飞行力学基础

合集下载

飞行力学知识点

飞行力学知识点

1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。

2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。

4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。

6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。

7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。

8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。

9.定常运动:运动参数不随时间而改变的运动。

10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。

16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。

第一章飞行力学基础1

第一章飞行力学基础1
1. 地面坐标系与机体坐标系
偏航角 俯仰角 滚转角
两坐标系之 间的欧拉角
机体轴与地轴系间转换关系
地轴系
体轴系
绕z轴
绕y轴
绕x轴
oxg yg zg
oxy zg
oxb yz
oxb yb zb
按坐标转换一般法则,由地轴系到体轴系的转换矩阵为:
Lbg Lx ()Ly ( )Lz ( )
coscos
xq yq
, ,
y y
p p
) )
x y
p p
r
xp
xp yp
cos( ) sin( )
sin( ) xq
cos(
)
yq
α
xq
xp yp
cos(x cos(y
p p
, ,
xq xq
) )
cos(xp , yq )xq
c
os
(y
p
,
yq
)
yq

xq
yq
X
Yg
Xg
p O
q
Y
r
Zg Z
角速度分量(p,q,r)与姿态角变化率之间的关系
5.机体坐标轴系的速度分量
机体坐标轴的三个速度分量是飞行速 度V在机体坐标轴系各轴上的投影。 ➢ u:与机体轴OX重合一致; ➢ v:与机体轴OY重合一致; ➢ w:与机体轴OZ重合一致;
6、坐标系间的关系:
Sg(地轴系)
(航迹倾斜角 航迹滚转角 航迹方位角)
飞机姿态角 (俯仰角、滚转角、
ห้องสมุดไป่ตู้偏航角)
s (速度轴系) a
气流角 (迎角、侧滑角)
sb(机体轴系)

飞行力学知识点

飞行力学知识点

飞行力学知识点一、协议关键信息1、飞行力学的基本概念和原理定义:____________________________研究范围:____________________________重要性:____________________________ 2、飞行器的受力分析重力:____________________________升力:____________________________阻力:____________________________推力:____________________________3、飞行性能参数速度:____________________________高度:____________________________航程:____________________________续航时间:____________________________4、飞行器的稳定性和操纵性稳定性的类型:____________________________操纵性的要素:____________________________稳定性与操纵性的关系:____________________________5、飞行轨迹和导航常见的飞行轨迹:____________________________导航方法:____________________________导航系统的组成:____________________________二、飞行力学的基本概念和原理11 飞行力学的定义飞行力学是研究飞行器在空中运动规律的学科,它综合了力学、数学、物理学和工程学等多学科的知识,旨在揭示飞行器在不同飞行条件下的受力、运动状态和性能特征。

111 研究范围飞行力学的研究范围涵盖了飞行器的起飞、爬升、巡航、下降、着陆等各个飞行阶段,以及飞行器在不同气象条件、飞行高度和速度下的运动特性。

112 重要性飞行力学对于飞行器的设计、性能评估、飞行控制和飞行安全具有至关重要的意义。

飞行力学部分知识要点

飞行力学部分知识要点

飞⾏⼒学部分知识要点空⽓动⼒学及飞⾏原理课程飞⾏⼒学部分知识要点第⼀讲:飞⾏⼒学基础1.坐标系定义的意义2.刚体飞⾏器的空间运动可以分为两部分:质⼼运动和绕质⼼的转动。

描述任意时刻的空间运动需要六个⾃由度:三个质⼼运动和三个⾓运动3.地⾯坐标系, O 地⾯任意点,OX ⽔平⾯任意⽅向,OZ 垂直地⾯指向地⼼,OXY ⽔平⾯(地平⾯),符合右⼿规则在⼀般情况下。

