八年级数学:《因式分解-待定系数法、换元法、添项拆项法》知识点归纳

合集下载

因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解方法归纳总结第一部分:方法介绍初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍.、提公因式法.:ma+mb=m(a+b)、运用公式法.(1) (a+b)(a -b) = a 2-b2 ---------- a 2-b2=(a+b)(a -b);, 2 2, 2 2 , 2,2(2) (a ± b) = a ± 2ab+b ----------------- a ± 2ab+b =(a ± b);(3) (a+b)(a 2-ab+b2) =a 3+b3------ a 3+b3=(a+b)(a 2-ab+b2);2 2、33 3 3 2 2、(4) (a -b)(a +ab+b ) = a -b -------------- a -b =(a -b)(a +ab+b ).F面再补充两个常用的公式:(5) a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;3,3 3 2,2 2(6) a +b +c -3abc=(a+b+c)(a +b +c -ab-bc-ca);例.已知a, b, c是ABC的三边,且a2 b2 c2则ABC的形状是()(二)分组后能直接运用公式ab bc ca,A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解: a2 b2 c2 ab bc ca 2 2 22a 2b 2c 2ab 2bc 2ca(a b)2 2 2(b c) (c a)三、,分组分解法例 2、分解因式:2ax 10ay 5by解法一:第、二项为一组;第三、四项为一组。

解:原式=(2ax 10ay) (5by bx)= 2a(x 5y) b(x 5y)=(x 5y)(2a b)bx解法二:第一、四项为一组;第二、三项为一组。

原式=(2ax bx) ( 10ay 5by) =x(2a b)5y(2a b) =(2a b)(x 5y)练习:分解因式1、a2 ab ac bc 2、xy x y 1例3、分解因式:x2 y2 ax ay分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

初二数学因式分解超级经典专题讲解

初二数学因式分解超级经典专题讲解

因式分解的方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,余数定理法,求根公式法,换元法等。

注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:-3x2+x=-x(3x-1))1 基本方法1.1提公因式法☆☆☆各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

注意:把2a2+1/2变成2(a2+1/4)不叫提公因式1.2 公式法☆☆☆如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a2±2ab+b2=(a±b) 2;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

补充公式:立方和公式:a 3+b 3=(a+b)(a 2-ab+b 2);立方差公式:a 3-b 3=(a-b)(a 2+ab+b 2);完全立方公式:a 3±3a 2b +3ab 2±b 3=(a ±b) 3.公式:a 3+b 3+c 3+3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca)例如:a 2 +4ab+4b 2 =(a+2b) 2。

《因式分解---待定系数法、换元法、添项拆项法》知识点归纳

《因式分解---待定系数法、换元法、添项拆项法》知识点归纳

因式分解—待定系数法、换元法、添项拆项法1. 知识点概述因式分解是初等代数中的基础知识之一。

它指的是将一个多项式表示为两个或多个乘积的形式。

在因式分解过程中,我们可以使用不同的方法,如待定系数法、换元法和添项拆项法。

这些方法在因式分解中起到关键的作用。

本文将介绍待定系数法、换元法和添项拆项法这三种因式分解的方法,并对其应用进行归纳总结。

2. 待定系数法待定系数法是一种常用的因式分解方法,适用于形如ax2+bx+c的二次多项式。

待定系数法的基本思想是假设待分解式可以表示为(px+q)(rx+s)的形式,然后通过比较系数求得未知数 p、q、r 和 s。

具体步骤如下:2.1. 假设分解形式首先假设待分解的多项式为(px+q)(rx+s)。

2.2. 展开并比较系数将假设的分解形式展开,得到prx2+(ps+qr)x+qs,然后将其与原多项式的表达式进行系数比较。

2.3. 求解未知数根据比较系数的结果,列出方程组,并求解未知数 p、q、r 和 s。

最终得到待分解多项式的因式分解形式。

待定系数法的核心是通过比较系数来确定未知数的值,因此需要注意每个系数的对应关系,并合理选择分解形式以便于求解。

3. 换元法换元法是一种通过引入新的变量来进行因式分解的方法。

通过合理选择新的变量,可以将原多项式转化为更易于分解的形式。

具体步骤如下:3.1. 选择合适的变量首先根据多项式的结构和特点,选择一个合适的变量进行替代,使得新的多项式更容易进行因式分解。

3.2. 进行变量替换将选定的变量代入原多项式,进行变量替换。

这样可以得到一个新的多项式。

3.3. 因式分解根据替换后的新多项式的特点和结构,选择合适的因式分解方法进行分解。

换元法的关键在于合理选择变量,通过变量替换将原多项式转化为更易分解的形式,进而进行因式分解。

4. 添项拆项法添项拆项法是一种通过添加或拆分项来进行因式分解的方法。

在这种方法中,我们通过合理地添加或拆分多项式的项,使其具备因式分解的特性。

因式分解专题复习及讲解(很详细)

