定积分讲义-
数学《定积分》讲义

第九章 定 积 分1 定积分的定义一、背景1、曲边梯形的面积1()ni i i S f x ξ=≈∆∑2、变力所做的功 1()ni i i W F x ξ=≈∆∑上述问题均可归结为一个特定形式的和式逼近,思想方法:分割、近似求和、取极限.二、定积分的定义定义 1 设闭区间[],a b 内有1n -个点,依次为0121n n a x x x x x b -=<<<⋅⋅⋅<<=,其把[],a b 分成n 个小区间[]1,,1,i i i x x i n -∆==⋅⋅⋅.称这些点或小闭子区间构成[],a b 的一个分割,记为{}01,,n T x x x =⋅⋅⋅或{}12,,n ∆∆⋅⋅⋅∆,小区间i ∆的长度为1i i i x x x -∆=-,同时记{}1max i i nT x ≤≤=∆,称为分割T 的模(或细度).注1 ||||,1,i x T i n ∆≤=⋅⋅⋅. 因而,||||T 可用来刻画[],a b 被分割的细密程度,同时,若T 给定,则||||T 确定,而对同一细度(模), 相应的分割却有无穷多个.定义 2 设f 为[],a b 上的函数,对[],a b 上的分割{}12,,n T =∆∆⋅⋅⋅∆,任取点,i i ξ∈∆1,i n =⋅⋅⋅,作和式1()niii f x ξ=∆∑,称为函数f 在[],a b 上的一个积分和,也称为Riemann 和.注2. Riemann 和与分割T 及i ξ的取法有关. 对同一个分割T ,相应的Riemann 和有无穷多个.定义 3 设f 是[],a b 上的函数,J 为一个确定的数. 若对任给正数0ε>,存在正数0δ>,使得对[],a b 上的任何分割T ,以及其上任选的i ξ,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称f 在[],a b 上可积(或Riemann 可积) ,数J 称为f 在[],a b 上的定积分(或Riemann 积分) ,记作()baJ f x dx =⎰. 其中f 称为被积函数,x 称为积分变量,[],a b 称为积分区间,,a b 分别称为积分的下限、上限.注.1()lim ()nbi i aT i f x dx f x ξ→==∆∑⎰⇔0,0,,,,i i T T εδδξ∀>∃>∀<∀∈∆1()()nbi i ai f x f x dx ξε=∆-<∑⎰定积分的几何意义(f 可积)(1) 0f ≥时,()ba f x dx ⎰就是以,,x a xb x ==轴及()y f x =围成的曲边梯形的面积.(2) 0f ≤时,()baf x dx ⎰为x 轴下方的曲边梯形面积的相反数(负面积) .(3) ()baf x dx ⎰是曲线()y f x =在x 轴上方部分所有曲边梯形的正面积与下方所有曲边梯形的负面积的代数和. (4) 注.()()()bb baaaf x dx f t dt f u du ==⎰⎰⎰,定积分与积分变量无关.三、举例例 1 已知函数2()f x x =在区间[]0,1上可积,求120x dx ⎰.例 2 已知1()1f x x=+,()sin g x x π=在[]0,1上可积. 利用定积分的定义说明 1) 10111lim()1221n dx n n n x→∞++⋅⋅⋅+=+++⎰. 2) 10012(1)1lim (sin sin sin )sin sin n n xdx x dx n n n n ππππππ→∞-++⋅⋅⋅+==⎰⎰.给出一般公式().......ba f x dx =⎰例 3 讨论Dirichlet 函数1()0x D x x ⎧=⎨⎩,为有理数,为无理数 在[]0,1上的可积性.四、 定积分的计算 定理 (微积分基本定理)设[]:,f a b R →可积,存在可导函数[]:,F a b R →,使F f '=,则()()|()()bx bx a af x dx F x F b F a ====-⎰上式也称为Newton-Leibniz 公式.例 4 求例2中定积分的值.例 5 1) 211(ln )eex dx x⎰;2) 2⎰;3) 求11()f x dx -⎰,其中210()0x x x f x e x --<⎧=⎨≥⎩, ,;4) 0⎰;5) 221lim nn i in i→∞=+∑;6) 112lim[(1)(1)(1)]n n n n n n→∞++⋅⋅⋅+.2 可积性条件一、可积的必要条件定理1 若函数f 在[],a b 上可积,则f 在[],a b 上有界.注 有界仅是f 可积的必要条件,而非充分条件. 如[]0,1上的()D x . 定理2 设函数f 在[],a b 上可积,则f 在(),a b 内至少有一个连续点. [ 若函数f 在[],a b 上处处不连续,则f 必不可积. ] 二、可积的充要条件设{}12,,n T =∆∆⋅⋅⋅∆为[],a b 上的一个分割,设f 在[],a b 上有界,则f 在每个i ∆上必有上下确界,记{}sup ()ii x M f x ∈∆=,{}inf ()ii x m f x ∈∆=,1,i n =⋅⋅⋅.作和式1()n i i i S T M x ==∆∑,1()ni i i s T m x ==∆∑,分别称为f 关于T 的上和和下和(Darboux 上下和) , 从而i i ξ∀∈∆,1,i n =⋅⋅⋅,1()()()ni i i s T f x S T ξ=≤∆≤∑. (作图几何意义)注 当分割T 确定后,则上和与下和完全确定.性质1 对同一分割T ,上和()S T 是所有积分和1()ni i i f x ξ=∆∑的上确界(相对于i ξ取),下和()s T 是所有积分和1()ni i i f x ξ=∆∑的下确界, 即{}1()inf ()i i n i i i s T f x ξξ∈∆=⎧⎫=∆⎨⎬⎩⎭∑, {}1()sup ()i i n i i i S T f x ξξ∈∆=⎧⎫=∆⎨⎬⎩⎭∑,且 1()()()()()ni i i m b a s T f x S T M b a ξ=-≤≤∆≤≤-∑,其中,M m 分别为f 在[],a b 上的上、下确界.性质2 设T '为分割T 添加p 个新分点后所得到的分割. 则()()()()s T s T s T p M m T '≤≤+- ()()()()S T S T S T p M m T '≥≥--即分点增加后,下和不减,上和不增.性质3 若T 与T '为任意两个分割,T ''为T 与T '所有分点合并组成的分割,记为T T T '''=+,则 ()()s T s T ''≥, ()()S T S T ''≤;()()s T s T '''≥, ()()S T S T '''≤.性质4 对任意两个分割T 、T ',总有()()s T S T '≤.即:对任何两个分割,下和总不大于上和. 因而,所有的上和有下界,所有的下和有上界,从而分别有下、上确界,记为S 和s . 即{}inf ()TS S T =,{}sup ()Ts s T =,称S 和s 分别为f 在[],a b 上的上、下积分,记为()ba S f x dx -=⎰,()b a s f x dx -=⎰.性质5 ()()()()bbaa mb a f x dx f x dx M b a ---≤≤≤-⎰⎰性质6. [Darboux 定理] 0lim ()()b a T S T f x dx -→=⎰,0lim ()()ba T s T f x dx →-=⎰.定理 3 (第一充要条件) [],a b 上的有界函数f 可积⇔()()bb a a f x dx f x dx --=⎰⎰定理4 (可积的第二充要条件)[],a b 上的有界函数f 可积⇔ 0ε∀>,存在分割T ,使得()()S T s T ε-<.由于11()()()nni i i i i i i S T s T M m x x ω==-=-∆=∆∑∑,其中i i i M m ω=-称为f 在i ∆上的振幅. 从而有定理4' [],a b 上的有界函数f 可积⇔0ε∀>,存在分割T ,使得1ni i i x ωε=∆<∑.定理4'的几何意义:若f 可积,则曲线()y f x =可用总面积任意小的一系列小矩形覆盖. 反之亦然.三、可积函数类(充分条件)定理 5. 若f 在[],a b 上连续,则f 在[],a b 上可积.定理 6. 若f是[],a b上仅有有限个间断点的有界函数,则f在[],a b上可积.注.改变可积性函数在某些点处的值, 不改变可积性, 也不改变积分值. 定理7. 若f为[],a b上的单调函数,则f在[],a b上可积.例1试用两种方法证明函数0 0()1111xf xxn n n=⎧⎪=⎨<≤⎪+⎩,,,1,2n=⋅⋅⋅在[]0,1上可积.例2 设f 在[],a b 上有界,{}[],n a a b ⊂,lim n na c =.证明:若f 仅在{}n a 上间断,则f 在[],a b 上可积.例3 f 在[],a b 上可积,[][],,a b αβ⊂,则f 在[],αβ上可积.例4 证明定理2: 若f 在[],a b 上可积,则f 在(),a b 内至少有一个连续点(从而有无穷多个连续点) .例5 证明: Riemann 函数[]1, ()0 0,10,1p x p q q p q q f x x ⎧=>⎪=⎨⎪=⎩,和互素,,或中的无理数 在[]0,1上可积,且1()0f x dx =⎰.(第三充要条件)3 定积分的性质一、定积分的性质 1. 线性性质定理 1 设f 在[],a b 上可积,k 为常数,则kf 在[],a b 上可积,且 ()()bbaakf x dx k f x dx =⋅⎰⎰.定理 2 设,f g 在[],a b 上可积,则f g ±在[],a b 上可积,且()()()()bb baaaf xg x dx f x dx g x dx ±=±⎰⎰⎰.推论. 设,f g 在[],a b 上可积,,αβ为常数,则f g αβ+在[],a b 上可积,且()()()()bb baaaf xg x dx f x dx g x dx αβαβ+=+⎰⎰⎰.2. 乘积可积性定理 3 设,f g 在[],a b 上可积,则f g ⋅在[],a b 上可积. 注 一般情形下,()()()()b b baaaf xg x dx f x dx g x dx ⋅≠⋅⎰⎰⎰.定理 4 有界函数f 在[],a c 和[],c b 上可积f ⇔在[],a b 上可积,且()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰规定 1) ()0aa f x dx =⎰.2)()()baab f x dx f x dx =-⎰⎰,()b a <.则对任何,,a b c 均有 ()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.4. 关于函数的单调性定理5 设,f g 在[],a b 上可积,且()()f x g x ≤,[],x a b ∀∈,则()()bbaaf x dxg x dx ≤⎰⎰.推论 (积分值的估计) 设f 在[],a b 上可积,,M m 分别为f 在[],a b 上的上、下确界,则 ()()()ba mb a f x dx M b a -≤≤-⎰.定理6 若函数f 在[],a b 上可积,则f 在[],a b 上可积,且|()||()|bbaaf x dx f x dx ≤⎰⎰.注. 定理 6的逆不真.6. 