抽象函数的对称性奇偶性与周期性总结及习题

合集下载

(完整版)函数奇偶性、对称性、周期性知识点总结,推荐文档

(完整版)函数奇偶性、对称性、周期性知识点总结,推荐文档

抽象函数的对称性、奇偶性与周期性常用结论一.概念:抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得()f x x T ()()f x T f x +=恒成立,则称函数具有周期性,叫做的一个周期,则(()f x T ()f x kT )也是的周期,所有周期中的最小正数叫的最小正周期。

,0k Z k ∈≠()f x ()f x 分段函数的周期:设是周期函数,在任意一个周期内的图像为C:)(x f y =),(x f y =。

把个单位即按向量[]a b T b a x -=∈,,)()(a b K KT x x f y -==轴平移沿在其他周期的图像:)()0,(x f y kT a ==平移,即得。

[]b kT a kT x kT x f y ++∈-=,),(2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若。

为偶函数则称)()()(x f y x f x f ==-分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。

抽象函数的对称性、奇偶性与周期性总结及习题

抽象函数的对称性、奇偶性与周期性总结及习题

抽象函数的对称性、奇偶性与周期性总结及习题一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。

分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。

把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。

2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。

分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。

最全最详细抽象函数的对称性、奇偶性和周期性常用结论

最全最详细抽象函数的对称性、奇偶性和周期性常用结论

抽象函数的对称性、奇偶性与周期性常用结论一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。

分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。

把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。

[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。

分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。

最全最详细抽象函数的对称性、奇偶性与周期性常用结论

最全最详细抽象函数的对称性、奇偶性与周期性常用结论

最全最详细抽象函数的对称性、奇偶性与周期性常用结论直线Ax By ^0成轴对称;2Ax By C =0成轴对称。

9, y_2B(A X + B 罗C))= o 关于直线③ F (x, y) = 0与F (x _经A 二二2 A 2 B 2Ax ? By ? C =0成轴对称。

、函数对称性的几个重要结论(一)函数y = f(x)图象本身的对称性(自身对称)若f(x a^_f(x b),则f(x)具有周期性;若f (a ?x)=:「f(b -x),则f (x)具有对称性:“内同表示周期性,内反表示对称性”。

1、f(a+x) = f(b —x) u y = f(x)图象关于直线 x =l a Z x LL (b _x) =a £b 对称2 2推论1: f (a ? x) = f (a - x) = y = f (x)的图象关于直线 x = a 对称推论2、f (x) = f (2a - x) = y = f (x)的图象关于直线 x = a 对称推论3、f(-x)二f (2a ? x) := y = f (x)的图象关于直线 x = a 对称2、 f(a+x) + f (b —x) =2c 二y=f(x)的图象关于点(兰匕c)对称2推论 1、f (a ? x) ? f (a -x) = 2b := y = f (x)的图象关于点(a,b)对称推论2、f (x) ? f (2a - x) = 2b := y = f (x)的图象关于点(a,b)对称推论3、f (-x) ? f(2a ? x) =2b = y = f(x)的图象关于点(a,b)对称(二)两个函数的图象对称性(相互对称) (利用解析几何中的对称曲线轨迹方程理解)1、偶函数y =f(x)与y = f(-x)图象关于Y 轴对称2、奇函数y =f(x)与y 二-f(-x)图象关于原点对称函数3、函数y = f (x)与y - - f (x)图象关于X 轴对称4、互为反函数y 二f (x)与函数y 二f'(x)图象关于直线y =x 对称② 函数…(x)与一2驚¥。

抽象函数周期性对称性相关定理全总结

抽象函数周期性对称性相关定理全总结

抽象函数周期性对称性相关定理全总结1. Fourier级数定理:Fourier级数定理是抽象函数周期性对称性的基本理论定理之一、它表明,任何以L为周期的可积函数f(x)都可以展开成正弦函数与余弦函数的无穷级数形式,即Fourier级数。

这个级数可以表示为:f(x) = a0 + Σ(an*cos(nπx/L) + bn*sin(nπx/L))其中,L是函数周期,a0是常数项,an和bn分别是系数。

2.奇偶周期性与对称性:奇周期性与对称性是周期性对称性的两种特例。

如果一个函数满足f(x) = -f(-x),则称其为奇函数。

奇函数可以展开成sin函数的Fourier级数形式。

如果一个函数满足f(x) = f(-x),则称其为偶函数。

偶函数可以展开成cos函数的Fourier级数形式。

3. 对称函数的Fourier级数展开与傅里叶定理:对称函数的Fourier级数展开是指将一个以L为周期的对称函数展开成cos函数的Fourier级数形式。

傅里叶定理表明,对于一个以L为周期的函数f(x),如果f(x)是一个对称函数,则其Fourier级数展开只包含cos函数;如果f(x)是一个奇函数,则其Fourier级数展开只包含sin函数。