4.机体坐标系, O 飞机质⼼位置,OX 取飞机设计轴指向机头⽅向,OZ 处在飞机对称⾯垂直指向下⽅,OY 垂直⾯指向飞机右侧,符合右⼿规则5.⽓流(速度)坐标系, O 飞机质⼼位置,OX 取飞机速度⽅向且重合,OZ 处在飞机对称⾯垂直指向下⽅,OY 垂直⾯指向飞机右侧,符合右⼿规则6.航迹坐标系, O取在飞机质⼼处,坐标系与飞机固连,OX轴与飞⾏速度V重合⼀致,OZ轴在位于包含飞⾏速度V在内的铅垂⾯内,与OX轴垂直并指向下⽅,OY轴垂直于OXZ平⾯并按右⼿定则确定7.姿态⾓, 飞机的姿态⾓是由机体坐标系和地⾯坐标系之间的关系确定的:8. 俯仰⾓—机体轴OX 与地平⾯OXY 平⾯的夹⾓,俯仰⾓抬头为正;9. 偏航⾓—机体轴OX 在地平⾯OXY 平⾯的投影与轴OX 的夹⾓,垂直于地平⾯,右偏航为正;10. 滚转⾓—机体OZ 轴与包含机体OX 轴的垂直平⾯的夹⾓,右滚转为正11. ⽓流⾓, 是由飞⾏速度⽮量与机体坐标系之间的关系确定的12. 迎⾓—也称攻⾓,飞机速度⽮量在飞机对称⾯的投影与机体OX 轴的夹⾓,以速度投影在机体OX 轴下为正;13. 侧滑⾓—飞机速度⽮量与飞机对称⾯的夹⾓14. 常规飞机的操纵机构主要有三个:驾驶杆、脚蹬、油门杆,常规⽓动舵⾯有三个升降舵、副翼、⽅向舵15. 作⽤在飞机上的外⼒,重⼒,发动机推⼒,空⽓动⼒16. 重⼒,飞机质量随燃油消耗、外挂投放等变化,性能计算中,把飞机质量当作已知的常量17. 空⽓动⼒中,升⼒,阻⼒,的计算公式,动压的概念。

《飞行控制系统》第一章 飞行力学基础

《飞行控制系统》第一章 飞行力学基础
S cos cos cos sin sin sin cos sin sin cos sin sin sin cos cos cos sin sin cos cos sin sin sin sin cos cos sin cos cos
速度坐标系与地面坐标系:
3、气流角:(速度轴系→体轴系) aerodynamic angles
α(迎角也叫攻角):空速 向量V在飞机对称平面内 投影与机体纵轴ox夹角。 以V的投影在轴ox之下 为正。
β(侧滑角):空速向量V 与飞机对称平面的夹角。 以V处于对称面右为正。
4.机体坐标轴系的角速度分量 (angular-rate-dependent)
变换阵
由过渡坐标轴系S’’转动滚转角到机体坐标
轴系
0 0 x' ' x 1 y 0 cos sin y ' ' z 0 sin cos z' '
4、空间两个坐标系的变换矩阵:
一、操纵机构
被控量:三个姿态角、高度、速度及侧偏 利用升降舵、副翼、方向舵、油门杆来控制
0 M<0 升降舵偏角 e:平尾后缘下偏为正 e〉 0 L<0 副翼偏转角 a:右翼后缘下偏(右下左上)为正 a〉 0 N <0 方向舵偏转角 r:方向舵后缘向左偏为正 r〉 油门杆位置 : 0 加大油门、推力 T 向前推油门杆为正 T〉
1.1.2 坐标变换
1、基元变换矩阵:
基元变换矩阵描述了飞机最简单的平面坐标 系变换。
Y1 Y
R
X 1 X * cos Y * sin ; Y 1 X * sin Y * cos ;

第一章飞行力学基础2

第一章飞行力学基础2
C L
e

CLt St M e SW
为升力系数对 e 的导数 ;