积分第一中值定理定理 7 若函数f 在[],a b 上连续,则至少存在一点[],a b ξ∈,使得()()()baf x dx f b a ξ=-⎰.几何意义: 称1()ba f x dxb a -⎰为f 在[],a b 上的平均值.定理7' (推广的第一中值定理) 若,f g 在[],a b 上连续,且()g x 在[],a b 上不变号,则至少存在一点[],a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.[()1g x ≡时,即为定理7.]二、应用举例例 1 求11()f x dx -⎰. 其中2110() 01x x x f x e x ---≤<⎧=⎨≤<⎩, ,.例 2 求()sin f x x =在[]0,π上的平均值.例 3 若f 在[],a b 上连续,()0f x ≥,且()0f x ≡/,则()0ba f x dx >⎰.例 4比较积分1⎰和21x e dx ⎰的大小.例 5证明:22ππ<<⎰.例 6 若f 在[],a b 上可积,()0f x >,则()0ba f x dx >⎰.例 7 若,f g 在[],a b 上可积,则{}()max (),()M x f x g x =在[],a b 上可积.*例 8 设f 在[],a b 上可积,且()0f x m >>,则1f可积.*例 9 证明:若f 在[],a b 上连续,且()()0b baaf x dx xf x dx ==⎰⎰,则在(),a b 内至少存在两点12,x x 使12()()0f x f x ==. 又若2()0bax f x dx =⎰,此时,f 在(),a b 内是否至少有三个零点?*例 10 设f 在[],a b 上二阶可导,且()0f x ''>,证明: 1) 1()()2ba ab f f x dx b a+≤-⎰ 2) 又若()0f x ≤,[],x a b ∈,则又有2()()ba f x f x dxb a ≥-⎰,[],x a b ∈.*例11证明:(1)11ln(1)11ln2n nn+<++⋅⋅⋅+<+(2)1112lim1lnnnn→∞++⋅⋅⋅+=*例13若f可积,m f M≤≤,g在[,]m M上连续,则复合函数h g f=可积.由此, 若f可积, 则2f,13,f||f, ()f xe, (0)f≥,1(inf0)ff>可积.4 微积分基本定理 定积分的计算一、微积分基本定理 1. 变限积分的可微性设f 在[],a b 上可积,则任何[],x a b ∈,f 在[],a x 上也可积,从而()()xa x f t dt Φ=⎰,[],x ab ∈定义了一个以x 为积分上限的函数, 称为变上限积分.定理1 若f 在[],a b 上可积,则()()xa x f t dt Φ=⎰在[],ab 上连续.定理 2 (原函数存在定理,微积分学基本定理)若f 在[],a b 上连续,则()()xa x f t dt Φ=⎰在[],ab 上处处可导,且()()()xa d x f t dt f x dx'Φ==⎰,[],x a b ∈.注. 1) 当f 在[],a b 上连续,则()()xax f t dt Φ=⎰为f 的一个原函数,且f 的任一原函数()()xaF x f t dt C =+⎰. 令x a =,则()F a C =. 从而()()()xaf t dt F x F a =-⎰——Newton-Leibniz .2) 定理2. 揭示了导数和定积分之间的深刻联系,同时证明了连续函数必有原函数,并说明变上限积分就是一个原函数. 由于它的重要作用而被称为微积分基本定理.3) 同样可定义变下限积分()()bxxbf t dt f t dt =-⎰⎰. 且当f 连续时,有()()bxd f t dt f x dx =-⎰ 4) 变上限积分()xaf t dt ⎰一般不写作()xaf x dx ⎰.例 1 1)⎰2) 220sin cos t tdt π⎰例 2 设f 在[],a b 上连续,()0f x ≥,且()0f x ≡/,证明: ()0baf x dx >⎰.例 3 设f 为连续函数,,u v 均为可导函数,且复合f u ,f v 均有意义,证明()()()(())()(())()v x u x d f t dt f v x v x f u x u x dx''=⋅-⋅⎰.例 4 求1) 230limx x x +→⎰2) 222010cos limx x x t dtx →-⎰二、定积分的换元法定理 3 设f 在[],a b 上连续,Φ满足条件1) ()a αΦ=,()b βΦ=. [](),,a t b t αβ≤Φ≤∈ 2) ()t Φ在[],αβ上有连续导函数,则()(())()baf x dx f t t dt βα'=Φ⋅Φ⎰⎰.例 5 1)⎰2) 220sin cos t tdt π⎰3)10x x dx e e -+⎰4)3212(1)dx x x -+⎰5)120ln(1)1x dx x ++⎰6) 已知32()4f x dx =-⎰,求21(1)xf x dx +.注 在换元法计算定积分时,一要注意积分上下限的变化(这里只需要求,a b 的对应值为,αβ,而不计较,αβ的大小) . 二是要注意代入新变量,直接求定积分的值,而无需变量还原. (此与不定积分是不一样的. 这是因为不定积分求的是被积函数的原函数,其变量应一致,而定积分的结果是一个数值,只需求出即可) .注 定理3换元积分条件,f 可减弱为f 可积,ϕ可减弱为()t ϕ'在[],αβ上可积,且除有限个点外()0t ϕ'>(或()0t ϕ'<) . (保证[][]:,,a b ϕαβ→是11-的.) 例 6 设f 为[],a a -(对称区间) 上的连续奇(偶) 函数,则()0aaf x dx -=⎰(0()2()a aaf x dx f x dx -=⎰⎰) .如求22223(sin3cos 5arctan 1)x x x x x e x dx ππ--⋅+⋅--⎰.例 7 设f 为(,)-∞+∞上以T 为周期的可积函数,证明:对任何实数a R ∈,有()()a TTaf x dx f x dx +=⎰⎰.例 8 设f 为连续函数,则1) 22(sin )(cos )f x dx f x dx ππ=⎰⎰;2)(sin )(sin )2xf x dx f x dx πππ=⎰⎰.由此计算2sin sin cos xdx x x π+⎰和20sin 1cos x x dx xπ⋅+⎰.例 9 设f 在[],a b 上连续,求证:()()bbaaf x dx f a b x dx =+-⎰⎰.由此计算362cos (2)xdx x x πππ-⎰.三、分部积分定理 4 若(),()u x v x 为[],a b 上的连续可导函数,则有定积分分部积分公式()()()()()()bbb a aau x v x dx u x v x u x v x dx ''⋅=⋅-⋅⎰⎰或()()()()()()bb b a aau x dv x u x v x v x du x =⋅-⎰⎰例 10 1) 10x xe dx ⎰ 2)21ln ex xdx ⎰3) 1ln eexdx ⎰4) 1arcsin xdx ⎰5) 2sin x x e dx π⋅⎰6)4⎰例 11 求20sin nxdx π⎰和2cos n xdx π⎰.注 由前两式可推出著名的Wallis 公式:2(2)!!1lim 2(21)!!21m m m m π→∞⎡⎤=⋅⎢⎥-+⎣⎦.四、Taylor 公式的积分型余项 推广的分部积分公式设(),()u t v t 在[,]a b 上有1n +阶连续导函数,则(1)()(1)()()()()()()()(1)()()bn n n n n baau t v t dt u t v t u t v t u t v t +-'⎡⎤⋅=⋅-⋅+⋅⋅⋅+-⋅⎣⎦⎰1(1)(1)()()bn n au t v t dt +++-⋅⎰.设f 在0x 处的某邻域0()U x 有1n +阶连续导函数,0()x U x ∈,则有(1)()1(1)()()()()()()!()0()xxn n n n n n xx x x x t ft dt x t f t n x t f t n f t f t dt +--⎡⎤-=-+-+⋅⋅⋅++⋅⎣⎦⎰⎰()00000()!()![()()()()]!n n f x n f x n f x f x x x x x n '=-+-+⋅⋅⋅+-!()n n R x =(1)1()()()!x n n n x R x f t x t dt n +⇒=-⎰ ——积分型余项注 1) 由推广的第一积分中值定理((1)()n f t +连续,()n x t -在[]0,x x 或[]0,x x 上保持同号) ,则(1)1()()()!x n n n x R x f x t dt n ξ+=-⎰(1)101()()(1)!n n f x x n ξ++=-+ ——Lagrange 型余项2) 直接由积分第一中值定理,有(1)01()()()()!n n n R x f x x x n ξξ+=-- (1)10001(())(1)()!n n n f x x x x x n θθ++=+--- 00x =时,(1)11()()(1)!n n n n R x f x x n θθ++=-, 01θ≤≤——Cauchy 型余项五、积分第二中值定理 定理 5 设f 在[],a b 上可积,1) 若g 在[],a b 上减,且()0g x ≥,则存在[],a b ξ∈,使()()()()baaf xg x dx g a f x dx ξ=⎰⎰.2) 若g 在[],a b 上增,且()0g x ≥,则存在[],a b η∈,使()()()()bbaf xg x dx g b f x dx η=⎰⎰.推论. 设f 在[],a b 上可积,g 为单调函数,则存在[],a b ξ∈,使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰.例 12 设()f x 为[]0,2π上的单调递减函数,证明:对任何正整数n ,恒有20()sin 0f x nxdx π≥⎰.定理 6 设函数f 在闭区间[],a b 上连续,函数g 在[],a b 上可导,且导函数()g x '在[],a b 上非负且连续,则存在[],c a b ∈,使得()()()()()()bc baacf xg x dx g a f x dx g b f x dx =+⎰⎰⎰.例 13 证明:当0x >时,有不等式21sin x cxt dt x+≤⎰(0)c >.例 14 设()y f x =为[],a b 上严格增的连续曲线,试证:存在(),a b ξ∈使图中阴影部分面积相同.习 题1. 求)0(F '及)4(πF '. 其中⎰-=202sin )(x t tdt e x F2. 求下列极限(1) ⎰→xx dt t x 020cos 1lim (2) dxe dt e x txt x ⎰⎰∞→020222)(lim3. 求下列积分(1) ⎰⋅2042sin cos πxdx x (2)dx x ⎰-224(3) dx xx⎰+202sin 1cos π (4) dx xx ⎰+411(5) dx x x ⎰-1122)2( (6)dx x a x a2202-⎰(7)dx xx ⎰++311 (8)xdx x 3sin][3π⎰4. 