数学二轮专题3数列第1讲等差数列和等比数列

合集下载

第1讲 等差数列与等比数列

第1讲 等差数列与等比数列

第1讲等差数列与等比数列高考定位 1.等差、等比数列基本运算和性质的考查是高考热点,经常以选择题、填空题的形式出现;2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难度中档以下.1.(2021·北京卷)已知{a n}和{b n}是两个等差数列,且a kb k(1≤k≤5)是常值,若a1=288,a5=96,b1=192,则b3的值为()A.64B.100C.128D.132答案C解析由题意可得a1b1=a5b5,则b5=64,故b3=b1+b52=2.(2021·全国甲卷)记S n为等比数列{a n}的前n项和.若S2=4,S4=6,则S6=()A.7B.8C.9D.10答案A解析法一因为S2=4,S4=6,且易知公比q≠±1,所以由等比数列的前n项和公式,得2=a1(1-q2)1-q=a1(1+q)=4,4=a1(1-q4)1-q=a1(1+q)(1+q2)=6,两式相除,得q2=12,所以1=4(2-2),=221=4(2+2),=-22,所以S6=a1(1-q6)1-q=7.故选A.法二易知S2,S4-S2,S6-S4构成等比数列,由等比中项得S2(S6-S4)=(S4-S2)2,即4(S6-6)=22,所以S6=7.故选A.3.(2020·全国Ⅱ卷)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215-25,则k=()A.2B.3C.4D.5答案C解析∵a1=2,a m+n=a m a n,令m=1,则a n+1=a1a n=2a n,∴{a n}是以a1=2为首项,2为公比的等比数列,∴a n=2×2n-1=2n.又∵a k+1+a k+2+…+a k+10=215-25,∴2k+1(1-210)1-2=215-25,即2k+1(210-1)=25(210-1),∴2k+1=25,∴k+1=5,∴k=4.4.(2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n }是等差数列;(2)求{a n }的通项公式.(1)证明因为b n 是数列{S n }的前n 项积,所以n ≥2时,S n =b nb n -1,代入2S n +1b n =2可得,2b n -1b n+1b n =2,整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32,故{b n }是以32为首项,12为公差的等差数列.(2)解由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1,当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1).故a n n =1,-1n (n +1),n ≥2.1.等差数列(1)通项公式:a n =a 1+(n -1)d ;(2)求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;(3)常用性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ;②a n =a m +(n -m )d ;③S m,S2m-S m,S3m-S2m,…成等差数列.2.等比数列(1)通项公式:a n=a1q n-1(q≠0);(2)求和公式:q=1,S n=na1;q≠1,S n=a1(1-q n)1-q=a1-a n q1-q;(3)常用性质:①若m,n,p,q∈N*,且m+n=p+q,则a m·a n=a p·a q;②a n=a m·q n-m;③S m,S2m-S m,S3m-S2m,…(S m≠0)成等比数列.温馨提醒应用公式a n=S n-S n-1时一定注意条件n≥2,n∈N*.热点一等差、等比数列的基本运算【例1】设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.解(1)设{a n}的公差为d.因为a1=-10,所以a2=-10+d,a3=-10+2d,a4=-10+3d.因为a2+10,a3+8,a4+6成等比数列,所以(a3+8)2=(a2+10)(a4+6).所以(-2+2d)2=d(-4+3d).解得d=2.所以a n=a1+(n-1)d=2n-12.(2)法一由(1)知,a n=2n-12.则当n≥7时,a n>0;当n=6时,a n=0;当n<6时,a n<0;所以S n的最小值为S5=S6=-30.法二由(1)知,S n =n2(a 1+a n )=n (n -11)-1214,又n ∈N *,所以当n =5或n =6时,S n 的最小值为S 5=S 6=-30.探究提高1.等差(比)数列基本运算的解题途径:(1)设基本量a 1和公差d (公比q ).(2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.2.第(2)题求出基本量a 1与公差d ,进而由等差数列前n 项和公式将结论表示成关于“n ”的函数,求出最小值.【训练1】(2021·济南联考)已知各项均为正数的等差数列{a n }满足a 1a 5=33,a 22=25.(1)求数列{a n }的通项公式;(2)设b n =4n -2+3a n ,若a n ∈N ,求{b n }的前n 项和T n .解(1)设各项均为正数的等差数列的公差为d .由a 1a 5=33,且a 22=25.1(a 1+4d )=33,2=a 1+d =5,1=3,=21=113,=43.故a n =3+2(n -1)=2n +1或a n =113+43(n -1)=4n +73.(2)由于a n ∈N ,所以a n =2n +1.所以b n =4n -2+3a n =4n -2+6n +3.根据等差数列、等比数列的前n 项和公式,得T n =14(1-4n )1-4+12(9+6n +3)n =112(4n -1)+3n 2+6n .热点二等差(比)数列的性质【例2】(1)在等差数列{a n }中,a 1=-9,a 5=-1.记T n =a 1a 2…a n (n =1,2,…),则数列{T n}()A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项(2)已知数列{a n}的各项都为正数,对任意的m,n∈N*,a m·a n=a m+n恒成立,且a3·a5+a4=72,则log2a1+log2a2+…+log2a7=________.(3)(多选)已知S n是等差数列{a n}(n∈N*)的前n项和,且S5>S6>S4.下列四个结论正确的是()A.数列{S n}中的最大项为S10B.数列{a n}的公差d<0C.S10>0D.S11<0答案(1)B(2)21(3)BCD解析(1)由题意可知,等差数列的公差d=a5-a15-1=-1+95-1=2,则其通项公式为a n=a1+(n-1)d=-9+(n-1)×2=2n-11,注意到a1<a2<a3<a4<a5<0<a6=1<a7<…,且由T5<0可知T i<0(i≥6,i∈N),由T i T i-1=a i>1(i≥7,i∈N)可知数列{T n}不存在最小项,由于a1=-9,a2=-7,a3=-5,a4=-3,a5=-1,a6=1,故数列{T n}中的正项只有有限项:T2=63,T4=945.故数列{T n}中存在最大项,为T4.故选B.(2)因为对任意的m,n∈N*,a m·a n=a m+n恒成立,令m=1,则a1·a n=a1+n,即a n+1a n=a1对任意的n∈N*恒成立,所以数列{a n}为等比数列,公比为a1.由等比数列的性质有a3a5=a24,所以a3·a5+a4=a24+a4=72,又a 4>0,解得a 4=8,所以log 2a 1+log 2a 2+…+log 2a 7=log 2(a 1a 7)(a 2a 6)(a 3a 5)a 4=log 2a 74=log 287=21.(3)因为S 5>S 6>S 4,所以a 6<0,a 5>0且a 5+a 6>0,所以数列{S n }中的最大项为S 5,A 错误;数列{a n }的公差d <0,B 正确;S 10=(a 1+a 10)×102=5(a 5+a 6)>0,C正确;S 11=(a 1+a 11)×112=11a 6<0,D 正确.故选BCD.探究提高1.利用等差(比)性质求解的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.2.活用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.【训练2】(1)(2021·江南十校联考)已知等差数列{a n }的前n 项和为S n ,且S 8<S 10<S 9,则满足S n >0的正整数n 的最大值为()A.16B.17C.18D.19(2)(多选)(2021·八省八校一联)已知等比数列{a n }的首项a 1>1,公比为q ,前n 项和为S n ,前n 项积为T n ,函数f (x )=x (x +a 1)(x +a 2)…(x +a 7),若f ′(0)=1,则()A.{lg a n }为递增的等差数列B.0<q <1n D.使得T n >1成立的n 的最大值为6答案(1)C(2)BCD解析(1)由S 8<S 10<S 9,得a 10<0且a 9+a 10>0,所以等差数列{a n }的公差d <0,且a 9>0.从而S17=17(a1+a17)2=17a9>0,S18=18(a1+a18)2=9(a9+a10)>0,S19=19(a1+a19)2=19a10<0.故满足S n>0的正整数n的最大值为18.(2)令g(x)=(x+a1)(x+a2)…(x+a7),则f(x)=xg(x),∴f′(x)=g(x)+xg′(x),∴f′(0)=g(0)=a1a2…a7=1.∵{a n}是等比数列,∴a1a2…a7=a74=1,即a4=1=a1q3.又a1>1,∴0<q<1,B正确;∵lg a n=lg(a1q n-1)=lg a1+(n-1)lg q,又lg q<0,∴{lg a n}是公差为lg q的递减的等差数列,A错误;∵S n-a11-q=a11-q(1-q n-1)=a1qq-1·q n-1,n a1qq-1<0,公比为q的递增的等比数列,C正确;∵a1>1,0<q<1,a4=1,∴当n≤3时,a n>1,当n≥5时,0<a n<1,∴当n≤4时,T n>1.∵T7=a1a2…a7=a74=1,∴当n≥8时,T n=T7a8a9…a n<T7=1.又T5=T7a6a7>1,T6=T7a7>1,∴使得T n>1成立的n的最大值为6,D正确.故选BCD.热点三等差(比)数列的判断与证明【例3】(2021·广东重点中学联考)在数列{a n}中,a1=5,a n=2a n-1+2n-1(n≥2,n∈N*).(1)求a2,a3的值;(2)是否存在实数λ,求出λ的值;若不存在,请说理理由.解(1)因为a1=5,且a n=2a n-1+2n-1(n≥2),所以a2=2a1+22-1=13,a3=2a2+23-1=33.(2)假设存在实数λ.设b n=a n+λ2n,由{b n}为等差数列,得2b2=b1+b3,所以2×a2+λ22=a1+λ2+a3+λ23,即13+λ2=5+λ2+33+λ8,解得λ=-1.而当λ=-1时,有b n+1-b n=a n+1-12n+1-a n-12n=12n+1[(a n+1-2a n)+1]=12n+1[(2n+1-1)+1]=1,b1=a1-12=5-12=2,则{b n}是首项为2,公差为1的等差数列.所以存在实数λ=-12,公差是1的等差数列.探究提高 1.判定等差(比)数列的主要方法:(1)定义法:对于任意n≥1,n∈N*,验证a n+1-a n n无关的一常数;(2)中项公式法,一定注意,a2n=a n-1a n+1(n≥2,n∈N*)是{a n}为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.2.第(2)问,假设存在实数λ列,求得λ的值后,一定要验证数列{b n }是等差数列.【训练3】(2021·全国甲卷)已知数列{a n }的各项为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1.(注:如果选择多个条件分别解答,那么按第一个解答计分.)解①③⇒②.已知{a n }是等差数列,a 2=3a 1.设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1,所以S n =na 1+n (n -1)2d =n 2a 1.因为数列{a n }的各项均为正数,所以S n =n a 1,所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列.①②⇒③.已知{a n }是等差数列,{S n }是等差数列.设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =12n 2d 1.因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a 1-d2=0,即d =2a 1,所以a 2=a 1+d =3a 1.②③⇒①.已知数列{S n }是等差数列,a 2=3a 1,所以S 1=a 1,S 2=a 1+a 2=4a 1.