图形的变换:对称平移和旋转 中考复习
中考数学总复习第六章图形与变换第2课时图形的对称平移与旋转

图形平 移有两 (1)图形平移的方向; 个基本 (2)图形平移的距离
条件
平移 性质
(1)对应线段平行(或共线)且相等,对应点所连 的线段平行且相等,图形上的每个点都沿同 一个方向移动了相同的距离;
(2)对应角分别相等,且对应角的两边分别平 行、方向一致;
(3)平移变换后的图形与原图形全等
考点梳理
考点四、旋转
重难点突破
考点一、轴对称图形与中心对称图形
下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等
腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形
中既是轴对称图形又是中心对称图形的有( B )
A.1种
B.2种
C.3种
D.4种
方法点拨 本题考查了轴对称图形与中心对称图形的判定.轴对称 图形的判定关键是看图形中能否找到一条沿其对折后可 以使两侧图形完全重合的直线;而中心对称图形判定的 关键是看图形旋转180°后,是否可以原图形重合.
考点梳理
考点二、中心对称与中心对称图形
名称
中心对称
中心对称图形
把一个图形绕着某 把一个图形绕着某一点旋转 一点旋转180°, 180°后,如果它能与另一 如果旋转后的图形 定义 个图形完全重合,那么就说 能够与原来的图形 这两个图形关于这个点成中 重合,这个图形叫 心对称,该点叫做对称中心 中心对称图形,这
个点叫做对称中心
区别
中心对称是指两个全等图形 之间的相互位置关系
中心对称图形是指 具有特殊形状的一 个图形
考点梳理
考点二、中心对称与中心对称图形
名称
中心对称
中心对称图形
①如果把中心对称的两个图形看成一个整体(一个
联系
图形),那么这个图形是中心对称图形;②如果把 一个中心对称图形中对称的部分看成是两个图形,
初中数学知识归纳平移旋转和对称变换

初中数学知识归纳平移旋转和对称变换初中数学知识归纳:平移、旋转和对称变换数学是一门具有广泛应用的学科,也是培养学生逻辑思维和解决问题能力的重要学科之一。
在初中数学中,平移、旋转和对称变换是数学中常见的几何变换操作,对于学生们的几何观念理解和图形思维的培养具有重要意义。
本文将对初中数学中的平移、旋转和对称变换进行归纳和总结。
一、平移(Translation)平移是指在平面内按照一定的方向和距离将图形移动到另一个位置的几何变换操作。
平移操作不改变图形的大小和形状,只是改变了图形的位置。
在平移中,每个点都按照相同的方向和距离进行移动。
平移的基本要素有:平移向量和被平移图形。
平移向量是指平移的方向和距离,可以用箭头表示。
被平移图形是指需要进行平移操作的图形。
二、旋转(Rotation)旋转是指按照某个中心点和旋转角度将图形绕这个中心点进行旋转的几何变换操作。
旋转不改变图形的大小和形状,只是改变了图形的方向。
在旋转中,每个点都绕着中心点按照相同的角度进行旋转。
旋转的基本要素有:旋转中心、旋转角度和被旋转图形。
旋转中心是指旋转的中心点,旋转角度是指旋转的角度大小,可以用度数表示。
被旋转图形是指需要进行旋转操作的图形。
三、对称变换(Symmetry)对称变换是指通过某条线、某个点或某个面将图形镜像成另一个图形的几何变换操作。
对称变换不改变图形的大小和形状,只是改变了图形的位置或方向。
在对称变换中,每个点通过指定的对称轴或对称中心得到对应的镜像点。
常见的对称变换有关于x轴、y轴和原点的对称等。
关于x轴的对称是指图形在x轴上下对称,即图形上的每个点与其镜像点关于x轴对称;关于y轴的对称是指图形在y轴左右对称,即图形上的每个点与其镜像点关于y轴对称;关于原点的对称是指图形在原点内外对称,即图形上的每个点与其镜像点关于原点对称。
综上所述,初中数学中的平移、旋转和对称变换是数学几何中常见的几何变换操作。
通过学习和理解这些几何变换,学生们可以更好地把握图形的性质和形态,同时培养几何思维和问题解决能力。
初中数学中考知识点考点学习课件PPT之图形的对称、平移与旋转知识点学习PPT

图(3)
【分步分析】
① 过点 <m></m> 作 <m></m> 于点 <m></m> ,则 <m></m> ______,可得 <m></m> 的长度为_ ____.