求下列积分 (1) dx xe x⎰-2ln 0(2) ⎰210arccos xdx(3) ⎰-adx x a 022 (4) dx x x⎰-1221(5)⎰-2ln 01dx e x(6)dx ax x aa⎰-+222(7)dx xb x a xx ⎰+⋅202222sin cos cos sin π(8)dx x x ee⎰1ln(9)⎰+20cos sin cos πdx xx x(10)⎰+-adx xa xa 0arctan(11)dx e x x ⎰-⋅202sin π(12)dx xa xa x a⎰+-025. 求下列极限 (1) ∑=+∞→nk n nk 123lim (2) 2213lim k n nk nk n -∑=∞→6. 证明 (1)⎰⎰-=-11)1()1(dx x x dx x x m n n m(2) 若f 在R 上连续, 且⎰=x adt t f x f )()(, 则.0)(≡x f (3) 0sin sin ,m n mx nxdx m n N m nπππ-≠⎧=∈⎨=⎩⎰,(4)⎰-=ππ0cos sin nx mx(5) 设f 在],0[π上连续,且⎰⎰⎰===πππ0cos )(sin )()(xdx x f xdx x f dx x f求证f 在),0(π内至少两个零点.定积分1、定积分的定义1()lim ()nbi i aT i f x dx f x ξ→==∆∑⎰0,0,,,,di i T T εδδξ⇔∀>∃>∀<∀∈∆1()ni i i f x J ξε=∆-<∑. (())baJ f x dx =⎰2、可积函数(充要) 条件1) f 在[],a b 上可积⇒f 在[],a b 上有界⇒f 在(),a b 内至少有一个连续点2) f 在[],a b 上可积⇔()()b ba a f x dx f x dx --=⎰⎰⇔0,,()()T S T s T εε∀>∃-< ⇔10,,ni i i T w x εε=∀>∃∆<∑3) f 在[],a b 上连续⇒f 在[],a b 上可积f 在[],a b 上单调⇒f 在[],a b 上可积f 在[],a b 上仅有限个间断点(或间断点仅有限个聚点) ,则f 在[],a b 上可积. f 在[],a b 上可积,g 与f 仅有限个点处不相等,则g 在[],a b 上可积,且()()bbaag x dx f x dx =⎰⎰4) 可积函数复合未必可积.3、定积分性质1) 线性性质 2) 子区间可积性 3) 乘积可积 4) 区间可加性 5) 单调性 6) 绝对可积性4、微积分基本定理与Newton-Leibniz 公式定理. 若f 在[],a b 上连续,则()()xa x f t dt Φ=⎰在[],ab 上处处可导,且()()()xa d x f t dt f x dx'Φ==⎰. 由此可得()()()baf x dx F b F a =-⎰.注. 若f '可积,则()()()b af x dx f b f a '=-⎰.定理. 若f 在[],a b 上可积,则()()xax f t dt Φ=⎰在[],a b 上连续.结论 (变限积分的导数)()()(())(())()(())()h x g x f t dt f h x h x f g x g x '''=⋅-⋅⎰5、定积分的积分方法 1) 换元设()y f x =在[],a b 上可积,()x t ϕ=满足ϕ'在[],αβ上可积,且在[],αβ上至多除有限个点使()0t ϕ'=,其余点()0t ϕ'>,(),()a b ϕαϕβ==,则()(())()baf x dx f t t dt βαϕϕ'=⋅⎰⎰[ 注意:积分上下限只需对应,而不管大小. ] 2) 分部积分 (注意具体被积函数的形式) 设,u v ''为[],a b 上可积函数, 则 bbb a aaudv uv vdu =-⎰⎰.6、Taylor 公式与积分中值定理. 1) 可积函数未必有原函数.1, 01;() 1 , 1 2.x f x x -≤≤⎧=⎨<<⎩ 2) 有原函数的函数也未必可积.22211cos 2sin , 0;()0, 0.x x f x x x xx ⎧-+≠⎪=⎨⎪=⎩在[1,1]-上有原函数220, 0;()1sin , 0.x x F x x x =⎧⎪=⎨⋅≠⎪⎩ 但f 在[0,1]上不可积.3) 可积不连续的函数也可能有原函数.习 题 课一、定积分的计算 例 1 1)20πθ⎰2) 1t x t dt -⎰, (1,0,01)x x x ><≤≤3)arctana⎰4) 10(1)xdx x α+⎰5)10ln(1dx ⎰6)0⎰7)121⎰8)2-⎰9) 21,0() , 0x x x f x e x -⎧+<⎪=⎨>⎪⎩ , 求31(2)f x dx -⎰.10) 1(2)2f =,(2)0f '=,20()1f x dx =⎰. 求120(2)x f x dx ''⎰.二、利用定积分定义求和式极限11111()lim ()lim ()nn i i T n i i f x dx f x f n n ξ→→∞===∆=∑∑⎰1()lim ()n ban i b a b af x dx f a i n n→∞=--=+∑⎰例 2 1) 221lim nn i i n i→∞=+∑2) 11lim[(1)]n n n k k n -→∞=+∏3) 12lim 1knnn k n k→∞=+∑4) 444333124lim (12)5n n n n →∞++⋅⋅⋅+=++⋅⋅⋅+三、变限积分的导数例 3 1)2sin b a d x dx dx⎰ 2) 2sin x a d tdt dx ⎰3) 10(arctan )t x e tdt '⋅⎰4)23ln t t d dxdt x⎰ 例 4 1) 设0x ≥时,()f x 连续,且230()x f t dt x =⎰,求()f x .2) 设f 连续,31()x f t dt x c -=+⎰,求c 与(7)f .例 5 1) 设f 在[],a b 上连续,0()()()xF x f t x t dt =-⎰,[],x a b ∈.求证:()()F x f x ''=.2) 设f 在[)0,+∞上连续,且()0f x >,00()()()xx tf t dt x f t dtϕ=⎰⎰.试证:ϕ在()0,+∞上严格增.3) f 为连续可导函数. 试求:()()xa d x t f t dt dx'-⎰.四、求含变限积分未定型极限 例 6 1) 20cos limsin xx x x t dttdt→⎰⎰2) 222020()limxt x x t e dt e dt→∞⎰⎰例 7 1) 设f 在[],a b 上连续,求证:(),x a b ∈时,1lim ()()()()xa h f t h f t dt f x f a n+→+-=-⎰.2) ()f x 在R 上连续,且以T 为周期,求证:0011lim ()()x Tx f t dt f t dt x T→∞=⎰⎰.3)1lim bb -→⎰,(01)b << 存在.4) 设f 在[]0,A (0)A ∀>上可积,lim ()x f x a →+∞=,则01lim()xx f t dt a x →+∞=⎰.五、定积分的极限例 8 1) 求证: 1) 10lim 1nnx dx x +⎰ 2) 120lim (1)n n x dx →∞-⎰3) 2lim sin n n xdx π→∞⎰2) 设f 在[]0,2π上单调,求证:20lim ()sin 0f x xdx πλλ→∞⋅=⎰.六、某些积分不等式1、利用积分关于被积函数的单调性证明不等式.例 9 证明不等式 11201413n x dx n x x n-≤≤-+⎰,n ∈.例 10 证明:1) 211<⋅⋅⋅+< 2) 11ln(1)11ln 2n n n+<++⋅⋅⋅+<+[由此证明11lim(1ln )2n n n ++⋅⋅⋅+-存在,一般称此极限为Euler 常数,记为C ]2、某些不等式的积分形式设函数,f g 在[],a b 上可积,对[],a b 上n 等分, 取[]1,i i i x x ξ-∈,若对任何n ,1i n ≤≤,有11()()nn i i i i b a b af g n n ξξ==--⋅≤⋅∑∑,则有()()b b a a f x dx g x dx ≤⎰⎰. 例 11 1) 证明Schwarz 不等式.设,f g 在[],a b 上可积, 则222()()()()b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⋅⎢⎥⎣⎦⎰⎰⎰.而当,f g 连续时, 等号成立⇔c ∃,g cf =.2) 设f 在[],a b 上连续,且0f >,则21()()()bba af x dx dx b a f x ⋅≥-⎰⎰.3) 设f 在[]0,1上可积,证明:21120()()f x dx f x dx ≤⎰⎰.4) 设,f g 在[],a b 上可积,则有Minkowski 不等式()111222222()()()()b b b a a a f x g x dx f x dx g x dx ⎡⎤⎡⎤⎡⎤+≤+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰.例 12 若ϕ在[]0,a 上连续,f 二阶可导,且()0f x ''≥, 则有Jesen 不等式0011(())(())a af t dt f t dt a a ϕϕ≥⎰⎰.3、其它不等式例13 1) 设f 在[]0,1上连续可导,证明:10()()()f x f t f t dt '≤+⎰,[]0,1x ∈.2) 设0a >,f 在[]0,a 上连续可导,则01(0)()()aa f f x dx f x dx a '≤+⎰⎰.3) 设f 在[]0,1上连续可导, 且(0)0,(1)1f f ==, 求证:110()()f x f x dx e -'-≥⎰.4) 设f 二阶可导, 求证:3()()()()224baa b Mf x dx b a f b a +--≤-⎰. 其中[],sup ()x a b M f x ∈''=.。
《定积分的概念》ppt课件

f
()(ba)
(ab).
性质7的几何意义:
在[a,b]上至少有 ,一使得 [a,以 b]为底边,以曲
y f (x)为曲边的曲A边a梯 B的 b形 面积等于同一
而高f为 ()的矩形的. 面积
假如函数f〔x〕在闭区间[a,b]上连续,我们
称b1aabf (x)dx
如已知某为地函某数时f自〔0x至〕2在4时[a,天b]上气的温平度均曲值线.为f(t),
曲线 f(x)f((x)0 )、x轴及两条直线x=a,x=b所围 成的曲边梯形面积A等于函数f(x)在区间[a,b]上的定积 分,即
Aabf(x)dx.
质点在变力F(s)作用下作直线运动,由起始位置a 移动到b,变力对质点所做之功等于函数F(s)在[a,b] 上的定积分,即
WabF(s)ds
假如函数f〔x〕在区间[a,b]上的定积分存在, 那么称函数f〔x〕在区间[a,b]上可积.
如果在[a,b]上 f(x)0,此时由曲线y=f(x),直线 x=a,x=b及x轴所围成的曲边梯形位于x轴的下方,则
定积分ab f (x)dx在几何上表示上述曲边梯形的面积A的
相反数.
假如在[a,b]上f〔x〕既可取正值又可取负值,那
么定积ab分f (x)dx 在几何上表示介于曲线y=f〔x〕,
直线x=a,x=b及x轴之间的各部分面积的代数和.