设数列{S n }的公差为d ,d >0,则S 2-S 1=4a 1-a 1=d ,得a 1=d 2,所以S n =S 1+(n -1)d =nd ,所以S n =n 2d 2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.热点四等差数列与等比数列的综合问题【例4】设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(1)求S n和T n;(2)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.解(1)设等比数列{b n}的公比为q(q>0).由b1=1,b3=b2+2,可得q2-q-2=0.因为q>0,可得q=2,故b n=2n-1.所以,T n=1-2n1-2=2n-1.设等差数列{a n}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故a n=n.所以,S n=n(n+1)2.(2)由(1),有T1+T2+…+T n=(21+22+…+2n)-n=2×(1-2n)1-2-n=2n+1-n-2.由S n+(T1+T2+…+T n)=a n+4b n得n(n+1)2+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,解得n=-1(舍)或n=4.所以n的值为4.探究提高 1.等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.2.数列的通项或前n项和可以看作关于n的函数,然后利用函数的性质求解数列问题.【训练4】(2021·衡水中学联考)已知等差数列{a n}的前n项和为S n,且S4=S5=-20.(1)求数列{a n}的通项公式;(2)已知数列{b n}是以4为首项,4为公比的等比数列,若数列{a n}与{b n}的公共项为a m,记m由小到大构成数列{c n},求{c n}的前n项和T n.解(1)设等差数列{a n}的公差为d,由S4=S5=-20,得4a1+6d=5a1+10d=-20,解得a1=-8,d=2,则a n=-8+2(n-1)=2n-10.(2)数列{b n}是以4为首项,4为公比的等比数列,∴b n=4·4n-1=4n(n∈N*).又依题意2m-10=4n,∴m=10+4n2=5+22n-1,则T n=5n+2(1-4n)1-4=5n+22n+1-23.一、选择题1.(2021·福州一诊)正项等差数列{a n}的前n项和为S n,已知a2+a8-a25+8=0,则S9=()A.35B.36C.45D.54答案B解析由等差数列的性质得a2+a8=2a5,∴a2+a8-a25+8=0,可化为a25-2a5-8=0.又a5>0,解得a5=4.∴S9=9(a1+a9)2=9a5=36.2.在等比数列{a n}中,a4=2,a5=5,则数列{lg a n}的前8项和S8为()A.4B.2C.3D.5答案B解析因为{a n}为等比数列,且a4=2,a5=5,所以a4a5=2·5=10.则数列{lg a n}的前8项和S8=lg a1+lg a2+…+lg a8=lg a1·a2·…·a8=lg(a1·a8)(a2·a7)(a3·a6)(a4·a5)=lg(10)4=4lg10=2.3.(2021·全国甲卷)等比数列{a n}的公比为q,前n项和为S n.设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案B解析当a1<0,q>1时,a n=a1q n-1<0,此时数列{S n}递减,所以甲不是乙的充分条件.当数列{S n}递增时,有S n+1-S n=a n+1=a1q n>0,若a1>0,则q n>0(n∈N*),即q>0;若a1<0,则q n<0(n∈N*),不存在,所以甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.4.(2021·日照校际联考)对于数列{a n},若存在正整数k(k≥2),使得a k<a k-1,a k<a k +1,则称a k是数列{a n}的“谷值”,k是数列{a n}的“谷值点”.在数列{a n}中,若a n=|n+9n-8|,则数列{a n}的“谷值点”为()A.2B.7C.2,7D.2,3,7答案C解析因为a n=|n+9n-8|,所以a1=2,a2=32,a3=2,a4=74,a5=65,a6=12,a7=27,a8=9 8.当n≥7,n∈N*时,n+9n-8>0,所以a n=|n+9n-8|=n+9n-8,此时数列{a n}递增.又a2<a1,a2<a3,a7<a6,a7<a8,所以数列{a n}的“谷值点”为2,7.5.(多选)(2021·湖北重点中学调研)设等比数列{a n}的公比为q,前n项和为S n,前n项积为T n,并满足条件a1>1,a2021·a2022>1,(a2021-1)·(a2022-1)<0,则下列结论中正确的有()A.q>1B.S2022>S2021C.a2021·a2023<1D.T2021是数列{T n}中的最大项答案BCD解析由{a n}为等比数列,a1>1,a2021·a2022>1及(a2021-1)·(a2022-1)<0,2021>1,a2022<1a2021<1,2022>1(舍去).∴公比0<q=a2022a2021<1,则A错误;S2022=S2021+a2022>S2021,故B正确;由等比数列性质知a2021·a2023=a22022<1,所以C正确;因为a1>1,a2>1,…,a2021>1,0<a2022<1,0<a2023<1,…,所以(T n)max=T2021,D正确.故选BCD.6.已知数列{a n}满足a n+2+a n=2a n+1+1,且a1=1,a2=5,则a18=()A.69B.105C.204D.205答案D解析由a n+2+a n=2a n+1+1,得a n+2-a n+1=a n+1-a n+1,则(a n+2-a n+1)-(a n+1-a n)=1,∵a2-a1=5-1=4,∴数列{a n+1-a n}是以4为首项,1为公差的等差数列,a n+1-a n=4+1×(n-1)=n+3,则a1=1,a2-a1=4,a3-a2=5,…,a n-a n-1=n+2,各项相加,得a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=1+4+5+…+(n+2)=1+(n-1)·(4+n+2)2=(n-1)(n+6)2+1,∴a18=(18-1)×(18+6)2+1=205.二、填空题7.(2021·上海卷)已知等差数列{a n}的首项为3,公差为2,则a10=________.答案21解析由题意,得a10=3+(10-1)×2=21.8.已知S n 是数列{a n }的前n 项和,S n =2-2a n +1,若a 2=12,则S 5=________.答案3116解析由题意可知,S 1=2-2a 2=1,且S n =2-2(S n +1-S n ),整理可得,S n +1-2=12(S n -2),由于S 1-2=-1,所以{S n -2}是首项为-1,公比为12的等比数列,故S 5-2=(-1)=-116,∴S 5=3116.9.(2021·济南模拟)已知等比数列{a n }的前n 项的乘积为T n ,若T 2=T 9=512,则T 8=________.答案4096解析设等比数列{a n }的公比为q ,由T 2=T 9,得a 76=1,故a 6=1.∴a 1q 5=1.①又T 2=a 1a 2=a 21q =512,②由①②联立,得q 9=1512,则q =12.所以T 8=T 9a 9=T9a 6q 3=212=4096.三、解答题10.(2021·广州质检)已知{a n }是等差数列,{b n }是等比数列,且{b n }的前n 项和为S n ,2a 1=b 1=2,a 5=5(a 4-a 3),________.在①b 5=4(b 4-b 3),②b n +1=S n +2这两个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答.(1)求数列{a n }和{b n }的通项公式;(2)求数列{a n -b n }的前n 项和T n .(注:如果选择多个条件分别解答,那么按第一个解答计分.)解(1)若选条件①,b 5=4(b 4-b 3).设等差数列{a n}的公差为d,∵2a1=2,a5=5(a4-a3),∴a1+4d=5(a1+3d-a1-2d),∴a1=d=1.∴a n=1+(n-1)×1=n.设等比数列{b n}的公比为q.由b1=2,且b5=4(b4-b3),得b1q4=4(b1q3-b1q2).∴q2-4q+4=0,解得q=2.所以{b n}是首项为2,公比为2的等比数列.故b n=2×2n-1=2n(n∈N*).若选条件②,b n+1=S n+2.令n=1,得b2=S1+2=b1+2=4.∴公比q=b2b1=2.∴数列{b n}是首项为2,公比为2的等比数列.从而b n=2×2n-1=2n(n∈N*).(2)由(1)知a n-b n=n-2n,∴T n=(1+2+3+…+n)-(21+22+23+…+2n),∴T n=n(1+n)2-2(1-2n)1-2,∴T n=2-2n+1+n22+n2.11.(2021·新高考Ⅱ卷)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)求数列{a n}的通项公式a n;(2)求使S n>a n成立的n的最小值.解(1)由等差数列的性质可得:S5=5a3,则a3=5a3,∴a3=0.设等差数列的公差为d,从而有a2a4=(a3-d)(a3+d)=-d2,S4=a1+a2+a3+a4=(a3-2d)+(a3-d)+a3+(a3+d)=-2d.∵a2a4=S4,∴-d2=-2d,由于公差不为零,故d=2,∴数列{a n}的通项公式为a n=a3+(n-3)d=2n-6.(2)由数列{a n}的通项公式可得:a1=2-6=-4,则S n=n×(-4)+n(n-1)2×2=n2-5n,则不等式S n>a n即n2-5n>2n-6,整理可得:(n-1)(n-6)>0,解得n<1或n>6,又n为正整数,故n的最小值为7.12.(多选)(2021·长沙联考)在“全面脱贫”行动中,贫困户小王2021年1月初向银行借了扶贫免息贷款10000元,用于自己开设的农产品土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算每月获得的利润是该月月初投入资金的20%,每月月底需缴纳房租600元和水电费400元,余款作为资金全部用于再进货,如此继续.设第n月月底小王手中有现款为a n,则(参考数据:1.211≈7.5,1.212≈9),()A.a1=12000B.a n+1=1.2a n-1000C.2021年小王的年利润约为40000元D.两年后,小王手中现款约达41万答案BCD解析每月获得的利润是该月月初投入资金的20%,每月月底需缴纳房租600元和水电费400元,∴a1=(1+20%)×10000-(600+400)=11000(元),故A错误;由题意a n+1=1.2a n-1000,故B正确;由a n+1=1.2a n-1000,得a n+1-5000=1.2(a n-5000),∴数列{a n-5000}是首项为6000,公比为1.2的等比数列,∴a12-5000=6000×1.211,即a12=6000×1.211+5000≈50000,则2021年小王的年利润约为50000-10000=40000(元),故C正确;两年后,即a24=5000+6000×1.223≈5000+6000×921.2=410000,即41万,故D正确,故选BCD.13.(2021·江南十校联考)已知等比数列{a n}的前n项和为S n,且a n+1+λ=3S n,a3=12,则实数λ的值为________.答案-3 4解析等比数列{a n}满足a n+1+λ=3S n,①则a n+λ=3S n-1(n≥2,n∈N*),②①-②得a n+1-a n=3S n-3S n-1,则a n+1=4a n,所以等比数列{a n}的公比为4,又由a3=12,则a1=a3q2=34.若a n+1+λ=3S n,则a1q n+λ=3×a1(1-q n)1-q恒成立,∴λ=-a1=-3 4 .14.已知等差数列{a n}的公差为-1,且a2+a7+a12=-6.(1)求数列{a n}的通项公式a n与其前n项和S n;(2)将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n,若存在m∈N*,使得对任意n∈N*,总有S n<T m +λ恒成立,求实数λ的取值范围.解(1)由a2+a7+a12=-6,得a7=-2,∴a1=4,∴a n=5-n,从而S n=n(9-n)2(n∈N*).(2)由题意知b1=4,b2=2,b3=1,设等比数列{b n}的公比为q,则q=b2b1=12,∴T n1-1281随n的增大而减小,∴{T n}为递增数列,得4≤T n<8.又S n=n(9-n)2=--814,又n∈N*,故(S n)max=S4=S5=10.若存在m∈N*,使得对任意n∈N*,总有S n<T m+λ,则10<8+λ,得λ>2.故实数λ的取值范围为(2,+∞).。