② 在点 <m></m> 运动的过程中,点 <m></m> 在_ ____________________________________上运动.
75
75
[答案] 如图(2)所示.
图(2)
平行于 且到 的距离为 的直线
③ 线段 <m></m> 的最小值为_____.
(4) 如图(4),将 <m></m> 平移5个单位长度,得到 <m></m> ,点 <m></m> 为 <m></m> 的中点,点 <m></m> 为 <m></m> 的中点,连接 <m></m> ,则线段 <m></m> 的长度的取值范围为_______________________.
图(2)
(3) 如图(3),点 <m></m> 为 <m></m> 的中点,点 <m></m> 为 <m></m> 上一动点,将线段 <m></m> 绕点 <m></m> 顺时针旋转 <m></m> ,得到线段 <m></m> ,连接 <m></m> ,则线段 <m></m> 的最小值为_____.
中考数学总复习图形变换之 轴对称 平移与旋转 课件

A
B
C
D
4.(2020·郴州)下列图形是中心对称图形的是 ( D)
A
B
C
D
5.(2020·广东)如图,在正方形 ABCD 中,AB =3,点 E,F 分别在边 AB,CD 上,∠EFD=60°. 若将四边形 EBCF 沿 EF 折叠,点 B 恰好落在 AD 边上,则 BE 的长度为( D )
A.1 B. 2 C. 3 D.2
3.下列图形,是中心对称图形的是_①__②__④_____. ①平行四边形;②矩形;③等边三角形;④线段. 4.如图,在△ABC 中,∠B=10°,∠ACB=20°, AB=4 cm,将△ABC 逆时针旋转一定角度后与 △ADE 重合,且点 C 恰好为 AD 的中点,如图所 示.
(1)旋转中心为点___A____,旋转的度数为__1_5_0_°___; (2)∠BAE 的度数为___6_0_°___,AE 的长为__2__c_m___.
2.如图,各电视台的台标图案,其中是轴对称图形 的是( C )
A
B
C
D
3.旋转: (1)基本性质:图形中的每一个点都绕着旋转中心 旋转了同样大小的角度,对应点到旋转中心的距离 相等,对应线段、对应角都相等,对应点与旋转中 心的连线所成的角(叫旋转角)彼此相等,图形的形 状和大小都不会发生变化;
(2)旋转的三要素:旋转中心、旋转角度、旋转方 向; (3)中心对称图形:一个图形绕着某一个点旋转 180°后能够跟原来图形重合,那么这个图形是中 心对称图形.
考点 旋转(5 年 2 考) 6.(2019·翔安区模拟)如图,在同一平面内,将 △ABC 绕点 A 逆时针旋转 50°到△AB′C′的位置, 使得 C′C∥AB,则∠CAB 等于( C )
中考复习图形的对称平移和旋转

3.平移两要点: 平移的①方向 ②距离
演练1、将以下图案(1)通过平移可以得到图案( C )
演练2、如图:ΔDEF可以看作ΔABC平移得到
1)AB∥ DE ; AC ∥ DF .