[x0,x1],[x1,x2],,[xi1,xi],,[xn1,xn]
各个小区间的长度为
xi xi xi1
在每一个小[x区 i1,x间 i]上任取一i(点 xi 1ixi),
n
作和 (简式 称积 ) 分 f和 (i)x式 i
i1
记max{xi,x2,...,xn},如果对[a区 ,b]间 任一分法 和小区[x间 i1,xi]上点 i任意取法,只 要0时 当,上
定积分的概念课件

y f ( x)
a
b
x
积分上限
a f ( x )dx I
积分下限
b
lim f (i )xi
n i 1
n
被 积 函 数
被 积 表 达 式
积 分 变 量
说明:
(1) 定积分是一个数值, 它只与被积函数及积分区间有关, 而与积分变量的记法无关,即
a f(x)dx a f (t)dt a
(3)
b
b
b
f(u)du。
(2)定义中区间的分法和 i 的取法是任意的.
a f(x)dx - b f (x)dx
b
a
(二)、定积分的几何意义:
当 f(x)0 时,积分 f ( x)dx 在几何上表示由 y=f (x)、 a xa、xb与 x轴所围成的曲边梯形的面积。
y y f ( x)
高中数学选修2-2第一章《定 积分》
温故知新 * 曲边梯形的定义:
我们把由直线 x = a,x = b (a ≠ b), y = 0和曲 线 y = f (x) 所围成的图形叫作曲边梯形。 * 求曲边梯形面积的步骤: 分割区间 过剩估计值 不足估计值
逼近所求面积
(一)、定积分的定义
从求曲边梯形面积S的过程中可以看出,通过“四步曲”:
1
梯形 的面积。 成的图形的面积,即_______
2
容易知道,梯形的面积是 3 ,所以 y y 2 y=2
1
3 1 yxdx x 2
2
o
x
1
o
1
x
2
由图可知, y 1 x 2 表示的是单位圆在 x 轴上
方的半圆。 所以 1
积。
定积分的概念 课件

梳理 从几何上看,如果在区间[a,b]上函数f(x)连续且恒有 f(x)≥0, 那么定积分ʃ baf(x)dx表示由 直线x=a,x=b,y=0和曲线y=f(x) 所围 成的曲边梯形的面积.这就是定积分ʃ baf(x)dx的几何意义. 注意:f(x)<0(图象在x轴的下方)时,ʃ baf(x)dx<0,- ʃ baf(x)dx等于曲边梯 形的面积.
n b-a
n
取一点ξi(i=1,2,…,n),作和式 f(ξi)Δx= i=1
n
f(ξi) ,当n→∞时,
i=1
上述和式无限接近某个 常数 ,这个 常数叫做函数f(x)在区间[a,b]上的定
积分,记作 ʃ baf(x)d,x 即 ʃ baf(x=)
n f,(ξi)这里,a与b分别叫做
知识点三 定积分的性质
思考 你能根据定积分的几何意义解释 ʃ baf(x)dx=ʃ caf(x)dx+ʃ bcf(x)dx(其中 a<c<b)吗? 答案 直线x=c把一个大的曲边梯形分成了两个小曲边梯形,因此大曲 边梯形的面积S是两个小曲边梯形的面积S1,S2之和,即S=S1+S2.
梳理 (1)ʃ bakf(x)dx= kʃ baf(x)dx (k 为常数). (2)ʃ ba[f1(x)±f2(x)]dx= ʃ baf1(x)dx±ʃ baf2(x)dx . (3)ʃ baf(x)dx= ʃ caf(x)dx+ʃ bcf(x)dx (其中 a<c<b).
类型一 利用定积分的定义求定积分 例 1 利用定积分的定义,计算 ʃ 21(3x+2)dx 的值.
类型二 利用定积分的性质求定积分
例 2 已知 ʃ10x3dx=14,ʃ21x3dx=145,ʃ21x2dx=73,ʃ42x2dx=536,求下列各式的值. (1)ʃ 20(3x3)dx; 解 ʃ 20(3x3)dx=3ʃ 20x3dx
定积分的概念 课件

位:h)这段时间内行驶的路程 s(单位:km)是多少? [解] (1)分割 在时间区间[0,2]上等间隔地插入 n-1 个分点,将它等
分成 n 个小区间,记第 i 个小区间为2i-n 1,2ni(i=1,2,…, n),其长度为 Δt=2ni-2i-n 1=n2.每个时间段上行驶的路程
y=0 所围成的曲边梯形的面积时,将区间[0,t]等分成 n
个小区间,则第 i-1 个区间为
()
A.i-n 1,ni C.ti-n 1,tni
B.ni ,i+n 1 D.ti-n 2,ti-n 1
[解析]
每个小区间长度为
t n
,故第i-1个区间的左
端点为0+(i-2)×
t n
=
ti-2 n
,右端点为
ti-2 n
+
t n
=
ti-1 n.
[答案] D
[易错防范] 1.解决本题易错误地认为区间左端为ti-n 1,从而误选 C. 2.在将区间[0,1]等分成 n 个小区间时,其第 1 个小区间的 左端点为 0,第 2 个小区间的左端点为n1,…,依次类推,第 i 个小区间的左端点为i-n 1.
小区间长 Δx=n1为其邻边的小矩形面积,近似代替小曲边梯形面
积.第 i 个小曲边梯形面积,可以近似地表示为ΔSi≈ξ3i ·Δx=
n+ni-13·n1(i=1,2,3,…,n).
(3)求和 因为每一个小矩形的面积都可以作为相应的小曲边梯形面
积的近似值,所以 n 个小矩形面积的和就是曲边梯形 ABCD 面积 S 的近似值,
n
n
即 S=ΔSi≈
i=1
定积分的概念讲义(答案)

1.5.1曲边梯形的面积、1.5.2汽车行驶的路程例1:54例2:[解析] 将区间[1,2]等分成n 个小区间,第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n . ∴Δs i =f ⎝⎛⎭⎪⎫1+i -1n ·1n . s n =∑i =1n f ⎝ ⎛⎭⎪⎫1+i -1n ·1n =1n ∑i =1n ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i -1n 2+2=1n ∑i =1n ⎣⎢⎡⎦⎥⎤(i -1)2n 2+2(i -1)n +3 =1n 3n +1n 2[02+12+22+…+(n -1)2]+1n[0+2+4+6+…+2(n -1)] =3+(n -1)(2n -1)6n 2+n -1n. s =lim n →∞s n =lim n →∞ ⎣⎢⎡⎦⎥⎤3+(n -1)(2n -1)6n 2+n -1n =133. ∴这段时间行驶的路程为133km. 课时自测 1. C [解析] ∑i =15(y i +1)=(y 1+1)+(y 2+1)+(y 3+1)+(y 4+1)+(y 5+1)=y 1+y 2+y 3+y 4+y 5+5,故选C.2.C [解析] 由求曲边梯形面积的“近似代替”知,C 正确,故应选C.3.D [解析] 在[0,t ]上等间隔插入(n -1)个分点,把区间[0,t ]等分成n 个小区间,每个小区间的长度均为t n ,故第i -1个区间为⎣⎢⎡⎦⎥⎤t (i -2)n ,t (i -1)n ,故选D.4. D [解析] s =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫143+⎝ ⎛⎭⎪⎫243+⎝ ⎛⎭⎪⎫343+13×14=13+23+33+4344=2564. 5. B [解析] 将区间[0,2]进行n 等分每个区间长度为2n,故应选B. 6. [答案] 3.92 5.527. [答案] 551.5.3定积分的概念1. 31)(102101⎰⎰===dx x dx x f S 35)2()(102102⎰⎰=+-==dt t dt t v S 2.()0()()0()()0()()0()ba ba f x f x dx x a xb a b y y f x f x f x dx x a x b a b y y f x ≥==≠==≤==≠==⎰⎰当时,定积分是直线,,和曲线所围成的曲边梯形的面积。
定积分的概念讲课稿课件

实例2 (求变速直线运动的路程)
n
s
lim
0
i 1
v(
i
)ti
二、定积分的概念
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
0
1
2
n1
n
把区间[a, b]分成n个小区间,各小区间的长度依次为
xi xi xi1,(i 1,2,),在各小区间上任取
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 23
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 33
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 43
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系. 53
1
A1
A2
-1 o
1x
11 x dx 2 A1
2 1 11 1 2
例4 利用定义计算定积分 1 x2dx. 0
解
将[0,1]n 等分,分点为xi
i ,(i n
1,2,, n )
小区间[ xi1 ,
xi ]的长度xi
1 ,(i n
1,2,, n )
取xi xi,(i 1,2,, n)
n
xn-1 b x
n
A lim 0 i1
f
(xi )xi
实例2 (求变速直线运动的路程)
设物体作直线运动,已知速度 v v(t) 是时间间隔
[T1,T2 ]上的连续函数,且 v(t) 0, 计算在这段时间
内物体所经过的路程。
V(T)
A
B
(1)分割 T1 t0 t1 t2 tn1 tn T2,ti ti ti1
定积分的概念【高等数学PPT课件】

4
2
ba , 24 4
2 4
2 4
sin xdx x
2 2, 4
1
2
2
4
sin xdx x
2. 2
性质7(定积分中值定理)
如果函数f ( x)在闭区间[a, b]上连续,
则在积分区间[a, b]上至少存在一点,
使
b
f ( x)dx
则 b a
f
(
x
)dx
0.
(a b)
例3 比较积分值 -2 e xdx和 2 xdx的大小.
0
0
解 令 f ( x) e x x, x [2, 0]
f ( x) 0,
0 (e x x)dx 0, 2
0 e xdx
0
xdx,
2
2
f ()(b a)
(a b).
a
积分中值公式
证
m(b
a)
b
a
f
( x)dx
M(b
a)
m
1b
b a a
f ( x)dx
M
由闭区间上连续函数的介值定理知
在区间[a, b]上至少存在一个点 ,
使
f
()
b
1
a
b
a
f
(
x)dx,
即
b
a f ( x)dx
dx x
的值.