零升阻力:分为摩擦阻力、压差阻力和零升波阻 (激波引起)。 升致阻力:伴随升力的产生而出现的阻力。 诱导阻力: C Dt C L 升致波阻: C Dt C L sin
阻力: D CD QSW
0 M<0 升降舵偏角 e:平尾后缘下偏为正 e〉 0 L<0 副翼偏转角 a:右翼后缘下偏(右下左上)为正 a〉 0 N <0 方向舵偏转角 r:方向舵后缘向左偏为正 r〉 油门杆位置 : 0 加大油门、推力 T 向前推油门杆为正 T〉
T 288.15 0.0065 * High A 20.0648 * T g 9.80665 /(1 High / 6.356766e 6 ) 2
0 * (1 0.225577e 4 * High ) 4.25588
2、马赫数M

马赫数定义为气流速度(V)和当地音速 (a)之比, M=V/A。 马赫数M的大小表示空气受压缩的程度。
C mw C mw0 C Lw ( xcg xacw )

Cmw0
机翼零升力矩系数
Cmw C Lw ( xcg xacw ) xcg xacw 飞机纵向静稳定;
xcg xacw 飞机纵向静不稳定;

机翼——机体组合产生俯仰力矩:
Cmwb Cmw 0 CCmb 0 CLw [ xcg ( xacw xacb )] Cmwb 0 CLw ( xcg xacwb )
b2 展弦比: A SW

2 cA SW
0
b 2

第一章飞行力学基础(1)

第一章飞行力学基础(1)

飞行力学在航空航天领域重要性
航空航天器设计基础
飞行力学是航空航天器设计的基础理论,对 于指导航空航天器的总体设计、性能分析和 优化具有重要意义。
飞行安全与稳定性保障
飞行力学研究飞行器的稳定性和操纵性,对 于保障飞行安全、提高飞行器性能具有重要 作用。
推动航空航天技术发展
飞行力学的研究不断推动着航空航天技术的 发展,为新型飞行器的研制和现有飞行器的 改进提供理论支撑。
第一章飞行力学基础
汇报人:XX
目录
• 飞行力学概述 • 大气环境与飞行性能 • 飞行器受力分析与平衡 • 飞行器运动方程与轨迹预测 • 飞行器操纵性与稳定性分析 • 飞行试验与仿真技术
01
飞行力学概述
飞行力学定义与研究对象
飞行力学定义
飞行力学是研究飞行器在空气中 的运动规律及其与周围环境相互 作用的一门科学。
降低试验成本
通过虚拟仿真技术对飞行器进行充分的测试 和验证,可以提高实际飞行试验的安全性。
推动技术创新
虚拟仿真技术可以模拟复杂环境和极端条件 下的飞行情况,为技术创新提供有力支持。
感谢您的观看
THANKS
指飞行器在受到小扰动 后,能够自动恢复到原 平衡状态的能力。静稳 定性好的飞行器,扰动 消失后能够迅速恢复到 原状态。
指飞行器在受到大扰动 后,能够自动恢复到原 平衡状态的能力。动稳 定性好的飞行器,在扰 动过程中能够保持稳定 的飞行姿态和轨迹。
指飞行器在受到扰动后 ,既不自动恢复到原平 衡状态,也不继续偏离 原平衡状态的能力。中 立稳定性介于静稳定性 和动稳定性之间。
轨迹预测模型构建及优化
动力学模型
建立飞行器的动力学模型,包括 气动力、推力、重力和控制力等