4. 函数的周期拓展与周期函数的Fourier级数:函数的周期拓展是指将一个以L为周期的函数f(x)拓展成以2L为周期的函数。

周期拓展后的函数可以用以L为周期的函数的Fourier级数展开。

具体而言,如果将f(x)的周期拓展后的函数记作F(x),则对于周期拓展后的函数F(x),存在一个以L为周期的函数g(x),使得F(x) = g(x)在[-L, L]上成立。

所以,F(x)的Fourier级数展开实际上是以L为周期的函数g(x)的Fourier级数展开。

综上所述,抽象函数周期性对称性相关定理涉及四个方面:Fourier级数定理、奇偶周期性与对称性、对称函数的Fourier级数展开与傅里叶定理、函数的周期拓展与周期函数的Fourier级数。

微专题抽象函数与奇偶性、周期性、对称性等综合问题

微专题抽象函数与奇偶性、周期性、对称性等综合问题

微专题抽象函数与奇偶性、周期性、对称性等综合问题抽象函数是高中数学的难点,也是近几年考试的热点和重点,尤其函数奇偶性、周期性、对称性结合的题目往往使考生无从下手,本文从多方面例举其应用. 考向1 抽象函数的单调性【例1】(2019秋•静宁县校级期末)已知偶函数()f x 在区间(-∞,0]单调递减,则满足(21)()f x f x -的x 取值范围是( )A .[1,)+∞B .(-∞,1]C .(-∞,1][13,)+∞D .1[3,1]解:根据题意,偶函数()f x 在区间(-∞,0]单调递减,则()f x 在[0,)+∞上为增函数, 则22(21)()(|21|)(||)|21|||(21)f x f x f x f x x x x x -⇒-⇒-⇒-,解可得:113x , 即x 取值范围是1[3,1];故选:D .【例2】(2019秋•武汉期末)若146()7a -=,157()6b =,27log 8c =,定义在R 上的奇函数()f x 满足:对任意的1x ,2[0x ∈,)+∞且12x x ≠都有1212()()0f x f x x x -<-,则f (a ),f (b ),f (c )的大小顺序为( ) A .f (b )f <(a )f <(c ) B .f (c )f >(b )f >(a ) C .f (c )f >(a )f >(b )D .f (b )f >(c )f >(a )解:根据题意,函数()f x 满足:对任意的1x ,2[0x ∈,)+∞且12x x ≠都有1212()()0f x f x x x -<-,则()f x 在[0,)+∞上为减函数,又由()f x 为定义在R 上的奇函数,则函数()f x 在(-∞,0]上为减函数, 则函数()f x 在R 上为减函数,27log 08c =<,14467()()76a -==,而157()6b =,则0a b >>,故f (c )f >(b )f >(a ).故选:B .【变式训练】(2020•南开区模拟)已知定义在R 上的函数()f x ,若函数(2)y f x =+为偶函数,且()f x 对任意1x ,2[2x ∈,12)()x x +∞≠,都有2121()()0f x f x x x -<-,若f (a )(31)f a +,则实数a 的取值范围是()A .13[,]24-B .[2-,1]-C .1(,]2-∞-D .3(,)4+∞【解答】解:根据题意,函数(2)y f x =+为偶函数,则函数()f x 的图象关于2x =对称,()f x 对任意1x ,2[2x ∈,12)()x x +∞≠,都有2121()()0f x f x x x -<-,则函数()f x 在[2,)+∞上为减函数, 则f (a )(31)|2||312|f a a a +⇔-+-,即|2||31|a a --,解可得:1324a-,即a 的取值范围为1[2-,3]4.故选:A . 考向2 抽象函数的周期性【例3】(2020•汉中一模)已知函数()f x 是定义在R 上的奇函数,33()()22f x f x +=-,且3(,0)2x ∈-时,2()log (31)f x x =-+,则(2020)(f = )A .4B .2log 7C .2D .2-解:根据题意,()f x 满足33()()22f x f x +=-,即(3)()f x f x +=,函数()f x 是周期为3的周期函数,则(2020)(12019)f f f =+=(1),又由()f x 为奇函数,则f (1)2(1)log (31)2f =--=-+=-,故选:D .【例4】(2020春•天心区校级月考)已知函数()f x 对x R ∀∈满足(2)()f x f x +=-,(1)()(2)f x f x f x +=+,且()0f x >,若f (1)4=,则(2019)(2020)(f f += ) A .34B .2C .52D .4解:根据题意,(1)()(2)f x f x f x +=+,则有(2)(1)(3)f x f x f x +=++, 变形可得(2)()(2)(3)f x f x f x f x +=++,又由()0f x >,则有()(3)1f x f x +=,变形可得1(3)()f x f x +=, 则有1(6)()(3)f x f x f x +==+,即函数()f x 是周期为6的周期函数;()(6)f x f x =+,即函数()f x 的周期为6,则有(2019)(33366)f f f =+⨯=(3),(2020)(43366)f f f =+⨯=(4), 则(2019)(2020)f f f +=(3)f +(4), 对于1(3)()f x f x +=,令1x =可得f (4)11(1)4f ==; 对于(1)()(2)f x f x f x +=+和(2)()f x f x +=-,令0x =可得f (1)(0)f f =(2)4=且(0)f f =(2),()0f x >, 则有(0)f f =(2)2=,则f (3)11(0)2f ==;故f (3)f +(4)113424=+=故选:A . 