解
f
(
x)
3
1 sin 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 定积分及其应用积分学的另一个基本概念是定积分.本章我们将阐明定积分的定义,它的基本性质以及它的应用.此外,我们要重点讲述沟通微分法与积分法之间关系的微积分学基本定理,它把过去一直分开研究的微分和积分彼此互逆地联系起来,成为一个有机的整体.最后,我们把定积分的概念加以推广,简要讨论两类广义积分.§ 6.1 定积分的概念与性质1. 定积分的定义我们先来研究两个实际问题. 例1 计算曲边梯形的面积设)(x f y =为闭区间],[b a 上的连续函数,且0)(≥x f .由曲线)(x f y =,直线b x a x == ,及x 轴所围成的平面图形(图6—1)称为)(x f 在],[b a 上的曲边梯形,试求这图6—1我们先来分析计算会遇到的困难.由于曲边梯形的高)(x f 是随x 而变化的,所以不能直接按矩形或直角梯形的面积公式去计算它的面积.但我们可以用平行于y 轴的直线将曲边梯形细分为许多小曲边梯形如图6—1所示.在每个小曲边梯形以其底边一点的函数值为高,得到相应的小矩形,把所有这些小矩形的面积加起来,就得到原曲边梯形面积的近似值.容易想象,把曲边梯形分得越细,所得到的近似值就愈接近原曲边梯形的面积,从而运用极限的思想就为曲边梯形面积的计算提供了一种方法.下面我们分三步进行具体讨论:(1) 分割 在],[b a 中任意插入1-n 个分点b x x x x x a n n =<<<<<=-1210把],[b a 分成n 个子区间],[10x x ,],[21x x ,…,],[1n n x x -,每个子区间的长度为1--=∆i i i x x x ),,2,1( n i =.(2) 近似求和 在每个子区间],[1i i x x -),,2,1( n i =上任取一点i ξ,作和式ini ix f ∆∑=1)(ξ (1.1)(3) 取极限 当上述分割越来越细(即分点越来越多,同时各个子区间的长度越来越小)时,和式(1.1)的值就越来越接近曲边梯形的面积(记作A ).因此当最长的子区间的长度趋于零时,就有A x f i ni i →∆∑=1)(ξ.例2 求变速直线运动的路程设某物体作直线运动,其速度v 是时间t 的连续函数)(t v v =.试求该物体从时刻a t =到时刻b t =一段时间内所经过的路程s .因为)(t v v =是变量,我们不能直接用时间乘速度来计算路程.但我们仍可以用类似于计算曲边梯形面积的方法与步骤来解决所述问题.(1) 用分点b t t t t t a n n =<<<<<=-1210把时间区间],[b a 任意分成n 个子区间(图6—2): ],[10t t ,],[21t t ,…,],[1n n t t -. 每个子区间的长度为1--=∆i i i t t t (n i ,2,1=).图6—2(2) 在每个子区间],[1i i t t - (n i ,2,1=)上任取一点i τ,作和式i ni i t v ∆∑=1)(τ.(3) 当分点的个数无限地增加,最长的子区间的长度趋于零时就有 s t v i ni i →∆∑=1)(τ.以上两个问题分别来自于几何与物理中,两者的性质截然不同,但是确定它们的量所使用的数学方法是一样的,即归结为对某个量进行“分割、近似求和、取极限”,或者说都转化为具有特定结构的和式(1.1)的极限问题,在自然科学和工程技术中有很多问题,如变力沿直线作功,物质曲线的质量、平均值、弧长等,都需要用类似的方法去解决,从而促使人们对这种和式的极限问题加以抽象的研究,由此产生了定积分的概念.定义6.1.1 设函数)(x f 在],[b a 上有定义,在),(b a 内任取1-n 个分点b x x x x x a n n =<<<<<=-1210把],[b a 分成n 个子区间],[10x x ,],[21x x ,…,],[1n n x x -,每个子区间的长度为1--=∆i i i x x x ),,2,1( n i =.在每个子区间],[1i i x x -),,2,1( n i =上任取一点i ξ(称为介点),作和式i ni i x f ∆∑=1)(ξ,并记{}i ni x ∆=≤≤1max λ.如果不论对],[b a 怎样划分成子区间,也不论在子区间],[1i i x x -上怎样取介点i ξ,只要当0→λ时,和式(1.1)总趋于确定的值I ,则称这极限值I 为函数)(x f 在区间],[b a 上的定积分,记作⎰ba dx x f )(,即i ni i bax f I dx x f ∆==∑⎰=→1)(lim )(ξλ (1.2)其中)(x f 称为被积函数,x 称为积分变量,],[b a 称为积分区间,b a ,分别称为积分的下限和上限.关于定积分的定义,再强调说明几点:(1) 区间],[b a 划分的细密程度不能仅由分点个数的多少或n 的大小来确定.因为尽管n 很大,但每一个子区间的长度却不一定都很小.所以在求和式的极限时,必须要求最长的子区间的长度0→λ,这时必然有∞→n .(2) 定义中的两个“任取”意味着这是一种具有特定结构的极限,它不同于第二章讲述的函数极限.尽管和式(1.1)随着区间的不同划分及介点的不同选取而不断变化着,但当0→λ时却都以唯一确定的值为极限.只有这时,我们才说定积分存在.(3) 从定义可以推出定积分(1.2)存在的必要条件是被积函数)(x f 在],[b a 上有界.因为如果不然,当把],[b a 任意划分成n 个子区间后,)(x f 至少在其中某一个子区间上无界.于是适当选取介点i ξ,能使)(i f ξ的绝对值任意地大,也就是能使和式(1.1)的绝对值任意大,从而不可能趋于某个确定的值.(4) 由定义可知,当)(x f 在区间],[b a 上的定积分存在时,它的值只与被积函数)(x f 以及积分区间],[b a 有关,而与积分变量x 无关,所以定积分的值不会因积分变量的改变而改变,即有⎰⎰⎰===b ababadu u f dt t f dx x f )()()( .(5) 我们仅对b a <的情形定义了积分⎰b adx x f )(,为了今后使用方便,对b a =与b a >的情况作如下补充规定:当b a =时,规定0)(=⎰ba dx x f ;当b a >时,规定⎰⎰-=abb adx x f dx x f )()(.根据定积分的定义,我们说:例1中)(x f 在],[b a 上的曲边梯形的面积就是曲线的纵坐标)(x f 从a 到b 的定积分⎰=ba dx x f A )(.它就是定积分的几何意义.注意到若0)(≤x f ,则由0)(≤i f ξ及0>∆i x 可知⎰≤badx x f 0)(.这时曲边梯形位于x 轴的下方,我们就认为它的面积是负的.因此当)(x f 在区间],[b a 上的值有正有负时,定积分⎰b adx x f )(的值就是各个曲边梯形面积的代数和,如图6—3图6—3例2中物体从时刻a 到时刻b 所经过的路程就是速度)(t v 在时间区间],[b a 上的定积分⎰=ba dt t v s )(.对应于导数的力学意义,我们也说它是定积分的力学意义.当)(x f 在区间],[b a 上的定积分存在时,就称)(x f 在],[b a 上可积,说明(3)表明:)(x f 在],[b a 上可积的必要条件是)(x f 在],[b a 上有界.下面是函数可积的两个充分条件,证明从略.定理6.1.1(1) 若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积.(2) 若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积.2. 定积分的基本性质定理6.1.2 (积分的线性性质)(1) 若)(x f 在],[b a 上可积,k 为常数,则)(x kf 在],[b a 上可积,且⎰⎰=babadx x f k dx x kf )()((1.3)(2) 若)(x f ,)(x g 在],[b a 上可积,则)()(x g x f ±在],[b a 上也可积,且⎰⎰⎰±=±babab adx x g dx x f dx x g x f )()()]()([. (1.4)证 根据定义,有⎰∑∑⎰=∆=∆==→=→bani i i n i i i badx x f k x f k x kf dx x kf )()(lim )(lim )(11ξξλλ.所以(1.3)式成立.类似可证(1.4)式成立. 定理6.1.2的更一般的结论是⎰∑⎰∑===baj j nj b anj j j dx x f k dx x f k )( )(11.其中)(x f j ),,2,1( n j =在],[b a 上可积,)(x k j ),,2,1( n j =为常数. 定理6.1.3 (积分对区间的可加性) 设)(x f 是可积函数,则⎰⎰⎰+=bcc abadx x f dx x f dx x f )()()( (1.5)对c b a , ,任何顺序都成立.证 先考虑b c a << 的情形.由于)(x f 在],[b a 上可积,所以不论将区间],[b a 如何划分,介点i ξ如何选取,和式的极限总是存在的.因此,我们把c 始终作为一个分点,并将和式分成两部分:i i i i iix f x f x f ∆+∆=∆∑∑∑21)()()(ξξξ,其中∑∑21,分别为区间],[c a 与],[b c 上的和式.令最长的小区间的长度0→λ,上式两边取极限,即得(1.5)式.对于其它顺序,例如c b a << ,有⎰⎰⎰+=cbb acadx x f dx x f dx x f )()()(,所以⎰⎰⎰-=cbc abadx x f dx x f dx x f )()()(⎰⎰+=b ccadx x f dx x f )()(. (1.5)式仍成立.定理6.1.4 (积分的不等式性质) 若)(x f ,)(x g 在],[b a 上可积,且)()(x g x f ≤,则⎰⎰≤ba badx x g dx x f )()(. (1.6)证 ⎰⎰⎰-=-bababadx x f x g dx x f dx x g )]()([)()( i ni i i x f g ∆-=∑=→10)]()([lim ξξλ.由假设知0)()(≥-i i f g ξξ,且0>∆i x ),,2,1( n i =,所以上式右边的极限值为非负,从而有⎰⎰≥babadx x f dx x g )()(.(1.6)式成立. 从定理6.1.4立刻推出推论6.1.1 若)(x f 在],[b a 上可积,且0)(≥x f ,则 0)(≥⎰ba dx x f .推论6.1.2 (积分估值) 若)(x f 在],[b a 上可积,且存在常数m 和M ,使对一切],[b a x ∈有M x f m ≤≤)(,则)()()(a b M dx x f a b m ba-≤≤-⎰.推论6.1.3 若)(x f 在],[b a 上可积,则 )( x f 在],[b a 上也可积,且dx x f f(x)dx bab a)( ⎰⎰≤.这里 )( x f 在],[b a 上的可积性可由)(x f 的可积性推出,其证明省略.推论6.1.4 (严格不等式) 设)(x f 是],[b a 上的连续函数,若在],[b a 上0)(≥x f 且0)(≡x f ,则0)(>⎰badx x f .证 由假设知,存在),(0b a x ∈使0)(0>x f ,根据)(x f 的连续性,必存在0x 的邻域],[),(00b a x x ⊂+-δδ,使在其中2)()(0x f x f >,从而有⎰⎰⎰⎰++--++=b x x x x abadx x f dx x f dx x f dx x f δδδδ0000)()()()(0)( 22)()(0000>=⋅>≥⎰+-x f x f dx x f x x δδδδ, 所以结论成立.