北航飞行力学知识点总结

北航飞行力学知识点总结

北航飞行力学知识点总结
飞行力学是研究飞行器在空中运动时所受力和运动规律的学科。

作为航空航天
工程的基础,飞行力学涉及到多个重要的知识点。

下面是对北航飞行力学知识点的总结:
1. 空气动力学:空气动力学研究飞行器在空气流动中所受到的气动力。

重要的
概念包括升力、阻力、推力和侧力。

其中,升力是支撑飞行器在空中飞行的力,阻力是对飞行器运动的阻碍力,推力是提供飞行器前进动力的力,侧力是使飞行器侧向移动的力。

2. 运动学:运动学研究飞行器在空中的运动轨迹和速度。

重要的概念包括速度、加速度、位移和轨迹。

通过运动学分析,可以确定飞行器的位置和速度的变化。

3. 飞行力学平衡:飞行力学平衡是指飞行器在垂直和水平方向上所受到的力平衡。

在水平方向上,重力和阻力平衡。

在垂直方向上,升力和重力平衡。

4. 飞行器的稳定性和操纵性:稳定性是指飞行器自身在飞行中保持平衡和稳定
的能力。

操纵性是指飞行器在飞行过程中对操纵杆或操纵面的指令做出的响应能力。

稳定性和操纵性是设计和控制飞行器的关键要素。

5. 飞行器的气动设计:气动设计是指通过改变飞行器的外形和气动特性来改善
飞行器的性能。

通过优化飞行器的气动外形和控制面的设计,可以减小阻力、增大升力和提高飞行器的稳定性。

总之,北航飞行力学涵盖了空气动力学、运动学、飞行力学平衡、飞行器的稳
定性和操纵性以及气动设计等多个重要知识点。

掌握这些知识可以帮助我们更好地理解和设计飞行器,为航空航天工程的发展做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章飞行力学基础2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-og xgygzg原点og 取自地面上某一点(例如飞机起飞点)。

ogxg轴处于地平面内并指向某方向(如指向飞行航线);og yg轴也在地平面内并指向右方;ogzg轴垂直地面指向地心。

坐标按右手定则规定,拇指代表og xg轴,食指代表ogyg轴,中指代表o g zg轴,如图2.1-1所示。

2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。

Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。

发动机推力一般按机体坐标系给出。

3)速度坐标系(Wind coordinate frame)Sa-oxa y aza速度坐标系也称气流坐标系。

原点取在飞机质心处,oxa轴与飞行速度V的方向一致。

一般情况下,V不一定在飞机对称平面内。

oza 轴在飞机对称面内垂x图2.1-1 机体坐标系与地面坐标系直于ox a 轴指向机腹。

oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。

作用在飞机上的气动力一般按速度坐标系给出。

4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。

oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。

研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。

2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle)机体轴ox 与地平面间的夹角。

以抬头为正。

2.偏航角ψ(Yaw angle)机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。

以机头右偏航为正。

3.滚转角φ(Roll angle)又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。

飞机向右倾斜时图2.1-2 速度坐标系与地面坐标系为正。

2)速度轴系与地面轴系的关系以下三个角度表示速度坐标系与地面坐标系的关系。

1.航迹倾斜角γ飞行速度矢量与地平面间的夹角,以飞机向上飞时的γ为正。

2. 航迹方位角χ飞行速度矢量在地平面上的投影与o g x g 间的夹角,以速度在地面的投影在o g x g 之右为正。

3. 航迹滚转角μ速度轴oz a 与包含ox a 轴的铅垂面间的夹角。

飞机向右倾斜时为正。

3)速度向量与机体轴系的关系 1.迎角α (Angle of attack)速度向量V 在飞机对称面上的投影与机体轴ox 轴的夹角。

以V 的投影在box 轴之下为正,如图2.1-3所示。

2. 侧滑角β(Sideslip angle)速度向量V 与飞机对称面的夹角。

以速度V 处于对称面之右时为正。

3)机体坐标系的速度分量飞行速度V 在机体坐标系三个轴上的分量分别为u 、v 和w 在滚动轴b x 上的分量:ub xb yb zo图2.1-3 迎角与侧滑角在俯仰轴b y 上的分量:v 在偏航轴b z 上的分量:w 迎角和侧滑角可以用速度分量定义u warctan=α (2.1-1) Vvarcsin =β (2.1-2)其中21222)(w v u V ++=如果迎角和侧滑角很小(〈15º〉,则式(2.1-1)和式(2.1-2)可以近似为u w=α (2.1-3) Vv=β (2.1-4)其中α和β的单位为弧度(rad )。