2022届高三数学二轮复习专题演练1-4-1第一讲等差数列、等比数列

2022届高三数学二轮复习专题演练1-4-1第一讲等差数列、等比数列

【优化研究】 2022 届高三数学二轮复习专题操练1-4-1第一讲等差数列、等比数列一、选择题1. 2022 年高考辽宁卷在等差数列{ a } 中,已知a+a= 16,则a+a=n48210A. 12B. 16C. 20D. 24分析:依据等差数列的性质求解.a2+ a10= a4+ a8=16答案: B2. 2022 年高考课标全国卷已知{ a n} 为等比数列,a4+a7=2,a5a6=- 8,则a1+a10=A. 7B. 5C.- 5D.- 7分析:解法一利用等比数列的通项公式求解.由题意得错误 !解得错误!或错误!∴a1+ a10= a11+ q9=-7解法二利用等比数列的性质求解.由错误!解得错误!或错误!∴错误 ! 或错误 !∴a1+ a10= a11+ q9=-7答案: D3.设n为等差数列 {a n}的前n项和,1=2 009,且错误!-错误!=错误!,则a4=S aA. 2 009B. 2 010C. 2 011D. 2 012分析:记数列 {a} 的公差为,∵错误 ! =错误 ! =错误 ! ,依据等差数列的前n项和公式n可得错误 ! -错误 ! =错误 ! ,即a2 012-a2 009= 3,∴3d=3,∴ d=1,故 a4=2 009+3=2 012答案: D4 2022{ a n} 是公差不为0a1=1且a1,a3, a6成等比数列,则 { a n} 的前n项和S n等于+错误 !+错误!+错误 !D.n2+n分析:由 a1,a3,a6成等比数列可得a错误!= a1· a6,设数列{ a n}的公差为 dd≠0,则1+2d2=1×1+ 5d,而d≠0,故d=错误 ! ,所以S n=n+错误 ! ×错误 ! =错误 ! +错误 ! 答案: A5.已知数列 { a n} 的前n项和S n=aq n a≠0,q≠1,q为非零常数,则数列{ a n}A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列分析:当 n=1时, a1=aq,当 n≥2时, a n= S n-S n-1= aq-1· q n-1,易知数列{ a n}既不是等差数列也不是等比数列.答案: D二、填空题6.2022 年高考辽宁卷已知等比数列{ a n} 为递加数列,且a错误 ! =a10,2a n+a n+2= 5a n+1,则数列 { a n} 的通项公式a n=________.分析:先判断数列的项是正数,再求出公比和首项.a错误!=a10>0,依据已知条件得2错误!+ q=5,解得 q=2所以 a错误! q8= a1q9,所以 a1=2,所以 a n=2n答案: 2n7. 2022 年长沙模拟若等差数列{ a n} 的前 5 项和S5= 25,且a2= 3,则a4= ________分析:依题意得S5=错误!=5a3=25,故 a3=5,数列{ a n}的公差 d= a3- a2=2,所以 a4=a3+ d=7答案: 78. 2022 年高考浙江卷设公比为qq>0的等比数列{ a }的前 n 项和为 S ,若 S =3a +2,n n22S4=3a4+2,则 q=________.分析:利用等比数列的通项公式及前n 项和公式求解.解法一S4= S2+ a3+a4=3a2+2+ a3+ a4=3a4+2,32422将 a = a q, a= a q 代入得,3a2+ 2+a2q+a2q2= 3a2q2+2,化简得 2q2-q- 3=0,解得 q=错误! q=-1不合题意,舍去.解法二设等比数列{ a n} 的首项为a1,由S2=3a2+2,得a11+ q=3a1q+2①由 S4=3a4+2,得 a11+ q1+ q2=3a1q3+2②22由②-①得 a1q 1+ q=3a1qq -1.∵ >0,∴ =错误!q q答案:错误 !三、解答题9.已知数列 {n}是一个等差数列,且2=1,5=-5a a a1 求 { a } 的通项a和前 n 项和 S ;n n n2 设c n=错误 ! ,b n= 2c n,证明数列 { b n} 是等比数列.分析: 1 设 { a n} 的公差为d,由已知条件,错误!解得 a1=3, d=-2所以 a n=a1+ n-1d=-2n+5S n= na1+错误! d=- n2+4n2 证明:∵a n=- 2n+ 5,∴c n=错误!=错误!= n∴b n=2c n=2n∵错误 ! =错误 ! =2 常数∴数列 { b n} 是等比数列.10.设等比数列 { a n} 2= 6, 6a1+a3= 30,求a n和S n 分析:设 { a n} 的公比为q,由题设得错误 ! 解得错误 ! 或错误 !n n- 1n n当 a1=3时, q=2时, a =3×2,S =3×2-1;当a 1=2,=3时, n=2×3n-1, n=3n-1 q a S11. 2022 年高考江西卷已知数列2{ a } 的前n项和S=-错误 ! n+n此中∈N ,且S的n n+n 最大值为81 确立常数,并求a n;2 求数列 { 错误 ! } 的前n项和T n分析: 1 当n=∈N+时,S n=-错误 ! n2+n取最大值,即 8=S=-错误 ! 2+2=错误 ! 2,故2= 16,所以= 4,进而 a n=S n- S n-1=错误!- nn≥2.又 a1= S1=错误!,所以 a n=错误!- nn∈N+.2 由于b n=错误 ! =错误 ! ,T n= b1+ b2++ b n=1+错误 !+错误 !++错误 !+错误 ! ,所以 T n=2T n- T n=2+1+错误!++错误!-错误!=4-错误 ! -错误 ! = 4-错误 !。