定理6.1.5 (积分中值定理) 若)(x f 在],[b a 上连续,则在],[b a 上至少存在一点ξ,使得))(()(a b f dx x f ba-=⎰ξ. (1.7)证 因为)(x f 在],[b a 上连续,所以)(x f 在],[b a 上可积,且有最小值m 和最大值M .于是在],[b a 上,)()()(a b M dx x f a b m ba -≤≤-⎰,或M ab dx x f m ba≤-≤⎰)(.根据连续函数的介值定理可知,在],[b a 上至少存在一点ξ,使)()(ξf ab dx x f ba=-⎰所以(1.7)式成立.图6—4若)(x f 在],[b a 上连续且非负,则)(x f 在],[b a 上的曲边梯形面积等于与该曲边梯形同底,以ab dx x f f ba-=⎰)()(ξ为高的矩形面积.通常把)(ξf ,即ab dx x f ba-⎰)(称为函数)(x f 在],[b a 上的积分均值,而这正是算术平均值概念的推广.定理6.1.6 (推广的积分中值定理) 若)(x f ,)(x g 在],[b a 上连续,且)(x g 在],[b a 上不变号,则在],[b a 上至少存在一点ξ,使得⎰⎰=babadx x g f dx x g x f )()()()(ξ (1.8)证 不妨设在],[b a 上有0)(≥x g ,则0)(≥⎰b adx x g ,且在],[b a 上 )()()()(x Mg x g x f x mg ≤≤,其中M m ,分别为)(x f 在],[b a 上的最小值与最大值.由此推出⎰⎰⎰≤≤bababadx x g M dx x g x f dx x g m )()()()(.若⎰=badx x g 0)(,则由上式知0)()(=⎰badx x g x f .从而在],[b a 上任取一点作为ξ,(1.8)式都成立.若0)(>⎰b adx x g ,则得M dxx g dxx g x f m baba≤≤⎰⎰)()()(.按连续函数的介值定理推出,在],[b a 上至少存在一点ξ,使)()()()(ξf dxx g dxx g x f baba=⎰⎰所以(1.8)式也成立.§ 6.2 微积分学的基本定理与基本公式若已知)(x f 在] ,[b a 上的定积分存在,怎样计算这个积分值呢?如果利用定积分的定义,由于需要计算一个和式的极限,可以想象,即使是很简单的被积函数,那也是十分困难的.本节将通过揭示微分和积分的关系,引出一个简捷的定积分的计算公式.1. 微积分学基本定理设函数)(x f 在区间] ,[b a 上可积,则对] ,[b a 中的每个x ,)(x f 在] ,[x a 上的定积分dx t f xa)(⎰都存在,也就是说有唯一确定的积分值与x 对应,从而在] ,[b a 上定义了一个新的函数,它是上限x 的函数,记作)(x Φ,即dt t f x xa )()(⎰=Φ, ] ,[b a x ∈.这个积分通常称为变上限积分.定理6.2.1 设)(x f 在] ,[b a 上可积,则dt t f x xa )()(⎰=Φ是] ,[b a 上的连续函数.证 任取] ,[b a x ∈及0≠∆x ,使] ,[b a x x ∈∆+.根据积分对区间的可加性,dt t f dt t f dt t f x x x xx xx axx a)( )( )()()(⎰⎰⎰∆+∆+=-=Φ-∆+Φ=∆Φ.由于)(x f 在] ,[b a 上连续,从而有界,即存在0>M ,使对一切] ,[b a x ∈有M x f ≤ )( ,于是)( )( x M dt t f x x x x∆≤=Φ⎰∆+.故当0→∆x 时有0)(→∆Φx .所以)(x Φ在x 连续,由] ,[b a x ∈的任意性即知)(x Φ是] ,[b a 上的连续函数.定理 6.2.2 (原函数存在定理) 设)(x f 在] ,[b a 上连续,则dt t f x xa )()(⎰=Φ在] ,[b a 上可导,且)()(x f x =Φ', ] ,[b a x ∈, 也就是说)(x Φ是)(x f 在] ,[b a 上的一个原函数.证 任取] ,[b a x ∈及0≠∆x ,使] ,[b a x x ∈∆+.应用积分对区间的可加性及积分中值定理,有x x x f dt t f x x x x x x∆∆+==Φ-∆+Φ=∆Φ⎰∆+) ( )()()(θ,或) (x x f x∆+=∆∆Φθ,)10(≤≤θ. (2.1)由于)(x f 在] ,[b a 上连续,)() (lim 0x f x x f x =∆+→∆θ.故在(2.1)中令0→∆x 取极限,得)(lim 0x f xx =∆∆Φ→∆. 所以)(x Φ在] ,[b a 上可导,且)()(x f x =Φ'.由] ,[b a x ∈的任意性推知)(x Φ就是)(x f 在] ,[b a 上的一个原函数.本定理回答了我们自第五章以来一直关心的原函数的存在问题.它明确地告诉我们:连续函数必有原函数,并以变上限积分的形式具体地给出了连续函数)(x f 的一个原函数.回顾微分与不定积分先后作用的结果可能相差一个常数.这里若把)()(x f x =Φ'写成)( )(x f dt t f dxd xa =⎰, 或从 dx x f x d )()(=Φ推得)()( )(x dt t f t d xaxaΦ==Φ⎰⎰,就明显看出微分和变上限积分确为一对互逆的运算.从而使得微分和积分这两个看似互不相干的概念彼此互逆地联系起来,组成一个有机的整体.因此定理6.2.2也被称为微积分学基本定理.推论6.2.1 设)(x f 为连续函数,且存在复合)]([x f ϕ与)]([x f ψ,其中)(x ϕ,)(x ψ皆为可导函数,则)()]([)()]([ )()()(x x f x x f dt t f dxd x x ψψϕϕϕψ'-'=⎰ (2.2) 证 令⎰=Φxadt t f x )()(,a 为)(x f 的连续区间内取定的点.根据积分对区间的可加性,有dt t f dt t f dt t f x ax ax x )( )( )()()()()(⎰⎰⎰-=ψϕϕψ)]([)]([x x ψϕΦ-Φ=.由于)(x f 连续,所以)(x Φ为可导函数,而)(x ϕ和)(x ψ皆可导,故按复合函数导数的链式法则,就有)()]([)()]([ )()()(x x x x dt t f dxd x x ψψϕϕϕψ'Φ'-'Φ'=⎰ )()]([)()]([x x f x x f ψψϕϕ'-'=. 所以(2.2)式成立.例1. 证明:若)(x f 在),(+∞-∞内连续,且满足dt t f x f x)()(0⎰=,则0)(≡x f .证 由假设知dt t f x f x)()(0⎰=在),(+∞-∞内可导,且)()(x f x f ='.令x e x f x F -=)()(, ),(+∞-∞∈x ,则0)()()(=-'='--x x e x f e x f x F .所以c x F ≡)(,),(+∞-∞∈x .由于0)0()0(==f F ,可得0)(≡x F .从而有0)()(≡=x e x F x f ,),(+∞-∞∈x .例2.求21cos 02limx dte xt x ⎰-→.解 应用洛比达法则,原式1cos 0cos 02121sin lim 2)(cos lim22--→-→=⋅='-=e e x x xx e x x x x . 2. 牛顿——莱布尼兹公式定理6.2.3 设)(x f 在] ,[b a 上连续,若)(x F 是)(x f 在] ,[b a 上的一个原函数,则)()( )(a F b F dx x f ba-=⎰(2.3)证 根据微积分学基本定理,dt t f x a)(⎰是)(x f 在] ,[b a 上的一个原函数.因为两个原函数之差是一个常数,所以C x F dt t f xa+=⎰)( )(, ] ,[b a x ∈.上式中令a x =,得)(a F C -=,于是)()( )(a F x F dt t f xa-=⎰.再令b x =,即得(2.3)式. 在使用上,公式(2.3)也常写作b a ba x F dx x f )]([ )(=⎰,或b a ba x F dx x f )( )(=⎰.公式(2.3)就是著名的牛顿——莱布尼兹公式,简称N —L 公式.它进一步揭示了定积分与原函数之间的联系:)(x f 在] ,[b a 上的定积分等于它的任一原函数)(x F在] ,[b a 上的增量,从而为我们计算定积分开辟了一条新的途径.它把定积分的计算转化为求它的被积函数)(x f 的任意一个原函数,或者说转化为求)(x f 的不定积分.在这之前,我们只会从定积分的定义去求定积分的值,那是十分困难的,甚至是不可能的.因此N —L 公式也被称为微积分学基本公式. 例3 计算下列定积分(1) dx x x 4220-⎰; (2) )0( 3022≠+⎰a xa dxa; (3) dx x 1102⎰-; (4) ⎰π20sin dx x .解 (1) 原式38)4(3120223=--=x . (2) 原式aa axa a33arctan 1arctan130π===. (3) 原式1022)]1ln(2112[x x x x ++++= )]21ln(2[21++=. (4)原式⎰⎰-+=πππ20)sin ( sin dx x dx x4cos cos 20=+-=πππxx.例4 设⎩⎨⎧≤<-≤≤+=31,310 ,1)(2x x x x x f ,求⎰30)(dx x f .解 ⎰⎰⎰-++=3110230)3( )1( )(dx x dx x dx x f313)23()3(312103=+++=x x x x .§ 6.3 定积分的换元积分法与部分积分法有了牛顿——莱布尼兹公式,使人感到有关定积分的计算问题已经完全解决.但是能计算与计算是否简便相比,后者则提出更高的要求.在定积分的计算中,除了应用N —L 公式,我们还可以利用它的一些特有性质,如定积分的值与积分变量无关,积分对区间的可加性等,所以与不定积分相比,使用定积分的换元积分法与分布积分法会更加方便.1. 定积分的换元积分法定理 6.3.1 设函数)(x f 在] ,[b a 上连续,函数)(t x ϕ=在I (] ,[βα=I 或] ,[αβ)上有连续的导数,并且a =)(αϕ,b =)(βϕ,)( )(I t b t a ∈≤≤ϕ,则⎰⎰'=ba dt t t f dx x f βαϕϕ)()]([)((3.1)证 由于)(x f 与)()]([t t f ϕϕ'皆为连续函数,所以它们存在原函数,设)(x F 是)(x f 在[]b a ,上的一个原函数,由复合函数导数的链式法则有)()]([)()()()())]([(t t f t x f t x F t F ϕϕϕϕϕ'='=''=',可见)]([t F ϕ是)()]([t t f ϕϕ'的一个原函数.利用N —L 公式,即得⎰⎰=-=-=='badx x f a F b F F F t F t t f )()()()]([)]([)]([ )()]([αϕβϕϕϕϕβαβα.所以(3.1)式成立.公式(3.1)称为定积分的换元公式.若从左到右使用公式(代入换元),换元时应注意同时换积分限.还要求换元)(t x ϕ=应在单调区间上进行.当找到新变量的原函数后不必代回原变量而直接用N —L 公式,这正是定积分换元法的简便之处.若从右到左使用公式(凑微分换元),则如同不定积分第一换元法,可以不必换元,当然也就不必换积分限.例1 计算下列定积分 (1) ⎰--14311x dx ; (2) dx xx 12122⎰-;(3) dx x x sin cos 205⎰π; (4) dx x x sin sin 053⎰-π.解 (1) 令t x =-1,则21t x -=,dt t dx 2-=,且当t 从0变到21时,x 从1减到43.于是 原式⎰⎰-+=--=021021)111(212dt t t dt t []2ln 21 1 ln 2210-=-+=t t .