4)机体坐标系的角速度分量机体坐标系相对于地面坐标系的转动角速度ω沿机体坐标系各轴的分量分别为p 、q 和r滚动角速度p :与机体坐标轴b x 一致; 俯仰角速度q :与机体坐标轴b y 一致; 偏航角速度r :与机体坐标轴b z 一致。

飞行器的三个线运动和三个转动构成了飞行器的六自由度运动。

2.1.3 飞行器的操纵机构飞机的运动通常利用升降舵、方向舵、副翼及油门杆来控制。

升降舵(Elevator )偏转角用e δ表示,规定升降舵后缘下偏为正。

e δ的正向偏转产生的俯仰力矩M 为负值,即低头力矩。

副翼(Ailerons)偏转角用a δ表示,规定右副翼后缘下偏(左副翼随同上偏)为正。

a δ正向偏转产生的滚转力矩L 为负值。

方向舵(Rudder)偏转角用r δ表示,规定方向舵后缘向左偏转为正。

r δ正向偏转产生的偏航力矩N 为负值。

驾驶员通过驾驶杆、脚蹬和操纵杆操纵舵面。

规定驾驶杆前推位移e W 为正(此时e δ亦为正);左倾位移a W (此时a δ亦为正);左脚蹬向前位移r W 为正(此时r δ亦为正)。

油门(Throttle)杆前推为正,对应加大油门从而加大发动机推力。

反之为负,即收油门,减小推力。

2.1.5 稳定性和操纵性的概念稳定性是平衡状态的性质,为了讨论稳定性我们首先定义什么是平衡。

如果一架飞机保持稳定的匀速飞行,则合力以绕质心的合力矩都等于零。

满足这要求的飞机就是说它在平衡状态下或者飞行在平衡条件下。

相反,如果力和力矩的总和不为零,则飞机将会经历平移和旋转加速。

飞行器的稳定性是指飞行器在飞行过程中,由于受到某种干扰,是其偏离了原来的飞行状态,当干扰消失之后,飞行器能够恢复到原来飞行状态的能力。

这种扰动可能来自于大气的现象、发动机推力改变、或驾驶员的偶然操纵等。

若飞行器可以恢复到原来的飞行状态,就称它是稳定的,或称之为具有稳定性;若扰动后的运动越来越偏离原来的飞行状态,称它是不稳定的;若扰动后的运动既不恢复也不远离原来的运动,称为中立稳定。

一架飞机只有是足够稳定的,驾驶员才不会感觉很疲劳,因为不稳定的飞机是驾驶员必须不停地操纵飞机以便应付外界的扰动。

虽然本身在空气动力上不太稳定或不稳定的飞机可以飞行,但是不够安全,除非增加机电设备以提供人工的稳定性,这种设备称为增稳系统。

一般所说的飞行器的稳定性,实际上包含两方面的含意。

一是指飞行器(包括稳定自动器)的稳定性;另一方面是指飞行器自身(不包括稳定自动器)的稳定性。

飞机稳定的稳定一般分为静态稳定和动态稳定,静态稳定性是指飞机受到扰动后返回到其初始平衡状态的趋势。

飞行器自身的稳定性,也称飞行器静稳定性,它是指飞行器受到扰动后返回到初始平衡状态的趋势。

它与飞行器的气动外形和布局有关。

包括:(1)纵向静稳定性,是指飞机围绕y 轴的稳定性; 当飞行器在作平衡飞行时,若有一个外力干扰,是它的迎角增大,干扰消除后,靠飞机本身气动特性(驾驶员不偏转舵面),产生一个恢复力矩试图使飞机恢复到原来的平衡状态。