2023年高考数学二轮复习第一部分专题攻略专题三数列第一讲等差数列与等比数列

2023年高考数学二轮复习第一部分专题攻略专题三数列第一讲等差数列与等比数列

专题三 数列第一讲 等差数列与等比数列——小题备考常考常用结论 1.等差数列(1)通项公式:a n =a 1+(n -1)d ; (2)求和公式:S n =n (a 1+a n )2=na 1+n (n−1)2d ;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m)d ;③S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列. 2.等比数列(1)通项公式:a n =a 1q n -1(q ≠0); (2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1−q n )1−q=a 1−a n q 1−q;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ;②a n =a m ·q n -m ;③S m ,S 2m -S m ,S 3m -S 2m ,…(S m ≠0)成等比数列.微专题1 等差数列与等比数列的基本量计算保分题1.[2022·河北石家庄二模]等差数列{a n }的前n 项和记为S n ,若a 2+a 2 021=6,则S 2 022=( )A .3 033B .4 044C .6 066D .8 0882.[2022·辽宁沈阳三模]在等比数列{a n }中,a 2,a 8为方程x 2-4x +π=0的两根,则a 3a 5a 7的值为( )A .π√πB .-π√πC .±π√πD .π33.[2022·全国乙卷]已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6=( ) A .14 B .12 C .6D .3提分题例1 (1)[2022·江苏盐城三模]已知数列{a n},{b n}均为等差数列,且a1=25,b1=75,a2+b2=120,则a37+b37的值为()A.760 B.820C.780 D.860(2)[2022·广东佛山三模]已知公比为q的等比数列{a n}的前n项和S n=c+2·q n,n∈N*,且S3=14,则a4=()A.48B.32 C.16D.8听课笔记:技法领悟1.等差、等比数列基本运算的关注点(1)基本量:在等差或等比数列中,首项a1和公差d(公比q)是两个基本元素;(2)解题思路:①设基本量a1和d(q);②列、解方程(组);把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,减少计算量.2.等差、等比数列性质问题的求解策略(1)解决此类问题的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m+n=p+q,则a m+a n =a p+a q”这一性质与求和公式S n=n(a1+a n)2的综合应用.巩固训练11.[2022·河北邯郸二模]在我国古代著作《九章算术》中,有这样一个问题:“今有五人分五钱,令上二人与下三人等,问各得几何?”意思是有五个人分五钱,且得钱最多的两个人的钱数之和与另外三个人的钱数之和相等,问每个人分别分得多少钱?若已知这五人分得的钱数从多到少成等差数列,则这个等差数列的公差d=()A.-16B.-15C.-14D.-132.[2022·山东淄博一模]已知等比数列{a n },其前n 项和为S n .若a 2=4,S 3=14,则a 3=________.微专题2 等差数列与等比数列的综合保分题1.[2022·辽宁沈阳一模]已知等差数列{a n }的公差为2,且a 2,a 3,a 5成等比数列,则{a n }的前n 项和S n =( )A .n(n -2)B .n(n -1)C .n(n +1)D .n(n +2) 2.各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1=( ) A .5√2-5 B .5√2+5 C .5√2 D .53.已知正项等比数列{a n }的前n 项和为S n ,若S 3=4,S 9=19,则S 6,S 9的等差中项为________.提分题例2 (1)[2022·山东日照三模]在公差不为0的等差数列{a n }中,a 1,a 2,a k 1,a k 2,a k 3成公比为3的等比数列,则k 3=( )A .14B .34C .41D .86(2)[2022·山东潍坊三模](多选)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,则下列结论正确的是( )A .数列{Snn }为等差数列B .对任意正整数n ,b +n 2b n+22 ≥2b n +12 C .数列{S 2n +2-S 2n }一定是等差数列 D .数列{T 2n +2-T 2n }一定是等比数列 听课笔记:技法领悟等差、等比数列综合问题的求解策略对于等差数列与等比数列交汇的问题,要从两个数列的特征入手,理清它们的关系,常用“基本量法”求解,但有时灵活地运用等差中项、等比中项等性质,可使运算简便.巩固训练21.已知等比数列{a n }的前n 项和为S n ,且a 2,2a 5,3a 8成等差数列,则S6S 3=( )A .1或43B .1或13C .2或43D .13或432.[2022·湖北荆州三模](多选)等差数列{a n }的前项n 和为S n ,数列{b n }为等比数列,则下列说法正确的选项有 ( )A .数列{2a n }一定是等比数列B .数列{b a n }一定是等比数列C .数列{Snn }一定是等差数列D .数列{b n +b n +1}一定是等比数列微专题3 数列的递推保分题1.[2022·广东汕头三模]已知数列{a n }中,a 1=-14,当n>1时,a n =1-1a n−1,则a 2 022=( )A .-14 B .45 C .5 D .-45 2.数列{a n }中,若a 1=2,a n +1=2a n a n +2,则a 7=( )A .18 B .17 C .27 D .143.[2022·山东泰安三模]已知数列{a n }满足:对任意的m ,n ∈N *,都有a m a n =a m +n ,且a 2=3,则a 20=( )A .320B .315C .310D .35提分题 例3 (1)[2022·湖南雅礼中学二模](多选)著名的“河内塔”问题中,地面直立着三根柱子,在1号柱上从上至下、从小到大套着n 个中心带孔的圆盘.将一个柱子最上方的一个圆盘移动到另一个柱子,且保持每个柱子上较大的圆盘总在较小的圆盘下面,视为一次操作.设将n 个圆盘全部从1号柱子移动到3号柱子的最少操作数为a n ,则( )A .a 2=3B .a 3=8C .a n +1=2a n +nD .a n =2n -1(2)设{a n }是首项为1的正项数列,且(n +1)a n+12-na n 2+a n +1a n =0(n =1,2,3,…),则它的通项公式是a 100=( )A .100B .1100C .101D .1101听课笔记:技法领悟1.通过验证或者推理得出数列的周期性后求解.2.根据已知递推关系式,变形后构造出等差数列或等比数列,再根据等差数列或等比数列的知识求解.3.三种简单的递推数列:a n +1-a n =f(n),a n+1a n=f(n),a n +1=pa n +q(p ≠0,1,q ≠0),第一个使用累加的方法,第二个使用累乘的方法,第三个可以使用待定系数法化为等比数列(设a n +1+λ=p(a n +λ),展开比较系数得出λ).巩固训练3 1.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层(即第一层)有1个球,第二层有3个球,第三层有6个球,…,设“三角垛”从第一层到第n层的各层的球数构成一个数列{a n},则() A.a5-a4=4 B.a100=5 000C.2a n+1=a n+a n+2D.a n+1-a n=n+12.[2022·福建漳州二模]已知S n是数列{a n}的前n项和,a1=1,a2=2,a3=3,记b n=a n+a n+1+a n+2且b n+1-b n=2,则S31=()A.171 B.278 C.351 D.395第一讲等差数列与等比数列微专题1等差数列与等比数列的基本量计算保分题=1 011×6 1.解析:由等差数列{a n}知,a2+a2 021=a1+a2 022=6,所以S2 022=2 022(a1+a2 022)2=6 066.答案:C2.