因式分解专题复习及讲解(很详细)

因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b);(2) a 2±2ab+b 2=(a ±b)2;(3) a 3+b 3=(a+b)(a 2-ab+b 2);(4) a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6) a 3±3a 2b+3ab 2±b 3=(a±b)3.例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

【数学知识点】因式分解的方法和口诀

【数学知识点】因式分解的方法和口诀

【数学知识点】因式分解的方法和口诀
初中数学因式分解的方法有待定系数法、提公因式法、十字相乘法等等,接下来分享具体的初中数学因式分解的方法和口诀。

(一)十字相乘法
(1)把二次项系数和常数项分别分解因数;
(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;
(3)确定合适的十字图并写出因式分解的结果;
(4)检验。

(二)提公因式法
(1)找出公因式;
(2)提公因式并确定另一个因式;
①找公因式可按照确定公因式的方法先确定系数再确定字母;
②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。

(三)待定系数法
(1)确定所求问题含待定系数的一般解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。

口诀一
首先提取公因式,其次考虑用公式。

十字相乘排第三,分组分解排第四。

几法若都行不通,拆项添项试一试。

口诀二
先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。

感谢您的阅读,祝您生活愉快。

因式分解的常用方法方法最全最详细

因式分解的常用方法方法最全最详细

因式分解的常用方法 (方法最全最详细 )因式分解的常用方法第一局部:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式, 主 要有提公因式法,公式法,十字相乘法,分组分解法,换元法等 因式分解的一般步骤是:1〕通常采用一“提〞、二“公〞、三“分〞、四“变〞的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或 可利用公式法继续分解;2〕假设上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项〔添项〕等方法;。

注意:将一个多项式进行因式分解应分解到不能再分解为止。

一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过假设干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b)=a 2-b 2-----------a2-b 2=(a+b)(a -b);(2) (a ±b)2=a 2±2ab+b 2---------a2±2ab+b 2=(a±b)2;(3) (a+b)(a22 333 322-ab+b)=a+b---------a +b=(a+b)(a-ab+b);(4) (a2 2 )=a3 3 --------a 3 32 2-b)(a+ab+b -b -b =(a-b)(a +ab+b).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c) 2;(6)a 3 3 3 2 2 2+b+c -3abc=(a+b+c)(a +b+c -ab-bc-ca);例.a ,b ,c 是ABC 的三边,且a 2b 2c 2abbcca ,那么 ABC 的形状是〔 〕A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解:a2b2c2ab bc ca2a22b22c22ab2bc2ca (ab)2(bc)2(ca)20abc1因式分解的常用方法(方法最全最详细)三、分组分解法.〔一〕分组后能直接提公因式例1、分解因式:amanbmbn分析:从“整体〞看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部〞看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

初中代数基本方法的总结

初中代数基本方法的总结

初中代数基本方法的总结基本1、配方法所谓配方,就是把一个【解析】式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和【解析】式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0〔a、b、c属于R,a≠0〕根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了一元二次方程的一个根,求另一根;两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,假设先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

因式分解知识要点

因式分解知识要点

因式分解知识要点因式分解在代数式的恒等变形、根式运算、分式通分与约分、一元二次方程以及三角函数的变形求解等方面均有着十分重要的应用,下面对因式分解中的有关知识要点进行归纳说明,供大家学习和参考。

1、因式分解的定义把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解(也可叫做把这个多项式分解因式)。

本定义可从以下几方面进行理解:⑴、因式分解是一种恒等变形,如22()()-=+-,无论字母a和b取何值,代数式22a b a b a ba b-与()()+-的值总是相等的;a b a b⑵、因式分解的结果必须是整式的积的形式,分解后的因式可以是单项式,也可以是多项式,但必须都是整式;⑶、由于因式分解是整式乘法运算的逆运算,故因式分解是否正确,通常可以用整式乘法进行检验,看乘得的结果是否等于原多项式;⑷、多项式的因式分解,必须进行到每个因式都不能再分解为止,但要注意是在何种数集内进行因式分解(如无特殊说明,教材一般只要求在有理数范围内进行分解)。

2、因式分解的方法⑴、提公因式法:如果一个多项式的各项都含有公因式,则可利用分配律将此多项式的公因式提出来,从而将原多项式分解成两个因式的积的形式,像这种因式分解的方法,叫做提公因式法。

如:()++=++。

ma mb mc m a b c⑵、运用公式法:利用等式的性质将乘法公式逆用从而实现多项式的因式分解,像这种因式分解的方法就称为公式法。

公式法主要有以下两种:①平方差公式:22()()-=+-;a b a b a b②完全平方公式:222±+=±。

2()a ab b a b⑶、分组分解法(教材中未给出但作业中有所涉及):将一个多项式中所含的各项分成若干组,然后再利用提公因式法或公式法等方法对多项式进行因式分解,像这种因式分解的方法就称为分组分解法。