【变式训练】(2019秋•胶州市期末)已知定义在R 上函数()f x 的图象是连续不断的,满足(1)(1)f x f x -=+,()()f x f x -=-,且()f x 在[0,1]上单调递增,若2(log 3)a f=,b f =,(2020)c f =,则( )A .a b c <<B .a c b <<C .c b a <<D .b c a <<解:因为(1)(1)f x f x -=+,所以函数()f x 关于1x =对称, 又因为()()f x f x -=-,所以函数()f x 为奇函数,所以(1)(1)(1)f x f x f x +=-=--,令1x x =-,则()(2)f x f x =--①令2x x =-,则(2)(4)f x f x -=--②,由①②得,()(4)f x f x =-,即函数()f x 的周期为4. 又因为()f x 在[0,1]上单调递增,于是可以作出如图所示的函数图象,而2log 3(1,2)∈(3,4),所以0a >,0b <,(2020)(5054)(0)0f f f =⨯==,所以0c =, 因此b c a <<.故选:D . 考向3 抽象函数的零点问题【例5】(2019秋•水富市校级期末)若偶函数()()y f x x R =∈满足()(2)f x f x =-,且[1x ∈-,0]时,2()1f x x =-,函数(0)()1(0)lnx x g x x x>⎧⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[5-,5]内的零点的个数为( )A .5B .6C .7D .8解:因为()(2)f x f x =-以及函数为偶函数,所以函数()f x 是周期为2的函数. 因为[1x ∈-,0]时,2()1f x x =-,所以作出它的图象,利用函数()f x 是周期为2的函数,如图,可作出()f x 在区间[5-,5]上的图象,再作出函数(0)()1(0)lnx x g x x x>⎧⎪=⎨-<⎪⎩的图象,可得函数()()()h x f x g x =-在区间[5-,5]内的零点的个数为6个,故选:B .【例6】(2019秋•珠海期末)若偶函数()f x 的图象关于32x =对称,当3[0,]2x ∈时,()f x x =,则函数20()()log ||g x f x x =-在[20-,20]上的零点个数是( )A .18B .26C .28D .30解:令20()log ||h x x =,则()h x 为偶函数且0x ≠,因为()f x 是偶函数,所以()g x 是偶函数且0x ≠, 由20()()log ||0g x f x x =-=得20()log ||f x x =,当0x >时有20()log f x x =, 因为偶函数()f x 的图象关于32x =对称,所以()()f x f x -=且()(3)f x f x =-, 则(3)[3(3)]()()f x f x f x f x +=-+=-=,即()f x 是3T =的周期函数,32kx =,k Z ∈为()f x 的对称轴, 又因为当3[0,]2x ∈时,()f x x =,所以(20)(211)(1)f f f f =-=-=(1)1(20)h ==当(0x ∈,20],()f x ,()h x 在同一坐标系中的图象如下可知()f x 与()h x 在(0,20]上有13个交点,即()g x 在(0,20]上有13个零点, 又因为()g x 是偶函数,所以()g x 在[20-,20]上共有26个零点.故选:B .【变式训练】(2019秋•益阳期末)已知()f x 是在R 上的奇函数,满足()(2)f x f x =-,且[0x ∈,1]时,函数()21x f x =-,函数()()log (1)a g x f x x a =->恰有3个零点,则a 的取值范围是( ) A .1(0,)9B .11(,)95C .(1,5)D .(5,9)解:()f x 是在R 上的奇函数,满足()(2)f x f x =-,函数关于1x =对称,()(2)f x f x =--,可得(4)()f x f x +=,函数的周期为4,且[0x ∈,1]时,函数()21x f x =-,函数的图象如图:当1a >时,函数()()log a g x f x x =-恰有3个零点,就是方程()log a f x x =的解个数为3,可得()y f x =与log a y x =由3个交点,两个函数的图象夹在蓝色与红色,之间满足条件,所以log 51a <,并且log 91a >,解得(5,9)a ∈.故选:D .课后训练1.