AD
2)若BC=5cm, CE =3cm,则平移的
个图形叫做中心对称图形,这个点就是它的
对称点。
常见的轴对称图形: 常见中心对称图形:
角 线段
等腰三角形 等边三角形
正方形 矩形 菱形
等腰梯形
圆
线段
平行四边形
矩形 菱形 正方形
圆Байду номын сангаас
2.如图所示图形中,中心对称图形有( ) ❖A.1个 B.2个 C.3个 D.4个
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
A
B
2.在如图所示的四个汽车标志图案中,能用平 移变换来分析其形成过程的图案是 ( D )
3.如图把图①中的△ABC经过一定的变换得 到图②中的△A′B′C′,如果图①中△ABC上点 P的坐标为(a,b),那么这个点在图②中的对应 点P′的坐标为( ) C
A.(a-2,b-3) B.(a-3,b-2) C.(a+3,b+2) D.(a+2,b+3)
点, △ABD绕点A旋转到△ACE的位置, 恰与△ACD组成
正方形ADCE, 则△ABD所经过的旋转是( D )
A. 顺时针旋转225° B. 逆时针旋转45°
C. 顺时针旋转315° D. 逆时针旋转90°
A
E
B
D
C
四边形ABCD是正方形,△DCE顺时针旋转后与
九年级数学中考知识点归纳复习 第24讲 平移、对称、旋转与位似 视图和投影

在平面直角坐标系内,如果两个图形的位似中心为原点,相似比为k,那么这两个位似图形对应点的坐标的比等于k或-k.
视图与投影
二、知识清单梳理
知识点一:三视图内容
关键点拨
1.三视图
主视图:从正面看到的图形.
俯视图:从上面看到的图形.
左视图:从左面看到的图形.
例:长方体的主视图与俯视图如图所示,则这个长方体的体积是36 .
4.图形的中心对称
(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心.
(2)①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.
2.三视图的对应关系
(1)长对正:主视图与俯视图的长相等,且相互对正;
(2)高平齐:主视图与左视图的高相等,且相互平齐;
(3)宽相等:俯视图与左视图的宽相等,且相互平行.
3.常见几何体的三视图常见几何体的三视图
正方体:正方体的三视图都是正方形.
圆柱:圆柱的三视图有两个是矩形,另一个是圆.
圆锥:圆锥的三视图中有两个是三角形,另一个是圆.
第七单元图形与变换
第24讲平移、对称、旋转与位似视图和投影
一、知识清单梳理
知ห้องสมุดไป่ตู้点一:图形变换
关键点拨与对应举例
1.图形的轴对称
(1)定义:①轴对称:把一个图形沿某一条直线翻折过去,如果它能够与另一个图形重合,那么就称这两个图形关于这条直线对称.
②轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.
中考数学旋转平移轴对称中和复习

第五章图形与变换本章思维导图考点精要解析考点一:平移变换1.平移是指图形按照一定的方向从一个位置平移到另一个位置,平移后所得图形与原图形的形状、大小都没有发生变化.2.平移变换的性质(1)平移后,对应线段平行(或在同一直线上)且相等,对应角相等.(2)平移后,对应点所连的线段平行(或在同一直线上)且相等.考点二:旋转变换1.旋转是指图形绕着某一个点按一定的旋转方向旋转一定的角度,旋转后所得图形与原来的图形的形状、大小都没有发生变化.中心对称变换是旋转180°的特殊旋转变换.2.旋转变换的基本性质①旋转变换的对应点到旋转中心的距离相等.②旋转前后两图形的对应线段和对应角分别相等.③对应边所夹的角等于旋转角.考点三:轴对称变换1.轴对称是指将一个图形沿着某条直线翻折180°与另一个图形完全重合,则这两个图形关于这条直线成轴对称,这条直线是对称轴.2.轴对称、轴对称图形的性质(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(3)对应边所在直线交于对称轴.注:成轴对称的两个图形一定全等,全等的图形不一定成轴对称.高频考点过关考点一:平移变换例题1.如下左图所示,将△ABC沿着XY方向平移一定的距离就得到△MNL,则下列结论中正确的有()个.①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNLA.1B.2C.3D.4答案:B例题2.如下右图所示,线段AB=CD,AB与CD相交于点O,且∠AOC=60°,CE是由AB平移得到的,则AC+BD与AB的大小关系是 .答案:AC+BD AB提示:连接DE,可证四边形ACEB是平行四边形,△CED是等边三角形.