈服强度、断裂强度等重要力学性能参数,为材料的选择和应用提供依据。
材料的力学性能重点总结

材料的力学性能重点总结名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收塑性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。
材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。
其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。
应力软性系数:最大切应力与最大正应力的相对大小。
1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
ae=1/2σeεe=σe2/2E。
取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。
需通过合金强化及组织控制提高弹性极限。
2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。
①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。
金属中点缺陷的移动,长时间回火消除。
弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。
吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。
②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。
卸载后同向拉伸,位错线不能显著运动。
但反向载荷使得位错做反向运动,阻碍少,位错可在较低应力下做较远移动。
若预先经受较大塑变,因位错增殖和难于重分布则反向加载无包效应。
这一般被认为是产生包辛格效应的主要原因。
其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。
衡量:包申格应变β:在给定应力下,正向和反向加载两应力应变曲线间的应变差;实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。
其次,包辛格效应大的材料,内应力较大。
另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利;在低周疲劳中,包辛格效应β大,在恒定应变下循环一周,形成的滞后环面积小,吸收的不可逆能量少,疲劳寿命高。
2塑变1)方式及特点:切应力作用。
滑移-滑移面-密排面,受温度、成分、预变形影响;滑移方向-密排方向,比较稳定。
Fcc滑移系少但派纳力低易滑移。
孪生—fcc低温、bcc低温或冲击、hcp滑移系少更易孪生,孪生可调整滑移面方向使得新滑移系开动,间接助滑移。
特点:各晶粒变形的不同时性和不均匀性,晶粒取向、应力状态、各相性质、形态分布等;变形的相互协调性,需5个以上独立的滑移系。
2)屈服:外力不增加仍能继续伸长。
在试样局部区域形成45°吕德斯带或屈服线,然后逐渐扩展到全部试样,进入均匀塑变阶段。
产生条件:材料变形前可动位错密度很小(或虽有但被钉扎);随塑变发生,位错能快速增殖;位错运动速率与外加应力强烈依存。
塑变速率与位错密度、运动速率及柏氏矢量成正比,ε=bρυ,开始时,ρ小,需υ大(取决于应力大小,位错运动速率敏感系数m’),就需要较高应力即上屈服点,一旦塑变开始,位错大量增殖,速率下降,相应的应力也就突然下降,出现下屈服点。
在关系式: ,其中m'为位错运动速率应力敏感指数。
体心立方Bcc 金属的滑移系较多,晶格阻力较大,可动位错密度较小,位错能快速增殖较大,(体现m'值较低,小于20)故具有明显屈服现象;而面心立方fcc金属的滑移系较少,晶格阻力较小,可动位错密度较大,位错能快速增殖较少(体现m'值为100-200),故屈服现象不明显。
指标:规定非比例伸长应力加载过程中,标距部分非比例伸长;规定残余伸长应力,卸载后;规定总伸长应力,加载时,总伸长屈雷斯加最大切应力判据:米赛斯畸变能判据意义:屈服判据是机件开始塑变的强度设计准则,高屈服强度可减轻机件重量,减少体积和尺寸。
但过高会增大屈强比,不利于某些应力集中部位的应力重新分布,应脆断。
应试机件的形状及所受应力状态、应变速率等决定。
低屈强有利于材料冷成形加工和改善焊接性能。
由于c%的不同,碳的固溶强化,组织不同,退火低、中、高碳钢的分别为铁素体+珠光体、珠光体、珠光体+渗碳体(复杂单斜),低碳钢的屈服现象明显,屈服平台呈锯齿状;中碳钢有明显的屈服平台,有上下屈服点;高碳钢屈服平台较短,无上下屈服点出现。
3)影响因素:屈服变形是位错增殖和运动结果,凡影响位错增殖和运动的必将影响屈强;实际金属的力学行为是由多晶粒综合作用的结果,要考虑晶界、相邻晶粒的约束、化学成分及第二相的影响;外界因素通过影响位错运动影响屈服强度。