解析:在等比数列{a n}中,因为a2,a8为方程x2-4x+π=0的两根,所以a2a8=π=a52,所以a5=±√π,所以a3a5a7=a53=±π√π.故选C.答案:C3.解析:设等比数列{a n }的公比为q.由题意知,{a 2q+a 2+a 2q =168,a 2−a 2q 3=42.两式相除,得1+q+q 2q (1−q 3)=4,解得q =12.代入a 2-a 2q 3=42,得a 2=48,所以a 6=a 2q 4=3.故选D .答案:D提分题[例1] 解析:(1)∵数列{a n },{b n }均为等差数列,设公差分别为d 1,d 2 (a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2, 则数列{a n +b n }也为等差数列, a 1+b 1=100,a 2+b 2=120,数列{a n +b n }的首项为100,公差为20, ∴a 37+b 37=100+20×36=820,故选B .(2)因为公比为q 的等比数列{a n }的前n 项和S n =c +2·q n ①, 当n =1时a 1=S 1=c +2·q , 当n ≥2时S n -1=c +2·q n -1 ②, ①-②得a n =2·q n -2·q n -1=(2q -2)·q n -1,所以2q -2=c +2q ,则c =-2,又S 3=14,所以S 3=-2+2·q 3=14,解得q =2, 所以a n =2n ,则a 4=24=16. 答案:(1)B (2)C [巩固训练1]1.解析:若分得的钱从多到少分别为a 1,a 2,a 3,a 4,a 5, 所以{a 1+a 2=a 3+a 4+a 5a 1+a 2+a 3+a 4+a 5=5,所以{a 1=−8d5a 1+10d =5,可得{a 1=43d =−16.答案:A2.解析:设等比数列的公比为q ,因为a 2=4,S 3=14,所以a 1+a 3=10,即a2q +a 2q =10,所以2q2-5q+2=0,解得q=2或q=12,所以当q=2时,a3=8;当q=12时,a3=2所以,a3=2或a3=8.答案:2或8微专题2等差数列与等比数列的综合保分题1.解析:设等差数列{a n}公差d=2,由a2,a3,a5成等比数列得,a32=a2·a5,即(a1+2d)2=(a1+d)(a1+4d),解得a1=0,∴S n=n×0+n(n−1)2×2=n(n-1).答案:B2.解析:设等比数列{a n}的公比为q,(q>0),a1≠0,故由题意可得:{a1(1+q+q2+q3)=154a3=4a1+a5,{a1(1+q+q2+q3)=154q2=4+q4,解得q2=2,q=√2,a1=5√2-5.答案:A3.解析:设S6=x,因为{a n}为等比数列,所以S3,S6-S3,S9-S6成等比数列.因为S3=4,S9=19,所以4(19-x)=(x-4)2,解得x=10或x=-6(舍去).所以S6,S9的等差中项为292.答案:292提分题[例2]解析:(1)因为a1,a2,a k1,a k2,a k3成公比为3的等比数列,可得a2=3a1,所以a k3=a1·34=81a1,又因为数列{a n}为等差数列,所以公差d=a2-a1=2a1,所以a k 3=a 1+(k 3-1)d =a 1+2(k 3-1)a 1=(2k 3-1)a 1, 所以(2k 3-1)a 1=81a 1,解得k 3=41. 故选C .(2)设等差数列{a n }的公差为d ,则S n =na 1+n (n−1)2d ,所以,S n n =a 1+(n−1)d 2.对于A 选项,S n+1n+1−S n n=a 1+nd 2-a 1-(n−1)d 2=d 2,所以,{S n n}为等差数列,A 对;对于B 选项,对任意的n ∈N *,b n ≠0,由等比中项的性质可得b n+12=b n b n +2,由基本不等式可得b n 2 +b n +22≥2b n b n +2=2b n+12,B 对;对于C 选项,令c n =S 2n +2-S 2n =a 2n +2+a 2n +1, 所以,c n +1-c n =(a 2n +4+a 2n +3)-(a 2n +2+a 2n +1)=4d , 故数列{S 2n +2-S 2n }一定是等差数列,C 对; 对于D 选项,设等比数列{b n }的公比为q ,当q =-1时,T 2n +2-T 2n =b 2n +2+b 2n +1=b 2n +1(q +1)=0, 此时,数列{T 2n +2-T 2n }不是等比数列,D 错. 答案:(1)C (2)ABC [巩固训练2]1.解析:设等比数列公比为q ,由a 2,2a 5,3a 8成等差数列可得,2×2a 1·q 4=a 1·q +3a 1·q 7,化简得3q 6-4q 3+1=0,解得q 3=13或q 3=1,当q 3=1时,S6S 3=2;当q 3=13时,S 6S 3=a 1(1−q 6)1−q a 1(1−q 3)1−q=1+q 3=43.答案:C2.解析:若{a n }公差为d ,{b n }公比为q , A :由2a n+12a n=2a n+1−a n =2d 为定值,故{2a n }为等比数列,正确; B :由b a n+1b a n=b a n +d b a n=b a n q d b a n=q d 为定值,故{b a n }为等比数列,正确;C :由Sn+1n+1−S nn=a 1+a n+12−a 1+a n 2=a n+12−a n2=d 2为定值,故{Snn}为等差数列,正确; D :当q =-1时b n +b n +1=0,显然不是等比数列,错误. 答案:ABC微专题3 数列的递推保分题1.解析:由题意得:a 2=1-1a 1=5,a 3=1-1a 2=45,a 4=1-1a 3=-14,则数列{a n }的周期为3,则a 2 022=a 674×3=a 3=45.答案:B2.解析:因为a n +1=2a n a n +2,所以1a n+1=12+1a n,即1a n+1−1a n=12,又1a 1=12,则{1a n}是以12为首项,12为公差的等差数列,即1a n=12+12(n -1)=n2,则a n =2n ,所以a 7=27. 答案:C3.解析:因为对任意的m ,n ∈N *,都有a m a n =a m +n , 所以a 1a 1=a 2,a 1a n =a 1+n , 又a 2=3,所以a 1=±√3,所以a n+1a n=a 1,所以数列{a n }是首项为a 1,公比为a 1的等比数列, 所以a n =a 1·(a 1)n -1=(a 1)n , 所以a 20=(a 1)20=310. 答案:C提分题[例3] 解析:(1)将圆盘从小到大编为1,2,3,…号圆盘,则将第n +1号圆盘移动到3号柱时,需先将第1~n 号圆盘移动到2号柱,需a n 次操作;将第n +1号圆盘移动到3号柱需1次操作;再将1~n 号圆需移动到3号柱需a n 次操作,故a n +1=2a n +1,a n +1+1=2(a n +1),又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n ,即a n =2n -1,∴a 2=3,a 3=7.(2)∵(n +1)a n+12−na n 2+a n +1a n =0,∴(n +1)a n+12+anan +1-na n 2=0,[(n +1)a n +1-na n ](a n +1+a n )=0,又∵a n >0,∴a n +1=n n+1·a n ,即a n+1a n =n n+1, ∴a 2a 1·a 3a 2·…·a n a n−1=12·23·…·n−1n ,即a n a 1=1n , 又∵a 1=1,∴a n =1n ,∴a 100=1100.答案:(1)AD (2)B[巩固训练3]1.解析:由相邻层球的个数差,归纳可知a n +1-a n =n +1,a 1=1, 对a n +1-a n =n +1累加得a n =n (n+1)2. 所以,a 5-a 4=5,a 100=100(100+1)2=5 050,2a n +1≠a n +a n +2,所以ABC 错误,故选D.答案:D2.解析:由b n +1-b n =2,b n +1-b n =a n +1+a n +2+a n +3-(a n +a n +1+a n +2)=a n +3-a n =2, ∴a 1,a 4,a 7,…是首项为1,公差为2的等差数列,a 2,a 5,a 8,…是首项为2,公差为2的等差数列,a 3,a 6,a 9,…是首项为3,公差为2的等差数列,S 31=(a 1+a 4+…+a 31)+(a 2+a 5+…+a 29)+(a 3+a 6+…+a 30)=1×11+11×10×22+2×10+10×9×22+3×10+10×9×22=351.故选C.答案:C。