在△EBD中,根据三边关系得证,当AC∥BD时,取“=”号.考点二:平移变换例题3.如右图所示,O是锐角三角形ABC内一点,∠AOB=∠BOC=∠COA=120°,P是△ABC 内不同于O的另一点;△A1BO1,△A1BP1分别由△AOB,△APB旋转而得,旋转角都为60°,则下列结论:①△O1BO为等边三角形,且A1,O1,O,C在一条直线上.②A1O1+O1O=AO+BO.③A1P1+PP1=PA+PB.④PA+PB+PC>OA+OB+OC.其中正确的有(填序号).答案:①②③④提示:连接O1O,P1P,此题通过旋转60°得到△OBO1,△P1PB是等边三角形,然后利用等边三角形的性质转化线段.考点三:轴对称变换例题4.如右图所示,AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C/落在的位置上,连接BC/,则BC/的长为()A.1B.3C.2D.23答案:C例题5.如右图所示,在平面直角坐标系中,A,B两点的坐标分别为A(2,-3),B(4,-1).(1)若P(p,0)是x轴上的一个动点,则当p= 时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a= 时,四边形ABCD的周长最短;(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0),N(0,n),使四边形ABMN的周长最短?若存在,请求出m= ,n= (不必写解答过程);若不存在,请说明理由.答案:(1)72;[提示]作点B关于x轴的对称点B/,连接AB/交x轴于点P,则点P即为所求,易求直线AB/的解析式为y=2x-7,所以点P的坐标为(72,0).(2)54;[提示]将点A向右平移3个单位得到点A1,其坐标为(5,-3).作点A1关于x轴的对称点A2,其坐标为(5,3),连接A2B交x轴于点D,将点D 向左平移3个单位得到点C .易求直线A 2B 的解析式为y =4x -17,所以点D 的坐标为(174,0),则点C 的坐标为(54,0). (3)存在使四边形ABMN 周长最短的点M 、N ,m =52,n =53-. 中考真题链接真题1.(鄂州中考) 如下左图所示,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB =230.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB 的值为( )A .6B .8C .10D .12真题2.(济宁中考) 如下右图所示,在平面直角坐标系中,点A ,B 的坐标分别为(1,4)和(3,0),点C 是y 轴上一个动点,且A ,B ,C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( )A .(0,0)B .(0,1)C .(0,2)D .(0,3)真题3.(苏州中考) 如下左图所示,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为( ) A .132 B .312 C .3192+ D .27 真题4.(南京中考) 如下右图所示,在菱形ABCD 中,∠A =60°,将纸片折叠,点A ,D 分别落在点A ′、D ′处,且A ′D ′经过点B ,EF 为折叠,当D ′F ⊥CD 时,CF DF 的值为( ) A . B . C .D .真题5.(葫芦岛中考)两个形状和大小完全一样的梯形纸片如图(a )摆放,将梯形纸片ABCD沿上底AD 方向向右平移得到图(b ).已知AD =4,BC =8,若阴影部分的面积是四边形A ′B ′CD 的面积的13,则图(b )中平移距离A ′A =________.xyOABC真题6.(南京中考)如下左图所示,将矩形ABCD绕点A顺时针旋转到矩形A’B’C’D’的位置,旋转角为α (0︒<α<90︒).若∠1=110︒,则α= .真题7.(烟台中考) 如下右图所示,在△ABC中,AB=AC,BAC=54°,∠BAC的平分线与AB 的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.真题8.(安徽中考) 如下图所示,已知A(-3,-3),B(-2,-1),C(-1,-2)是平面直角坐标系上三点.(1)请画出△ABC关于原点O对称的△A1B1C1.(2)请写出点B关于y轴对称点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1的内部,指出h的取值范围.真题9.