(2) 令t x sin =,则dt t dx cos =,且当t 从0变到21时,x 从0增到6π.于是 原式⎰⎰==660202 sin cos cos sin ππdt t dt t tt831242sin 260-=⎥⎦⎤⎢⎣⎡-=ππt t . (3) 原式616cos cos cos 2265=-=-=⎰ππx x d x . (4) 原式⎰⎰⎰-+==ππππ22322323 )cos (sin cos sin cos sin 0dx x x dx x x dx x x⎰⎰-=πππ223223sin sin sin sin 0x d x x d x54sin 52sin 522252250==πππx x .例 2 设)(x f 在],[a a -上连续,证明: ⎰⎰=-aaadx x f dx x f 0)(2)(.特别当)(x f 为奇函数时,0)(=⎰-aa dx x f ;当)(x f 为偶函数时, ⎰⎰=-aaadx x f dx x f 0)(2)(.证: 因为⎰⎰⎰+=--aaaadx x f dx x f dx x f 00)()()(,在⎰-0)(adx x f 中,令t x -=,得⎰⎰⎰-=--=-aaadx x f dt t f dx x f 000)()()(.所以⎰⎰-+=-aa adx x f x f dx x f 0)]()([)(.当)(x f 为奇函数时,)()(x f x f -=-,故0)()(=-+x f x f ,从而有 0)(=⎰-aa dx x f .当)(x f 为偶函数时,)()(x f x f =-,故)(2)()(x f x f x f =-+,从而有⎰⎰=-aaadx x f dx x f 0)(2)(.例3 设)(x f 为]1 ,0[上的连续函数,证明:(1) dx x f dx x f ⎰⎰=220)(cos )(sin ππ;(2) dx x f dx x f ⎰⎰=20)(sin 2)(sin ππ(3) dx x f dx x xf ⎰⎰=20)(sin )(sin πππ.证: (1) 令t x -=2π,则dt dx -=,且当t 从0 变到2π时,x 从2π减到0.于是 dt t f dt t f dx x f ⎰⎰⎰=--=2220020)(cos ])[(sin )(sin ππππdx x f ⎰=20)(cos π.(2) dx x f dx x f dx x f ⎰⎰⎰+=ππππ22)(sin )(sin )(sin 00,在dx x f ⎰ππ2)(sin 中,令t x -=π,得dt t f dt t f dx x f ⎰⎰⎰=--=222)(sin ])[(sin )(sin πππππdx x f ⎰=20)(sin π.所以dx x f dx x f ⎰⎰=20)(sin 2)(sin ππ.(3) 令t x -=π,则dt t f t dx x xf )][sin()()(sin 00---=⎰⎰ππππdt t f t )(sin )(0⎰-=ππdx x xf dx x f ⎰⎰-=πππ0)(sin )(sin .所以dx x f dx x xf ⎰⎰=πππ)(sin 2)(sindx x f ⎰=2)(sin ππ (利用(2)的结果).例2和例3的结果今后经常作为公式使用.例如我们可以直接写出 ⎰-=ππ0cos 3xdx x ,ππππ==⎰⎰dx x dx x x 20sin sin .2. 定积分的分部积分法定理6.3.2 若)(x u ,)(x v 在] ,[b a 上有连续的导数,则⎰⎰'-='bab ab a dx x u x v x v x u dx x v x u )()()()()()(. (3.2)证 因为)()()()(])()([x v x u x v x u x v x u '+'=', b x a ≤≤.所以)()(x v x u 是)()()()(x v x u x v x u '+'在],[b a 上的一个原函数,应用N —L 公式,得 ⎰='+'ba b a x v x u dx x v x u x v x u )()()]()()()([,利用积分的线性性质并移项即得(3.2)式.公式(3.2)称为定积分的分部积分公式,且简单地写作⎰⎰-=babab a vdu uv udv(3.3)例4 计算下列定积分:(1)⎰21arcsin xdx ; (2) ⎰eedx x 1 ln ;(3) ⎰20sin πxdx e x ; (4) ⎰-1dx e x .解 (1) 原式dx xx x x ⎰--=21210201arcsin12312121arcsin 212102-+=-+=πx (2)原式⎰⎰+-=eexdx dx x e1ln )ln (1⎰⎰-++-=eedx x dx x x ee1111 ln ln 11)11(2e-=.(3)⎰⎰⎰-==2222000cos sin sin sin ππππxdx e x e xde xdx e x xx xxdx e x e e de x e x xxsin cos cos 2222200⎰⎰--=-=πππππxdx e e x sin 122⎰-+=ππ.所以)1(21sin 22+=⎰ππe xdx e x.(4)令t x =,则⎰⎰⎰----=⋅=101122t t x tde tdt e dx et d e te t t⎰--+-=10102 2ee et4222101-=--=--. 例5 (1) 证明 ⎰⎰=220cos sin ππxdx xdx n n(∈x N +);(2) 求)cos ( sin 220⎰⎰==ππxdx xdx I n nn 的值.解 由例3(1)即知(1)成立. (2) 当3≥n 时dx x x n x x x xd I n n n n ⎰⎰----+-=-=22222011cos sin )1(cos sincos sinπππdx x x n n ⎰--=-222)sin 1(sin )1(πn n I n I n )1()1(2---=-所以2)1(--=n n I nn I . 于是当3≥n 为奇数时有13254231I n n n n I n ⋅⋅--⋅-=; 当3≥n 为偶数时有243231I n n n n I n ⋅--⋅-= . 容易得出1sin 201==⎰πxdx I ,442sin 2sin 220022πππ=⎥⎦⎤⎢⎣⎡-==⎰x x xdx I . 所以⎪⎪⎩⎪⎪⎨⎧⋅--⋅-⋅--⋅-=为正偶数.为正奇数;n n n n n n n n n n I n ,443231 ,3254231π (3.4) 公式(3.4)称为沃利斯(Wallis)积分公式,它在定积分的计算中经常被应用.例 6 求⎰=π1010sin xdx x J 的值.解 4436587109sin 201010ππππ⋅⋅⋅⋅⋅==⎰xdx J 22560315π=.§ 6.4 广义积分我们在前面讨论定积分时,总假定积分区间是有限的,被积函数是有界的.但在理论上或实际问题中往往需要讨论积分区间无限或被积函数为无界函数的情形.因此我们有必要把积分概念就这两种情形加以推广,这种推广后的积分称为广义积分.1. 无穷限的广义积分定义6.4.1 设函数)(x f 在) ,[∞+a 上有定义,且对任何实数a b >,)(x f 在] ,[b a 上可积,则称形式⎰+∞adx x f )( (4.1)为函数)(x f 在) ,[∞+a 上的广义积分.若极限⎰+∞→bab dx x f )(lim)(a b > (4.2)存在,则称广义积分(4.1)收敛,并以这极限值为(4.1)的值,即⎰⎰+∞→+∞=bab adx x f dx x f )(lim)(.若极限(4.2)不存在,则称广义积分(4.1)发散.由定义可知,我们讨论广义积分(4.1)的敛散性,其含义就是考察变上限积分⎰=ba dx x fb F )()( )(a b >当+∞→b 时的极限是否存在.例1 讨论广义积分⎰∞+π2 1sin 12dx x x 的敛散性.解 任取π2>b ,有⎰⎰-==b bx d x dx x x b F ππ2211sin 1sin 1)(22 b x b1cos 1cos 2=⎥⎦⎤⎢⎣⎡=π,因为11cos lim )(lim ==+∞→+∞→bb F b b , 所以这广义积分收敛,且1 1sin 122=⎰∞+πdx x x .若)(x f 在) ,[∞+a 上非负,且广义积分(4.1)收敛,则积分(4.1)的值从几何上解释为由曲线y =(图6—5中阴影部分).图6—5 类似地利用极限⎰-∞→baa dx x f )(lim)(b a <定义广义积分⎰∞-b dx x f )(的敛散性. 广义积分⎰+∞∞-dx x f )(定义为⎰⎰⎰+∞∞-+∞∞-+=aadx x f dx x f dx x f )( )( )( (4.3)其中a 为任一有限实数.它当且仅当右边的两个广义积分皆收敛时才收敛,否则是发散的.根据积分对区间的可加性,易知(4.3)左边的广义积分的敛散性及收敛时积分的值都与实数a 的选取无关.例2 计算广义积分⎰∞+∞-+21x dx的值.解 ⎰⎰⎰⎰⎰+++=+++=++∞→-∞→∞+∞-∞+∞-b b a a x dx x dx x dx x dx x dx 0202020221lim 1lim 111πππ=+--=+-=+∞→-∞→2)2()(arctan lim )arctan (lim b a b a为了书写的统一与简便,以后在广义积分的讨论中,我们也引用定积分(也称常义积分) N —L 公式的记法.如例2可写成πππ=--==+∞+∞-∞+∞-⎰)2(2arctan 12x x dx . 例3 计算广义积分dt te pt ⎰+∞-0)0(>p解 dt e pe pt tde p dt te ptptpt pt ⎰⎰⎰∞+-∞+-∞+-∞+-+-=-=000011 2211p e p pt==∞+- 例4 证明广义积分⎰∞+1p xdx当1>p 时收敛,当1≤p 时发散. 证 当1=p 时,+∞===⎰⎰∞+∞+∞+111ln x x dx xdx p . 当1≠p 时,⎩⎨⎧<∞+>=-=-∞+-∞+⎰1 ,1 ,1111111p p x px dx p p p . 所以此广义积分当1>p 时收敛,其值为p-11;当1≤p 时发散. 2. 无界函数的广义积分定理6.4.2 设)(x f 在] ,(b a 上有定义,而在a 的右邻域内无界.若对任何正数ε,)(x f 在] ,[b a ε+上可积,则称形式⎰badx x f )(. (4.4)为)(x f 在] ,(b a 上的广义积分.若极限 ⎰+→+b a dx x f εε )(lim 0,(4.5)存在,则称广义积分(4.4)收敛,并以这极限值为它的值,即⎰⎰+→+=ba badx x f dx x f εε )(lim )(0.若极限(4.5)不存在,则称广义积分(4.4)发散.与无穷限广义积分一样,记号(4.4)的含义是指考察变下限积分⎰+=b a dx x f F εε )()(, a b -<<ε0当+→0ε时的极限情形.这里a 称为函数)(x f 的瑕点,因此无界函数的广义积分也称为瑕积分.同样也利用极限⎰-→+εεb adx x f )(lim 0来定义b 为瑕点的广义积分的敛散性.若)(x f 的瑕点c 在闭区间] ,[b a 的内部,即b c a <<,则广义积分⎰ba dx x f )(定义为⎰⎰⎰+=bcc abadx x f dx x f dx x f )( )( )(,它当且仅当右边两个积分都收敛时才收敛,否则左边的广义积分发散. 例5 计算广义积分⎰-axa dx 022)0(>a .解 a x =为函数221xa -的瑕点.εεεε-→-→++=-=-⎰⎰a a aa x xa dxx a dx 00022022][arcsin lim lim21arcsin arcsinlim 0πεε==-=+→a a .