内因:①金属本性及晶格类型:多相合金塑变主要沿集体相进行,位错运动阻力有晶格阻力(派纳力,与位错宽度和柏氏矢量、晶面和晶向原子间距、弹性模量G有关)和位错间交互作用产生的阻力(平行位错间、运动位错与林位错切割)②晶粒大小和亚结构:细晶强化。
晶界是位错运动的障碍,一个晶粒中必须塞积有足够数量的位错才能使相邻晶粒的位错源开动。
减小晶粒尺寸,增加晶界,增加位错运动障碍的数目,减小晶粒内位错塞积群的长度。
③溶质元素:固溶强化。
溶质与溶剂原子直径不同,形成了晶格畸变应力场,与位错应力场交互作用,使位错受阻。
受溶质量限制。
④第二相:与第二相质点本身能否变形有关,分为不可变形的和可变形的。
弥散强化(粉末冶金获得)和沉淀强化(固溶处理+沉淀析出)。
位错线只能绕过不可变形质点,流变应力决定于质点间距,留下位错环。
质点数量增加,位错环增多,相当于质点间距减小,应力增大。
位错切过可变形质点,同基体一起变形,产生新的界面需要做功,与粒子本身性质及其于基体的结合情况有关。
还与第二相尺寸、形状及数量,以及第二相与基体的强度、塑性和应变硬化特性、两相之间的晶体学配合和界面能有关。
长形质点更显著外因:①温度:温度高,屈服强度低。
派纳力起作用,属短程力,对温度十分敏感,bcc的屈服强度有强烈的温度效应(派纳力高很多)②应变速率:应变速率硬化现象,与应变速率敏感指数m有关。
M高,缩颈难以形成。
一般钢材为0.2。
③应力状态:切应力分量越大,越有利于塑变,屈服强度越低,但这只是材料在不同条件下表现的力学行为不同而已。
4)应变硬化(形变强化):在金属变形过程中,外力超过屈服强度后,塑变并不是流变下去,而需要不断增加外力才能继续进行。
这种阻止继续塑变的能力就是应变硬化性能。
位错增殖、运动受阻所致。
需用真应力-应变曲线描述,符合Hollomon关系:S=Ke n(K硬化系数,n应变硬化指数)。
一般金属为0.1-0.5。
与层错能有关,层错能低,不易交滑移,位错在障碍附近产生的应力集中水平高,应变硬化程度大。
测试方法:在应力应变曲线上取几个点(),换算为S和e(),作lgS-lge曲线,直线斜率为n。
工程意义:使机件有一定的抗偶然过载能力;形变强化和塑变适当配合可使金属进行均匀塑变,保证冷变形工艺顺利进行(有变形就有硬化,将变形推到其它部位);金属强化的手段(喷丸和表面滚压);可降低塑性改善低碳钢的切削加工性能。
5)颈缩现象:变形集中于局部区域的特殊现象,是应变硬化和界面所需共同作用的结果。
在拉伸曲线最大点B前,应变硬化可补偿截面减小引起的承载力下降,均匀变形;B点后,应变硬化跟不上塑变的发展,变形集中于局部地区发生颈缩。
(应力状态由单向变三向)缩颈判据:F=SA(载荷为真应力和瞬时面积之积),dF=SdA+AdS=0,且dV=AdL+LdA=0,可得另外,在颈缩点Hollomon关系成立,真实抗拉强度Sb= ,得e B=n,应变硬化指数等于最大真实均匀塑性应变量时,缩颈产生。
6)抗拉强度:表征对最大均匀塑变的抗力。
对韧性材料,表示最大实际承载能力;对脆性材料,即断裂强度;在有些场合以其为设计依据;其大小决定于屈服强度和应变硬化指数,屈强一定,n大则抗拉强度高;与布氏硬度HBW、疲劳极限有一定经验关系7)塑性:材料断裂前发生塑变的能力。
塑性变形包括均匀塑变和集中塑变。
均匀塑变:条件相对伸长;条件相对断面收缩;真实应变总塑变:延伸率断面收缩率表示方法:不形成颈缩的材料,集中变形为零,用和表征塑性。
δ适用于单一拉伸条件下的长形试样,无论有无缩颈出现,因为缩颈局部区域的塑性变形量对总伸长实际上没有什么影响;对非长形拉伸试样,在拉伸时形成缩颈,则用ψ作为塑性指标,因为ψ反映了材料断裂前的最大塑性变形量,用δ则不能很好的显示。
另,ψ是在复杂应力状态下形成的,冶金因素的变化对性能的影响更为突出,ψ比δ对组织变化更为敏感。
意义:塑性以防止机件偶然过载时突然破坏,因缓和应力集中;松弛裂纹尖端应力,阻止裂纹扩展;利于成形加工;反映冶金质量。
几种既能显著强化金属又不降低塑性的方法:细晶强韧化(细化晶粒既能提高强度,又能同时优化塑性和韧性,是目前公认最佳的实现材料强韧化的途径);固溶强化(固溶强化应在保证强度的同时提高塑性。
通过添加合适的合金元素,如,Ni,可促进交滑移,改善塑性。
另外,调整间隙原子的添加浓度,实现强度和塑韧性的最佳配合);位错强化(位错密度升高会提高强度而降低塑性和韧性。
可动的未被锁住的位错对韧性的损害小于被沉淀物或固溶原子锁住的位错,故提高可动位错密度对塑性和韧性均有利);沉淀强化(沉淀颗粒会通过弥散强化提高基体的强度和硬度,但可能会明显降低塑性和韧性。
尤其,条带状、片状析出物,以及沿晶界网状析出的沉淀相,均显著降低材料塑性。
减少沉淀相的析出数量,改善沉淀相的形状和分布状态,可改善材料塑性)。
提高金属塑性的主要途径:.1 尽量减少金属材料中杂质元素的含量减少金属材料中杂质元素的含量,对提高金属塑性将起到一定的作用。
如杂质元素P、S 在金属中属于有害杂质,它们能降低金属的塑性。
金属材料本身化学成分的含量直接影响着金属材料的机械性能。