(义乌中考)如图(a)所示,小明将一张矩形纸片沿对角线剪开,得到两种三角形纸片(如图(b)所示),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图(c)的形状,但点B,C,F,D在同一条直线上,且点C与点F重合(在图(c)至图(f)中统一用F表示)(a)(b)(c)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图(c)中的△ABF沿BD向右平移到图(d)的位置,使点B与点F重合,请你求出平移的距离;AB CDB’1C’D’(2)将图(c)中的△ABF绕点F顺时针方向旋转30°到图(e)的位置,A1F交DE 于点G,请你求出线段FG的长度;(3)将图(c)中的△ABF沿直线AF翻折到图(f)的位置,AB1交DE于点H,请证明:AH﹦DH.(d)(e)(f)真题10.(娄底中考)某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按图按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.真题11. (潍坊中考)如图(a)所示,将一个边长为2的正方形ABCD和一个长为2,宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF,现将小长方形CEFD绕点C顺时针旋转至CE'F'D',旋转角为α.⑴当点D'恰好落在EF边上时,求旋转角α的值;⑵如图(b)所示,G为BC的中点,且0°<α<90°,求证:G D'= E'D;⑶小长方形CEFD绕点C顺时针旋转一周的过程中,△DC D'与△CB D'能否全等?若能,直接写出旋转角α的值;若不能,说明理由.真题12. (北京中考)如右图所示,已知△ABC,⑴请你在BC边上分别取两点D、E(BC的中点除外),连接AD,AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;⑵请你根据使⑴成立的相应条件,证明AB+AC>AD+AE.真题13. (日照中考改编)如图(a )所示,点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小.我们可以作出点B 关于l 的对称点B ',连接AB '与直线l 交于点C ,则点C 即为所求.⑴实践运用如图(b )所示,已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,点B为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为_________.⑵知识拓展如图(c )所示,在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 与点D ,E 、F 分别是线段AD 和AB 上的动点,求BE+EF 的最小值,并写出解答过程. ⑶如图(d )所示,点P 是四边形ABCD 内一点,分别在边AB 、BC 上作出点M 、N ,使PM+PN+MN 的值最小,保留作图痕迹,不写作法.创训练新思维创新 1. 将两块含30°角且大小相同的直角三角形如图(a )所示.⑴将图(a )中的△A 1B 1C 绕点C 顺时针旋转45°得到图(b ),点P 1是A 1 C 与AB的交点.求证:112CP AP . ⑵将图(b )中的△A 1B 1C 绕点C 顺时针旋转15°得到△A 2B 2C ,如图(c ),点P 2是A 2C 与AB 的交点,直接写出直线A 1B 1与直线A 2B 2所夹的角的度数.⑶在⑵的条件下,写出线段CP 1与P 1P 2之间的数量关系,并证明你的结论.创新2. 在Rt△ABC中,∠ACB=90°,点P在△ABC的内部.⑴如图(a)所示,若∠BAC=30°,AP=4,点D、E分别在AB、AC边上,则△PDE 周长的最小值为______________;此时∠DPE=______________.⑵如图(b)所示,若∠BAC=45°,AP=4,点D、E分别在AB、AC边上,则△PDE 周长的最小值为______________;此时∠DPE=______________.⑶如图(c)所示,若∠BAC=α,AP=4,点D、E分别在AB、AC边上,求△PDE 周长的最小值及此时∠DPE的度数.⑷如图(d)所示,若PA=a,PB=b,PC=c,∠BAC=α,且c=bcosα=asinα,直接写出∠APB的度数.。
中考数学总复习专项课件图形的对称平移与旋转

40
14.(2023·吉林)如图,在Rt△ABC中,∠C=90°,BC<AC.点D,E分别在边AB,BC上,连接DE,将△BDE沿DE折叠,点B的对应点为点B'.若点B'刚好落在边AC上,∠CB'E=30°,CE=3,则BC的长为 9 .