运用分组分解法的目的和作用主要有两个——①分组后能直接提公因式;②分组后能直接运用公式(平方差公式或完全平方公式)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学新课程标准教材
数学教案( 2019 — 2020学年度第二学期 )
学校:
年级:
任课教师:
数学教案 / 初中数学 / 八年级数学教案
编订:XX文讯教育机构
《因式分解-待定系数法、换元法、添项拆项法》知识点
归纳
教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中八年级数学科目, 学习后学生能得到全面的发展和提高。

本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

知识体系梳理
◆添项拆项法
有的多项式由于“缺项”,或“并项”因此不能直接分解。

通过进行适当的添项或拆项后利用分组而分解的方法称为添项、拆项法。

一般来说,添项拆项后要能运用提公因式法、公式法、十字相乘法、分组分解法分解。

如果添项拆项后,不能运用四种基本方法分解,添项拆项也是无用的。

◆待定系数法
有些多项式不能直接分解因式,我们可以先假设它已分解成几个含有待定系数因式的乘积形式。

然后再把积乘出来。

用等号两边同次项次系数相等的方法把这些待定系数求出来,进而得出因式分解结果,这种分解因式的方法叫做待定系数法分解因式。

◆换元法
所谓换元,即对结构比较复杂的代数式,把其中某些部分看成一个整体,用新的字母代替(即换元),则能使复杂的问题简单化、明朗化,象这种利用换元来解决复杂问题的方法,就叫。

换元法在减少代数式的项数、降低多项式结构复杂程度等方面都有着独到的作用。

(1)、使用换元法时,一定要有意识,即把某些相同或相似的部分看成一个。

(2)、换元法的种类有:单个换元、多个换元、局部换元、整体换元、特殊值换元和几何换元。

(3)、利用换元法解决问题时,最后要让原有的数或式“回归”。

★★典型例题、方法导航
◆方法一:添项拆项法
【例1】分解因式:
分析:此多项式是三次三项式,缺项不能直接分解。

可考虑添项拆项法分解。

从它的最高次项看是三次,因此我们可以猜想它最多可分解成三个一次二项式的积,即,再看常数项可分解成±1、±2,因此我们可猜想分解的结果可能是或或 ,但的中间项是 ,因此是不可能的,因此只可能是前面两种的其中一种。

下面请看:
解:
其结果是我们猜想中的第一种。

此题还有其他分解方法吗?在注意到分解结果中有和
的因式,因此还有其他更多的分解方法。

方法二:
方法三:
方法四:
方法五:
方法六:(余下过程同学自己完成)
方法点金:拆项、添项法分解因式的关键是通过拆项、添项达到分组或运用公式的目的,一般可考虑添多项式中所缺的项,或考虑常数项可分解的因数有关的因式。

◎变式议练一:
分解下列各式的因式
(1)(2)(3)
◆方法二:待定系数法
【例2】分解因式:
解:
设:
展开后左右两边比较系数求出、即可。

分解结果:
【例3】已知多项式能被整除,请分解前者的因式。

分析:设,利用多项式的恒等求出、即可。

◎变式议练二:
1、已知是的一个因式,则;
2、用待定系数法分解因式:
【例4】在实数范围内分解因式
(1)(2)(3)
◎变式议练三:
求的算术平方根。

◆方法三:换元法
◆直接换元法
【例5】用换元法分解因式:
方法点金:设,
注意:换元法分解因式最后要回归。

◎变式议练四
1、用换元法分解因式:
2、用换元法分解因式:
方法点金:当两括号中的二次项,一次项的系数对应成比例可考虑用换元法分解因式。

【例6】分解因式:
分析:两括号中二次项、一次项系数的比为,可以换元。

◆组合换元法
【例7】分解因式:
分析:观察第一、四括号内的常数项和第二、三括号内的常数的和为,因此也可用组合换元法分解因式。

◎变式议练五
证明四个连续正整数的积与1的和是一个完全平方。

◆能力与创新
把下列各式分解因式:
①、②、
③、
◆◆◆◆快乐体验
1、若多项式和多项式有公因式,则;
2、若能被整除,则;
3、分解因式:
(1)(2)
4、已知多项式有一个因式是,把这个多项式分解因式。

5、甲、乙两同学分解多项式时,甲看错了 ,分解结果为 ,乙看错了 ,分解结果为 ,请分析一下,、的值分别为多少?并写出正确的分解过程。

6、已知一个三角形的三边、、满足 ,试判断这个三角形的形状,并证明你的结论。

XX文讯教育机构
WenXun Educational Institution。

相关文档
最新文档