经过理论推导和实验发现只要保证气动力焦点在质心之后,并有一定的距离,就可以保证迎角是稳定的。

(2)方向静稳定性。

方向静稳定性是指飞机绕z 轴的静稳定性。

当飞行受到偏航扰动时,飞行器有自动返回到平衡状态的趋势。

由于飞机具有方向静稳定性,飞机总是指向相对风的方向,所以也称风向标稳定性。

(3)滚动静稳定性。

当一架飞机受到扰动,偏离水平状态,发生了倾斜,飞行器能靠自身的气动特性产生恢复力矩试图使其恢复到水平状态。

在动态稳定性的研究中,我们关心飞机在受到干扰,偏离平衡点之后,运动的历史过程。

注意静态稳定不能保证动态稳定。

飞机的操纵性所包含的内容较多。

如要求操纵简单、省力、符合驾驶员的生理习惯,操纵力和操纵机构位移适合,以及飞机对驾驶员操纵反应时差要适当等。

从操纵的功用来说,所谓操纵性是指:飞机能按照驾驶员的操纵意图,以一定的运动过程改变飞行方向或姿态。

因此操纵性是飞机改变飞行状态的能力。

, 2.2空气动力与力矩2.2.1空气动力在气流坐标系的分解总的空气动力∑R 沿气流坐标系各轴的分量分别为a a a Z Y X ,,,通常用D 和L 分别表示阻力和升力,于是有a X D -=,a Z L -=。

空气动力学常采用无因次气动力系数形式,其定义如下:阻力系数(沿a ox 的分量)W D S V D C 221/ρ=,阻力系数a x C 向后为正侧力系数(沿a oy 的分量)W a y S V Y C a 221/ρ=,侧力系数a y C 向右为正升力系数(沿a oz 的分量)W L S V L C 221/ρ=,向上为正2.6.2总的空气动力矩在机体坐标系的分解机体转动惯量是以机体坐标系来定义的,所以合力矩矢量沿机体轴分解成L ,M ,N 。

无因次力矩系数定义如下:绕ox 轴的滚转力矩系数b S V L C W l 221/ρ= 绕oy 轴的俯仰力矩系数A W m c S V M C 221/ρ=绕oz 轴的偏航力矩系数b S V N C W n 221/ρ=以上各式中的ρ是空气密度,V 是为空速,W S 为机翼面积,b 为机翼展长,A c 是机翼平均气动弦长。

2.3纵向气动力和气动力矩 2.3.1升力升力L :飞机总的空气动力∑R 沿气流坐标系a Z 轴的分量,向上为正。

产生升力的主要部件是飞机的机翼。

1)机翼的几何形状和几何参数 机翼剖面见图2.3-1翼弦长c :翼型前缘A 到后缘B 的距离。

相对厚度:%100⨯=cδδ,δ为最大厚度相对弯度:%100⨯=cff ,f 为中弧线最高点至翼弦线距离。

展弦比:wS b A 2=,b 为机翼展长,w S 为机翼面积。

AB图2.3-1机翼剖面梯形比:%100⨯=rtc c λ,t c ,r c 分别是翼尖弦长和翼根弦长 翼平均空气动力弦:dy y c S c b WA )(22/02⎰=(2.3-1)这里,)(y c 表示沿机翼展向坐标y 处的翼弦长; 前缘后掠角0Λ,如图2.3-2所示。

1/4弦线点后掠角4/1Λ,如图2.3-2所示。

2)机翼的升力(1)亚声速时升力产生的机理当气流以某一迎角α流过翼型时,由于翼型上表面凸起的影响,使得流管变细,即截面积S 减小。

根据连续方程VS=m(常数)可知,翼型上表面的流速必然增加,而下表面流速则减小,如图2.3-3所示,根据伯努利方程0221p Vp =+ρ(常数),流速大的地方,压强将减小,反之增大。

因此,翼型的上下表面将产生压力差。

因此,垂直飞行速度矢量的压力差的总和,就是升力。

t c图2.3-2 机翼平面形状压力系数p :翼面上某点的压强p 与远前方自由气流的压强∞p ,同远前方自由气流的动压之比,即221∞∞∞-=V p p p ρ (2.3-2)压力分布图:将翼面上各点的压力系数的数值光滑连接,若p 为负值(吸力)则箭头向外,若为正值(即压力)箭头指向翼面,如图2.3-4所示。

相关文档
最新文档