9
15.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3).
(1)将△ABC向上平移4个单位长度,再向右平移1个单位长度,得到△A1B1C1,请画出△A1B1C1;
(2)请画出△ABC关于y轴对称的△A2B2C2.
16.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.
A
B
C
D
A
4.(2023·贵阳模拟)某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x轴、y轴的平面直角坐标系内,若点A的坐标为(-6,2),则点B的坐标为( A )
A.(6,2)
B.(-6,-2)
C.(2,6)
11.如图,AO为∠BAC的平分线,且∠BAC=50°,将四边形ABOC绕点A逆时针旋转后,得到四边形AB'O'C',且∠OAC'=100°,则四边形ABOC旋转的度数是 75° .
12.在平面直角坐标系中,点(4,5)绕原点O逆时针旋转90°,得到的点的坐标是 (-5,4) .
75°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的对称、平移、旋转
折叠对称
最短距离
平移
轴对称
对称、平 移、旋转
相似、
位似
图 形 变 换
旋转
投影、 视图
考点1:轴对称和轴对称图形
轴对称
轴对称图形
把一个图形沿着某一条直线折叠, 如果一个平面图形沿一条直线折叠,直线
如果它能够与另一个图形
两旁的部分能够互相④ 重合 ,这个图形
① 重合 ,那么就说这两个图形关 就叫做轴对称图形,这条直线就是它的 定义 于这条直线(成轴)对称,这条直线叫 ⑤ 对称轴 如:线段、角、等腰三角
做② 对称轴 ,折叠后重合的点是 形、特殊的平行四边形、圆等都是轴对称
对应点,叫做③ 对称点 .
图形.
考点1:轴对称和轴对称图形
区别
(1)两个全等图形的位置关系;
(2)只有一条对称轴.
(1)具有特殊形状的一个图形; (2)对称轴不一定只有一条.
(1)沿对称轴对折,两部分重合;
联系
(2)把成轴对称的两个图形看成一个整体,它就是一个轴对称图 形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关
13
云南5 年真题 · 精选
重难点 · 突破
训练1 轴对称和中心对称图形
2.下列图形中既是轴对称图形又是中心对称图形的是( C)
A.
B.
C.
D.
14
云南5 年真题 · 精选
重难点 · 突破
训练1 轴对称和中心对称图形
3.下列图形中,轴对称图形有 ②③⑧ .(填序号)
训练1 轴对称和中心对称图形
平行四边形
矩形 菱形 正方形
圆
对称中心
线段的中点
相关性质
中点分这条线段为两条相等的线段
训练1 轴对称和中心对称图形
1.下列所述图形中,是轴对称图形但不是中心对称图形的
是( D )
A.圆
B.菱形
C.平行四边形 D.等腰三角形
【解答】 圆、菱形是轴对称图形,也是中心对称图形,平行四 边形不是轴对称图形,是中心对称图形,故此选项错误;等腰三角 形是轴对称图形,不是中心对称图形,故此选项正确.
_______.
训练2 轴对称——最短距离问题
突破点二 有关轴对称的最值问题
3.(2019·山东聊城中考)如图,在 Rt△ABO 中,∠OBA=90°,A(4,4),点 C 在边
AB
上,且AC=1,点 CB 3
D
为
OB
的中点,点
P
为边
OA
上的动点,当点
P
在
OA
上移
动时,使四边形 PDBC 周长最小的点 P 的坐标为
4.下列四个图形中,是中心对称图形的是(B )
A
B
C
D
考点1:轴对称和中心对称图形
5.下列图形中,中心对称图形有 ③⑥⑧ .(填序号)
训练2 轴对称——最短距离问题
1.平面图形中的最短距离 如图,A、B是直线l同旁的两个定点,在直线l上确定一点P,使PA+PB的值最 小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB的值最小.