等差数列、等比数列知识点梳理

等差数列、等比数列知识点梳理

等差数列、等比数列知识点梳理等差数列和等比数列知识点梳理第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈)注:下面所有涉及n ,*n N ∈省略,你懂的。

2、等差数列通项公式:1(1)n a a n d =+-,1a 为首项,d 为公差推广公式:()n m a a n m d =+-变形推广:mn a a d mn --= 3、等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4、等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+ 211()22d n a d n =+-2An Bn =+(其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5、等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a(3)数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。

(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。

2019高考数学一本策略复习专题三数列第一讲等差数列、等比数列课件文

2019高考数学一本策略复习专题三数列第一讲等差数列、等比数列课件文

[全练——快速解答 ]
3.(2018·天津模拟)已知等比数列 {an}的前 n 项和为 Sn,且 8a2a4= a3a6,则Sa43=___78_____.
由 8a2a4 = a3a6 可 得 8a23=a3a6,故 a6=8a3, 设公比为 q,则 q3=8,
q

2


S3 a4

a11+a1qq3+q2=78.
2×2-1 2
×d

4a1

4×24-1×d,将 a1=2 代
入上式,解得 d=-3,
故 a5 = a1 + (5 - 1)d= 2 + 4×(-3)=-10.
故选 B.
[全练——快速解答 ]
2.(2017·高考全国卷Ⅲ)等差数列
{an}的首项为 1,公差不为 0.若 a2,
a3,a6 成等比数列,则{an}前 6 项
专题三 数列 第一讲 等差数列、等比数列
C目录 ONTENTS
考点一 考点二 考点三 4 课后训练 提升能力
年份 2018
卷别 Ⅰ卷
Ⅲ卷
考查角度 及命题位 置 等比数列 的判定及 通项求 法·T17
等比数列 的基本运 算及应 用·T17
命题分析及学科素养
命题分析 (1)高考主要考查两种基本数列(等差数列、等比数 列)、两种数列求和方法(裂项求和法、错位相减 法)、两类综合(与函数综合、与不等式综合),主 要突出数学思想的应用. (2)若以解答题形式考查,数列往往与解三角形在 17 题的位置上交替考查,试题难度中等;若以客 观题考查,难度中等的题目较多,但有时也出现 在第 12 题或 16 题位置上,难度偏大,复习时应 引起关注. 学科素养 主要是通过等差数列、等比数列的判定与证明及 基本运算考查逻辑推理与数学运算两大核心素养.

高考数学:专题三 第一讲 等差数列与等比数列配套限时规范训练

高考数学:专题三 第一讲 等差数列与等比数列配套限时规范训练

专题三 数列、推理与证明 第一讲 等差数列与等比数列(推荐时间:50分钟)一、选择题1.等比数列{a n }的公比q =2,a 1+a 2+a 3=21,则a 3+a 4+a 5等于( )A .42B .63C .84D .1682.(2012·浙江)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列3.已知等比数列{}a n 中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8的值为( )A .1+ 2B .1- 2C .3+2 2D .3-2 24.在函数y =f (x )的图象上有点列(x n ,y n ),若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f (x )的解析式可能为( )A .f (x )=2x +1B .f (x )=4x 2C .f (x )=log 3xD .f (x )=⎝⎛⎭34x5.首项为-24的等差数列{a n }从第10项开始为正数,则公差d 的取值范围是 ( )A.83≤d <3B.83<d <3C.83<d ≤3D.83≤d ≤3 6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .57.已知正项数列{a n }的前n 项的乘积T n =⎝⎛⎭⎫14n n62-(n ∈N *),b n =log 2a n ,则数列{b n }的前n 项和S n 中的最大值是( )A .S 6B .S 5C .S 4D .S 38.(2012·四川)设函数f (x )=2x -cos x ,{a n }是公差为π8的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f (a 3)]2-a 1a 5等于( ) A .0B.116π2C.18π2D.1316π2 二、填空题9.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项a n =____________ (n ∈N *).10.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =______;|a 1|+|a 2|+…+|a n |=__________.11.(2011·江苏)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.12.在数列{a n }中,a n =4n -52,a 1+a 2+…+a n =an 2+bn +c ,n ∈N *,其中a ,b 为常数,则ab +c =______________________________________________________________.三、解答题13.在数1和正实数a 之间插入n 个正实数,使得这n +2个数构成等比数列,将这n +2个数的乘积记作b n ,且a n =log a b n . (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和S n .14.(2012·山东)在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73.(1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m }的前m 项和S m .答案1.C 2.C 3.C 4.D 5.C 6.D 7.D 8.D 9.-2n +10 10.-2 2n -1-1211. 33 12.-113.解 (1)设t 1,t 2,…,t n +2构成等比数列,其中t 1=1,t n +2=a ,则b n =t 1·t 2·…·t n +1·t n +2,① b n =t n +2·t n +1·…·t 2·t 1.②①×②并利用t i ·t n +3-i =t 1t n +2=a (1≤i ≤n +2),得b n 2=(t 1t n +2)·(t 2t n +1)·…·(t n +1t 2)·(t n +2t 1)=a n +2,又b n >0,∴b n =a()221+n ,a n =12(n +2).(2)∵b n +1b n =()()221321++n n a a =a 12(常数);∴{b n }为等比数列. 当a =1时,S n =n ;当a ≠1时,S n =2122311a a a n-⎪⎪⎭⎫ ⎝⎛-.14.解 (1)因为{a n }是一个等差数列,所以a 3+a 4+a 5=3a 4=84,所以a 4=28. 设数列{a n }的公差为d ,则5d =a 9-a 4=73-28=45,故d =9. 由a 4=a 1+3d 得28=a 1+3×9,即a 1=1,所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *). (2)对m ∈N *,若9m <a n <92m ,则9m +8<9n <92m +8, 因此9m -1+1≤n ≤92m -1,故得b m =92m -1-9m -1. 于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1)=9×1-81m 1-81-1-9m1-9=92m +1-10×9m+180.。

高考数学:专题三 第一讲 等差数列与等比数列课件


题型与方法
例 1
第一讲
已知等差数列{an}中,a3a7=-16,a4+a6=0,求{an}
的前 n 项和 Sn.
本 讲 栏 目 开 关
解 设{an}的首项为 a1,公差为 d, a +2da +6d=-16, 1 1 则 a1+3d+a1+5d=0,
a2+8da +12d2=-16, 1 1 即 a1=-4d, a =-8 a =8, 1 1 解得 或 d=2 d=-2,
第一讲
本 讲 栏 目 开 关
c1 而当 n=1 时, =a2,∴c1=3. b1 3,n=1, ∴cn= - 2×3n 1,n≥2.
∴c1+c2+…+c2 011=3+2×31+2×32+…+2×32 010 6-6×32 010 =3+ =3-3+32 011=32 011. 1-3
即 2a1+d=a1+2d, 1 又 a1=2,
1 所以 d=2,
故 a2=a1+d=1.
答案 1
题型与方法
第一讲
本 讲 栏 目 开 关
题型一 题型概述
等差数列的有关问题 等差数列是一个重要的数列类型, 高考命题主要考
查等差数列的概念、 基本量的运算及由概念推导出的一些重 要性质,灵活运用这些性质解题,可达到避繁就简的目的.
则 c5=2c3-c1=2×21-7=35.
答案 35
考点与考题
第一讲
1 5.(2012· 北京)已知{an}为等差数列, n 为其前 n 项和.若 a1= , S 2 S2=a3,则 a2=________.
本 讲 栏 目 开 关
解析
设{an}的公差为 d,
由 S2=a3 知,a1+a2=a3,
故 a7=0.