例6 讨论广义积分⎰-112x dx的敛散性.解 0=x 为函数21x的瑕点.由于+∞=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡-=+++→→→⎰εεεεεε11lim 1lim lim010120x x dx , 所以广义积分⎰102x dx发散,从而推出广义积分⎰-112xdx 发散.注意,如果我们疏忽了0=x 是瑕点,就会得出错误的结果:2111112-=⎥⎦⎤⎢⎣⎡-=--⎰x x dx . 例7 证明广义积分⎰10q xdx当1<q 时收敛,当1≥q 时发散. 证 当1=q 时,⎰⎰+∞===10101ln x x dx xdx q . 当1≠q 时,⎪⎩⎪⎨⎧>∞+<-=⎥⎦⎤⎢⎣⎡-=-⎰1 ,1 ,11111011q q q x q x dx q q.所以这广义积分当1<q 时收敛,其值为q-11,当1≥q 时发散. 3. 两种广义积分的联系任何无界函数的广义积分都可以化为无穷限广义积分. 设)(x f 在],(b a 内任何闭区间上都可积,a x =是瑕点,则 ⎰⎰+→+=b a ba dx x f dx x f εε)(lim )(0.若令ax u -=1,就有 ⎰⎰⎰=+=-+εεϕε111)()1()(2k ba du u u du u a f dx x f ab ,其中)1(1)(2u a f uu +=ϕ,a b k -=1.于是⎰⎰⎰+∞→==+kk badu u du u dx x f )()(lim )(1ϕϕεε,这时上式右边是无穷限广义积分. 同样,对于无穷限广义积分⎰⎰+∞→+∞=bab adx x f dx x f )(lim)(,只要令xau =,就有 ⎰⎰⎰=-=112)())(()(ba badu u du u au a f dx x f b aψ, 于是⎰⎰⎰==+∞→+∞11)()(lim)(du u du u dx x f bab aψψ.其中)()(2ua f u a u =ψ,0=u 是它的瑕点,即上式右边为无界函数的广义积分.§ 6.5 定积分的应用定积分是具有特定结构的和式的极限.如果从实际问题中产生的量(几何量或物理量)在某区间],[b a 上确定,当把],[b a 分成若干个子区间后,在],[b a 上的量Q 等于各个子区间上所对应的部分量Q ∆之和(称量Q 对区间具有可加性),我们就可以采用“分割、近似求和、取极限”的方法,通过定积分将量Q 求出.现在我们来简化这个过程:在区间],[b a 上任取一点x ,当x 有增量x ∆(等于它的微分dx )时,相应地量)(x Q Q =就有增量Q ∆,它是Q 分布在子区间],[dx x x +上的部分量.若Q ∆的近似表达式为dQ dx x f Q =≈∆)(,则以dx x f )(为被积表达式求从a 到b 的定积分.即得所求量 ⎰=ba dx x f Q )(.这里的dx x f dQ )(=称为量Q 的微元,或元素,这种方法称为微元法.它虽然不够严密,但具有直观、简单、方便等特点,且结论正确.因此在实际问题的讨论中常常被采用.本节我们将讲述微元法在几何与物理两方面的应用.1.平面图形的面积1) 直角坐标的面积公式根据定积分的几何意义,若)(x f 是区间],[b a 上的非负连续函数,则)(x f 在],[b a 上的曲边梯形(图6—1)的面积为⎰=ba dx x f A )(. (5.1)若)(x f 在],[b a 上不都是非负的(图6—3),则所围面积为⎰=ba dx x f A )( . (5.2)一般地,若函数)(1x f 和)(2x f 在],[b a 上连续且总有)()(21x f x f ≤,则由两条连续曲线)(1x f y =,)(2x f y =与两条直线a x =,b x =所围的平面图形(图6—6)的面积元素为dx x f x f dA )]()([12-=. 所以⎰-=ba dx x f x f A )]()([12. (5.3)图6—6如果连续曲线的方程为)0( )(≥=y x ϕ,则由它与直线c y =,d y =(d c <)及y 轴所围成的平面图形(图6—7)的面积元素为dy y dA )(ϕ=. 所以⎰=dc A (ϕ图6其它情形也容易写出与公式(5.2)、(5.3)相仿的公式.例1 求由两条抛物线x y =2,2x y =所围图形(图6—8)的面积. 解 联立⎪⎩⎪⎨⎧==22xy xy 解得0=x 及1=x . 所围的面积为313132)(10310223=⎥⎦⎤⎢⎣⎡-=-=⎰x x dx x x A . 图6—8例2 求由抛物线x y 22=与直线4-=x y 所围图形(图6—9)的面积. 解 联立⎩⎨⎧-==422x y xy 解得曲线与直线的交点)2,2(-和)4,8(.以x 为积分变量,则所求面积为y[][]dx x x dx x x A )4(2 )2(2822⎰⎰--+--= 图6—91842322322282222323=⎥⎦⎤⎢⎣⎡+-+⋅=x x x x .若以y 为积分变量,则18642)24(4232422=⎥⎦⎤⎢⎣⎡-+=-+=--⎰y y y dy y y A .从例2看出,适当选取积分变量,会给计算带来方便.例3 求椭圆12222=+by a x 的面积 (图6—10).解 由于椭圆关于x 轴与y 轴都是对称的,故它的面积是位于第一象限内的面积的4倍.⎰⎰-==a adx x a abydx A 022044 ab a x a x a x a b aπ=⎥⎦⎤⎢⎣⎡+-=0222arcsin 224.在例3中,若写出椭圆的参数方程⎩⎨⎧==tb y t a x sin cos )20(π≤≤t ,应用换元公式得⎰⎰=-=2220sin 4)sin (sin 4ππtdt ab dt t a t b Aab ab ππ=⋅=44. 图6—10一般地,若曲线由参数方程)( ),(t y t x ψϕ== )(βα≤≤t给出,其中)(),(t t ψϕ及)(t ϕ'在],[βα上连续,记b a ==)(,)(βϕαϕ,则由此曲线与两直线b x a x ==,及x 轴所围图形的面积为dt t t A )( )( ψψβα'=⎰. (5.5)例 4 求由摆线)cos 1( ),sin (t a y t t a x -=-=的一拱)20(π≤≤t 与横轴所围图形(图6—11)的面积.解 dt t a t a A )cos 1()cos 1(20⎰-⋅-=π220222sin 2(⎰=πt a(令θ=2t)⎰⎰==24242sin 16 sin 8πθθθπad a22344316a a ππ=⋅⋅=.图6—112)极坐标的面积公式设围成平面图形的一条曲边由极坐标方程 )(θr r = )(βθα≤≤给出,其中)(θr 在],[βα上连续,παβ2≤-.由曲线)(θr r =与两条射线βθαθ==,所围成的图形称为曲边扇形(图6—12).试求这曲边扇形的面积.图6—12应用微元法.取极角θ为积分变量,其变化区间为],[βα.相应于任一子区间],[θθθd +的小曲边扇形面积近似于半径为)(θr ,中心角为θd 的圆扇形面积.从而得曲边扇形的面积元素θθd r dA )(212=. 所求面积为⎰=βαθθd r A )(212. (5.6) 例5 求心形线)cos 1(θ-=a r 所围图形(图6—13)的面积.解 利用对称性,所求面积为θθπd a A 22)cos 1(⎰-=θθπd a⎰=0422sin 4 (令t =2θ) 22042234438sin 82a a dt t a πππ=⋅⋅==⎰.例6 求由两曲线θsin 2=r ,θ2cos 2=r 图 6—13 所围图形(图6—14)的面积.解 联立⎪⎩⎪⎨⎧==θθ2cos sin 22r r )0(πθ≤≤解得 61πθ=,652πθ=. 利用对称性,所求面积为图 6—14⎥⎦⎤⎢⎣⎡+=⎰⎰466 2cos 21)sin 2(21202πππθθθθd d A4662sin 2142sin 220πππθθθ+⎥⎦⎤⎢⎣⎡-=2316-+=π.2. 立体体积1) 已知平行截面面积的立体体积设空间某立体夹在垂直于x 轴的两平面a x =,b x = )(b a <之间(图6—15)图 6—15以)(x A 表示过)(b x a x <<,且垂直于x 轴的截面面积.若)(x A 为已知的连续函数,则相应于] ,[b a 的任一子区间],[dx x x +上的薄片的体积近似于底面积为)(x A ,高为dx 的柱体体积.从而得这立体的体积元素 dx x A dV )(=所求体积为 ⎰=ba dx x A V )(. (5.7)例7 设有一截锥体,其高为h ,上下底均为椭圆,椭圆的轴长分别为a 2,b 2和A 2,B 2,求这截锥体的体积.解 取截锥体的中心线为t 轴 (图6—16),即取t 变化区间为] ,0[h .在] ,0[h 上任取一点t ,过t 且垂直于t 轴的截面面积记为xy π.容易算出 图6—16 t h a A a x -+=, t hbB b y -+=. 所以这截锥体的体积为⎰-+-+=hdt t hbB b t h a A a V 0 ))((π)](2[6AB ab Ab aB h+++=π.2) 旋转体的体积旋转体是一类特殊的已知平行截面面积的立体,容易导出它的计算公式.例如 由连续曲线)(x f y =,] ,[b a x ∈绕x 轴旋转一周所得的旋转体(图6—17).由于过)( b x a x ≤≤,且垂直于x 轴的截面是半径等于)(x f 的圆,截面面积为)()(2x f x A π=. 所以这旋转体的体积为⎰=baf V (2π图6—17类似地,由连续曲线],[ ),(d c y y x ∈=ϕ绕y 轴旋转一周所得旋转体的体积为⎰=dc dy y V )(2ϕπ. (5.9)例8 求底面半径为r ,高为h 的正圆锥体的体积.解 这圆锥体可看作由直线x hry =,] ,0[h x ∈绕x 轴旋转一周而成(图6—18),所以体积例9 求由椭圆12222=+by a x 绕x 轴旋转而产生的旋转体的体积.解 这个旋转椭球体可看作由半个椭圆22x a aby -=绕x 轴旋转一周而成.所以它的体积20222222234 )(2)(ab dx x a a b dx x a a b V a aa πππ=-=-=⎰⎰-.特别当r b a ==时得半径为r 的球体体积 334r V π=球.3. 平面曲线的弧长设有一曲线弧段AB ,它的方程是 )(x f y =, ] ,[b a x ∈.如果)(x f 在] ,[b a 上有连续的导数,则称弧段AB 是光滑的,试求这段光滑曲线的长度.应用定积分,即采用“分割、近似求和、取极限”的方法,可以证明:光滑曲线弧段是可求长的.从而保证我们能用简化的方法,即微元法,来导出计算弧长的公式.y B 如图6—19所示,取x 为积分变量,其变化区间为] ,[b a .相应于] ,[b a 上任一子区间],[dx x x +的一段弧的长度,可以用曲线在点))(,(x f x 处切线上相应的一直线段的长度来近似代替,这直线段的长度为dx y dy dx 2221)()('+=+, 于是得弧长元素(也称弧微分)dx y ds 21'+=, 因此所求的弧长为⎰'+=b adx y s 21. (5.10)若弧段由参数方程⎩⎨⎧==)()(t y y t x x ],[βα∈t给出,其中)(),(t y t x 在],[βα上有连续的导数,且0)]([)]([22≠'+'t y t x .则弧长元素,即微弧分为dt t y t x ds 22)]([)](['+'=, 所以dt t y t x s ⎰'+'=βα22)]([)]([. (5.11)若弧段由极坐标方程)(θr r =, ],[21θθθ∈给出,其中)(θr 在],[21θθ上有连续的导数,则应用极坐标θθsin ,cos r y r x ==,可得θθsin cos r r x -'=', θθcos sin r r y +'=', 利用公式(5.11)推出。