训练2 轴对称——最短距离问题
2.如图,在△ABC 中,AB=3,AC=4,BC=5,EF 垂直平分 BC, 点 P 为直线 EF 上的任一点,则 AP+BP 的最小值是 4 .
3、如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F 为 AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为
(C )
A.(2,2)
B.
5,5 22
C.
8,8 33
D.(3,3)
第 21 页
训练2 轴对称——最短距离问题
思路分析:在 Rt△ABO 中,∵∠OBA=90°,A(4,4),∴AB =OB=4,∠AOB=45°.∵ACCB=13,点 D 为 OB 的中点,∴BC=3, OD=BD=2,∴D(2,0)、C(4,3).作点 D 关于直线 OA 的对称点 E, 连接 EC 交 OA 于点 P,如图:
图形
对称轴
相关性质
角 线段
角平分线所在的直线
线段所在的直线和线 段的垂直平分线
角平分线上的点到这个角的两边的距 离相等
线段垂直平分线上的点到这条线段两 个端点的距离相等
等腰三角形
等边三角形
正方形
矩形
菱形
等腰梯形
圆
考点2:图形的平移
•1.平移: •如果一个图形沿某个方向平移一定的距离,这样的图形运动称为平移.
于这条轴对称.
考点1:轴对称和轴对称图形
(1)关于某条直线对称的两个图形是全等形,对应线段相等,对
轴对 称的 性质
应角相等; (2)任何一对对应点的连线被对称轴垂直平分; (3)对应线段或延长线的交点在对称轴上; (4)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平性质: •①旋转前后的两个图形全等. •②任意一对对应点与旋转中心的连线所成的角彼此相等 •(即旋转角相等). •③经过旋转,对应点到旋转中心的距离相等.
•3.旋转三要点: •旋转①中心,②方向,③角度.
考点3:图形旋转180°——中心对称
定义
中心对称 把一个图形绕着某一点旋转180° ,如果它能够与另一个图形重合 ,那么就说这两个图形关于这个 点对称或中心对称,这个点叫做 对称中心,这两个图形在旋转后 能重合的对应点叫做关于对称中 心的对称点.
考点3:图形旋转180°——中心对称
中心 对称 的性
质
(1)成中心对称的两个图形是全等图形; (2)成中心对称的两个图形,对称点所连线段都经过对称中心,并 且被对称中心平分; (3)成中心对称的两个图形,对应线段平行(或在同一条直线上)且相 等.
图示
考点3:图形旋转180°——常见中心对称图形
图形 线段
2.性质: ①平移前后的两个图形全等. ②对应线段平行且相等,对应角相等. ③经过平移,两个对应点所连的线段平行且相等.
3.平移两要点: 平移的①方向,②距离.
考点3:图形的旋转
•1.旋转: •如果一个图形绕某一个定点沿某一个方向转动一个角度,这样的图形运动称为旋 转.这个定点称为旋转中心,转动的角度称为旋转角.
中心对称图形 把一个图形绕着某一个点旋转180°, 如果旋转后的图形能够与原来的图形重 合,那么这个图形叫做中心对称图形, 这个点就是它的对称中心。如:线段、 平行四边形及特殊的平行四边形、正2n 边形(n为正整数)、圆等,都是中心对称 图形.
图示
区别 两个全等图形的位置关系.
具有特殊形状的一个图形. .
第 22 页
训练2 轴对称——最短距离问题
则此时,四边形 PDBC 周长最小,E(0,2).∵直线 OA 的解析式为 y=x,设直线 EC 的解析式为 y=kx+b,∴b4=k+2,b=3,解得bk==214,,∴直线 EC 的解析式为 y=14x +2.解yy==x14,x+2,得yx==8383,,∴P83,83.故选 C.