2011届高考数学二轮复习课件专题三第1讲等差数列、等比数列

n 3 -1 2 n +20n+ . 2
上 页
下 页
要点知识整合
热点突破探究
高考动态聚焦
专 题 三 数

【题后点评】
利用等差、等比数列的通项
上 页
公式和前n项和公式,由五个量a1,d(q),n,an, Sn中的三个量可求其余两个量,即“知三求二”, 体现了方程思想.解答等差、等比数列的有关问 题时,“基本量”(等差数列中的首项a1和公差d或
上 页
下 页
要点知识整合
热点突破探究
高考动态聚焦
专 题 三 数

2.等比数列 an+1 (1)定义式: =q(n∈N*,q 为非零常数). an (2)通项公式:an=a1qn-1. (3)前 n 项和公式:Sn= q=1, na1 a11-qn q≠1. 1 - q * (4)等比中项公式: a2 = a a ( n ∈ N , n≥2). n n-1 n+1 (5)性质:①an=amqn-m(n,m∈N*). ②若 m+n=p+q,则 aman=apaq(p,q,m,n ∈N*).
等比数列{bn}中有bp· bq=bm· bn.这些公式自己结合这两
种数列的通项公式推导后可加强记忆与理解.
要点知识整合
热点突破探究
高考动态聚焦
变式训练
专 题 三 数

2.(1)在等比数列{an}中,首项a1<0,则{an}是递增 数列的充要条件是( A.q>1 C.0<q<1 ) B.q<1 D.q<0
热点突破探究
专 题 三
典例精析
题型一


等差与等比数列的基本运算
上 页
例1 (2010年高考重庆卷)已知{an}是首项为19, 公差为-2的等差数列,Sn为{an}的前n项和. (1)求通项an及Sn; (2)设{bn-an}是首项为1,公比为3的等比数

2022-2021年南方新课堂·高考数学(理科)二轮复习测试:专题三第1讲等差数列与等比数列

专题三 数列第1讲 等差数列与等比数列一、选择题1.(2022·云南昆明一中第六次考前强化)已知等差数列{a n }的前n 项和为S n ,若a 3+a 5=8,则S 7=( )A .28B .32C .56D .24 解析:S 7=7×(a 1+a 7)2=7×(a 3+a 5)2=28.故选A.答案:A2.等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为( )A .-2或1B .-1或2C .-2D .1解析:法一:若q =1, 则S 4=4a 1,S 5=5a 1,S 6=6a 1, 明显不满足2S 4=S 5+S 6,故A 、D 错. 若q =-1,则S 4=S 6=0,S 5=a 5≠0, 不满足条件,故B 错,因此选C. 法二:经检验q =1不适合, 则由2S 4=S 5+S 6,得2(1-q 4)=1-q 5+1-q 6,化简得q 2+q -2=0,解得q =1(舍去),q =-2. 答案:C3.(2022·吉林长春质量检测)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为( )A .9B .10C .11D .12解析:由题意,不妨设a 6=9t ,a 5=11t ,则公差d =-2t ,其中t >0,因此a 10=t ,a 11=-t ,即当n =10时,S n 取得最大值.答案:B4.(2022·安徽六安一中综合训练)在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( )(导学号 55460115)A .4B .5C .6D .7解析:由等比数列的性质可知a m +1·a m -1=a 2m =2a m (m ≥2),∴a m =2,即数列{a n }为常数列,a n =2,∴T 2m -1=22m -1=512=29,即2m -1=9,所以m =5. 答案:B5.(2022·辽宁东北育才学校五模)已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( )(导学号 55460116) A .6 B .7 C .8 D .9解析:∴3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2,∴q 2-2q -3=0,∴q =3或q =-1(舍去). ∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q =q 2=32=9. 答案:D 二、填空题6.各项均不为零的等差数列{a n }中,a 1=2,若a 2n -a n -1-a n +1=0(n ∈N *,n≥2),则S 2 016=________.解析:由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),即a 2n -2a n =0,∴a n =2,n ≥2,又a 1=2,∴a n =2,n ∈N *,故S 2 016=4 032.答案:4 0327.(2022·浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:∵a n +1=2S n +1,∴S n +1-S n =2S n +1, ∴S n +1=3S n +1,∴S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列, ∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1,∴S 5+12=⎝ ⎛⎭⎪⎫S 1+12×34=32×34=2432,∴S 5=121. 答案:1 1218.(2022·广东3月测试)已知数列{a n }的各项均为正数,S n 为其前n 项和,且对任意n ∈N *,均有a n ,S n ,a 2n 成等差数列,则a n =________.解析:∵a n ,S n ,a 2n 成等差数列,∴2S n =a n +a 2n .当n =1时,2a 1=2S 1=a 1+a 21. 又a 1>0,∴a 1=1.当n ≥2时,2a n =2(S n -S n -1)=a n +a 2n -a n -1-a 2n -1,∴(a 2n -a 2n -1)-(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1)-(a n +a n -1)=0, 又a n +a n -1>0,∴a n -a n -1=1,∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n (n ∈N *). 答案:n 三、解答题9.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(导学号 55460117) (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得 a 1+2d =2,3a 1+3×22d =92,化简得a 1+2d =2,a 1+d =32,解得a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2, 故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1.10.(2021·广东卷)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1. (导学号 55460118) (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列; (3)求数列{a n }的通项公式.(1)解:当n =2时,4S 4+5S 2=8S 3+S 1,即4(a 1+a 2+a 3+a 4)+5(a 1+a 2)=8(a 1+a 2+a 3)+a 1, 整理得a 4=4a 3-a 24,又a 2=32,a 3=54,所以a 4=78.(2)证明:当n ≥2时,有4S n +2+5S n =8S n +1+S n -1, 即4S n +2+4S n +S n =4S n +1+4S n +1+S n -1, ∴4(S n +2-S n +1)=4(S n +1-S n )-(S n -S n -1), 即a n +2=a n +1-14a n (n ≥2).经检验,当n =1时,上式成立.∵a n +2-12a n +1a n +1-12a n =⎝ ⎛⎭⎪⎫a n +1-14a n -12a n +1a n +1-12a n =12⎝ ⎛⎭⎪⎫a n +1-12a n a n +1-12a n=12为常数,且a 2-12a 1=1,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以1为首项,12为公比的等比数列.(3)解:由(2)知,a n +1-12a n =12n -1(n ∈N *),等式两边同乘2n ,得2n a n +1-2n -1a n =2(n ∈N *). 又20a 1=1,∴数列{2n -1a n }是以1为首项,2为公差的等差数列. ∴2n -1a n =2n -1, 即a n =2n -12n -1(n ∈N *).则数列{a n }的通项公式为a n =2n -12n -1(n ∈N *).11.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2(n ∈N *).(导学号 55460119)(1)求证:数列{a n }是等差数列;(2)设b n =1S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明:S n =a n (a n +1)2(n ∈N *),①S n -1=a n -1(a n -1+1)2(n ≥2).②①-②得:a n =a 2n +a n -a 2n -1-a n -12(n ≥2),整理得:(a n +a n -1)(a n -a n -1)=(a n +a n -1)(n ≥2). ∵数列{a n }的各项均为正数, ∴a n +a n -1≠0, ∴a n -a n -1=1(n ≥2). 当n =1时,a 1=1,∴数列{a n }是首项为1,公差为1的等差数列. (2)解:由(1)得S n =n 2+n2,∴b n =2n 2+n =2n (n +1)=2⎝ ⎛⎭⎪⎪⎫1n -1n +1, ∴T n =2⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.。

数学二轮复习教案: 第一部分 专题三 数列 第一讲 等差数列、等比数列

专题三数列第一讲等差数列、等比数列[考情分析]等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n项和的最大、最小值等问题,主要是中低档题;等差数列、等比数列的前n项和是高考考查的重点。

年份卷别考查角度及命题位置201 7Ⅰ卷等差、等比数列的综合应用·T17201 5Ⅰ卷等差数列的通项公式及前n项和公式·T7等比数列的概念及前n项和公式·T13Ⅱ卷等差数列的通项公式、性质及前n项和公式·T5[真题自检]1.(2015·高考全国卷Ⅱ)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5 B.7C.9 D.11解析:法一:∵a1+a5=2a3,∴a1+a3+a5=3a3=3,∴a3=1,∴S5=错误!=5a3=5.法二:∵a1+a3+a5=a1+(a1+2d)+(a1+4d)=3a1+6d=3,∴a1+2d =1,∴S5=5a1+错误!d=5(a1+2d)=5.解析:A2.(2015·高考全国卷Ⅰ)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )A。

错误!B。

错误!C.10 D.12解析:∵公差为1,∴S8=8a1+错误!×1=8a1+28,S4=4a1+6.∵S8=4S4,∴8a1+28=4(4a1+6),解得a1=错误!,∴a10=a1+9d=错误!+9=错误!。

答案:B3.(2015·高考全国卷Ⅰ改编)在数列{a n}中,a1=2,a n+1=2a n,S n 为{a n}的前n项和.若S n=126,求n的值.解析:∵a1=2,a n+1=2a n,∴数列{a n}是首项为2,公比为2的等比数列.又∵S n=126,∴错误!=126,∴n=6.等差数列、等比数列的基本运算[方法结论]1.两组求和公式(1)等差数列:S n=错误!=na1+错误!d;(2)等比数列:S n=错误!=错误!(q≠1).2.在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.[题组突破]1.(2017·贵阳模拟)等差数列{a n}的前n项和为S n,且a3+a9=16,则S 11=( )A .88B .48C .96D .176解析:依题意得S 11=11a 1+a 112=错误!=错误!=88,选A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S奇 S偶

aan+n 1.
பைடு நூலகம்
高考二轮专题复习
返回目录
(9)若等差数列{an}的项数为奇数2n+1,则S2n+1= (2n+1)·an+1;SS奇 偶=n+n 1.
高考二轮专题复习
返回目录
1.(2019·湖北武汉模拟)若数列{an}为等差数列,
Sn为其前n项和,且a1=2a3-3,则S9=(
)
A.25
B.27
C.50
D.54
答案 B
高考二轮专题复习
返回目录
解析 设等差数列{an}的公差为d,a1=2a3-3=2a1 +4d-3,即a1+4d=3,所以a5=a1+4d=3,所以S9= 9a5=27.故选B项.
高考二轮专题复习
返回目录
2.(2019·福建莆田九校联考)在等差数列{an}中,
若a1,a2 019为方程x2-10x+16=0的两根,则a2+a1 010
高考二轮专题复习
返回目录
热点题型探究
题型一 等差数列有关问题
1.解决等差数列基本量计算问题的思路
(1)在等差数列{an}中,a1与d是最基本的两个量,一 般可设出a1和d,利用等差数列的通项公式和前n项和公 式列方程(组)求解.
高考二轮专题复习
返回目录
(2)与等差数列有关的基本运算问题,主要围绕着通
的前6项和S6=-1×1-12-26=1-26=-63. 答案 -63
高考二轮专题复习
返回目录
命题角度 素养清单
真题示例
2019·全国卷
Ⅰ,14
等比数列 的计算与
证明
逻辑推理 数学运算 数学建模
2019·全国卷
Ⅲ,5 2018·全国卷
Ⅰ,14
2018·全国卷
Ⅲ,17
典例回顾
4.(2018·全国卷 Ⅲ)等比数列{an} 中,a1=1,a5= 4a3. (1)求{an}的通项 公式; (2)记Sn为{an}的 前n项和.若Sm= 63,求m.
+a2 018=(
)
A.10
B.15
________.
高考二轮专题复习
返回目录
解析 由Sn=2an+1知a1=2a1+1,所以a1=-1.当 n≥2时,由Sn=2an+1得Sn-1=2an-1+1,所以an=Sn-
Sn-1=2an+1-2an-1-1=2an-2an-1,即
an an-1
=2.所以数
列{an}是首项为-1,公比为2的等比数列.所以数列{an}
高考二轮专题复习
返回目录
解析 (1)设{an}的公比为q,由题设得an=qn-1.由已
知得q4=4q2,解得q=0(舍去),q=-2或q=2.故an=(-
2)n-1或an=2n-1.
(2)若an=(-2)n-1,则Sn=
1--2n 3
,由Sm=63得
(-2)m=-188,此方程没有正整数解;若an=2n-1,则 Sn=2n-1,由Sm=63得2m=64,解得m=6.综上,m=6.
答案 4
高考二轮专题复习
命题角度 素养清单
真题示例
返回目录
典例回顾
3.(2018·全国卷
等比数 列的计 算与证

2019·全国卷Ⅰ,14 逻辑推理
2019·全国卷Ⅲ,5 数学运算
2018·全国卷Ⅰ,14 数学建模
2018·全国卷Ⅲ,17
Ⅰ)记Sn为数列 {an}的前n项 和,若Sn=2an +1,则S6=
2018·全国卷Ⅱ,17 数学建模
2017·全国卷Ⅰ,4
2017·全国卷Ⅲ,9
返回目录
典例回顾 2.(2019·全国卷Ⅲ) 记Sn为等差数列 {an}的前n项和, a1≠0,a2=3a1, 则SS150=________.
高考二轮专题复习
返回目录
解析 因为a2=3a1,所以a1+d=3a1,即2a1=d,所 以SS150=150aa11+ +150×2× 249dd=12050aa11=4.
项公式an=a1+(n-1)d和前n项和公式Sn=na12+an=na1

nn-1 2
d,在两个公式中共涉及a1,d,n,an,Sn五个
量,已知其中三个量,选用恰当的公式,利用方程(组)
可求出剩余的两个量.
高考二轮专题复习
返回目录
2.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,m∈N*). (2)若{an}为等差数列,且m+n=p+q,则am+an= ap+aq(m,n,p,q∈N*). (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+ 2m,…(k,m∈N*)是公差为md的等差数列.
高考二轮专题复习
返回目录
第一部分 核心专题突破
专题三 数 列
高考二轮专题复习
返回目录
第1讲 等差数列和等比数列
高考二轮专题复习
返回目录
3年考情回顾 热点题型探究 对点规范演练 专题跟踪检测
高考二轮专题复习
返回目录
3年考情回顾
命题角度 素养清单 真题示例
典例回顾
等差数列 的计算与
证明
逻辑推理 数学运算 数学建模
2019·全国卷Ⅰ,9 2019·全国卷Ⅲ,
14 2018·全国卷Ⅰ,4 2018·全国卷Ⅱ,
17
1.(2019·全国卷Ⅰ)记Sn 为等差数列{an}的前n 项和.已知S4=0,a5 =5,则( A )
A.an=2n-5 B.an=3n-10
2017·全国卷Ⅰ,4 C.Sn=2n2-8n
2017·全国卷Ⅲ,9 D.Sn=12n2-2n
高考二轮专题复习
返回目录
解析 由题知
S4=4a1+d2×4×3=0, a5=a1+4d=5,
解得
a1=-3, d=2,
所以an=2n-5,Sn=n2-4n.故选A项.
高考二轮专题复习
命题角度 素养清单
真题示例
2019·全国卷Ⅰ,9
等差数列 的计算与
证明
2019·全国卷Ⅲ,14 逻辑推理
2018·全国卷Ⅰ,4 数学运算
Tn,则abnn=TS22nn--11.
高考二轮专题复习
返回目录
(7)若{an}是等差数列,则 Snn 也是等差数列,其首
项与{an}的首项相同,公差是{an}的公差的12.
(8)若等差数列{an}的项数为偶数2n,则S2n=n(a1+
a2n)=n(a2+a2n-1)=…=n(an+an+1);S偶-S奇=nd,
高考二轮专题复习
返回目录
(4)数列Sm,S2m-Sm,S3m-S2m,…(m∈N*)也是等
差数列,公差为m2d.
(5)S2n-1=(2n-1)an,S2n=n(a1+a2n)=n(an+an+1), 遇见S奇,S偶时可分别运用性质及有关公式求解.
(6)若{an},{bn}均为等差数列且其前n项和为Sn,
相关文档
最新文档