(2020•模拟)函数()f x 满足3()()()()(f x f y f x y f x y x =++-,)y R ∈,且f (1)13=,则(2020)(f =) A .23B .23-C .13-D .13【解答】解:取1x =,0y =,得3(0)f f (1)f =(1)f +(1)23=,2(0)3f ∴=, 取x n =,1y =,有3()f n f (1)(1)(1)f n f n =++-,即()(1)(1)f n f n f n =++-, 同理:(1)(2)()f n f n f n +=++,(2)(1)f n f n ∴+=--,()(3)(6)f n f n f n ∴=--=- 所以函数是周期函数,周期6T =,故(2020)(33364)f f f =⨯+=(4). 3()()()()f x f y f x y f x y =++-令1x y ==,得23f (1)f =(2)(0)f +,可得f (2)13=-,令2x =,1y =,得3f (2)f (1)f =(3)f +(1),解得f (3)23=-,令3x =,1y =,得3f (3)f (1)f =(4)f +(2),解得f (4)13=-.1(2020)3f ∴=-;选:C .2.(2019秋•北碚区校级期末)已知函数()f x 是定义在R 上的函数,且满足2(1)(1)f x f x +=--,f (1)2<且f (1)0≠,则(2019)f 的取值范围为( ) A .(,1)-∞- B .(1,)-+∞C .(1,)+∞D .(-∞,1)(0-⋃,)+∞解:由题意,令1t x =-,则12x t +=+,故2(2)()f t f t +=-. 22(4)()2(2)()f t f t f t f t +=-=-=+-.∴函数()f x 是以4为最小正周期的周期函数.201945043÷=⋯,(2019)f f ∴=(3)22(21)(21)(1)f f f =+=-=--. f (1)2<且f (1)0≠,∴10(1)f <,或11(1)2f >,则20(1)f ->,或21(1)f -<-. (2019)f ∴的取值范围为(-∞,1)(0-⋃,)+∞.故选:D .3.(2020•许昌一模)已知定义域为R 的函数()f x 满足()()f x f x -=,1(2)()f x f x +=,当[0x ∈,2]时,2()2log (3)f x x =+,则(923)(f = )A .16B .923C .4D .1解:因为定义域为R 的函数()f x 满足()()f x f x -=,所以函数()f x 是偶函数, 又因为1(2)()f x f x +=,所以11(4)()1(2)()f x f x f x f x +===+,所以函数()f x 的周期是4, 所以(923)(42303)f f f =⨯+=(3)(1)f f =-=(1),因为当[0x ∈,2]时,2()2log (3)f x x =+,所以(923)f f =(1)22log 44==,故选:C .4.(2019秋•大理市校级期末)已知函数()f x 是定义在R 上的奇函数,对任意的x R ∈都有33()()22f x f x +=-,当3(,0)2x ∈-时,12()log (1)f x x =-,则(2017)(2019)(f f += )A .1B .2C .1-D .2-解:根据题意,函数()f x 满足任意的x R ∈都有33()()22f x f x +=-,则()(3)f x f x =-,则函数()f x 是周期为3的周期函数,(2017)(16723)f f f =+⨯=(1),(2019)(6733)(0)f f f =⨯=, 又由函数()f x 是定义在R 上的奇函数,则(0)0f =,3(,0)2x ∈-时,12()log (1)f x x =-,则12(1)log [1(1)]1f -=--=-,则f (1)(1)1f =--=;故(2017)(2019)(0)f f f f +=+(1)1=;故选:A .5.(2020•宝鸡二模)已知函数1()3()3x x f x =+,则使得(2)(1)f x f x >+成立的x 的取值范围是( )A .(,1)-∞B .(1,)+∞C .1(3-,1)D .1(,)(1,)3-∞-+∞解:根据题意,函数1()3()3x x f x =+,有1()3()3x x f x -=+,则函数()f x 为偶函数,其导数()3333(33)30x x x x f x ln ln ln --'=-=-,即函数()f x 在[0,)+∞上为增函数, 若(2)(1)f x f x >+,则有(|2|)(|1|)f x f x >+,即|2||1|x x >+,解可得:13x <-或1x >,即不等式的解集为(-∞,1)(13-⋃,)+∞;故选:D .6.若函数()y f x =在区间[a ,]b 上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若f (a )f (b )0>,不存在实数(,)c a b ∈使得f (c )0=B .若f (a )f (b )0>,有可能存在实数(,)c a b ∈使得f (c )0=C .若f (a )f (b )0<,存在且只存在一个实数(,)c a b ∈使得f (c )0=D .若f (a )f (b )0<,有可能不存在实数(,)c a b ∈使得f (c )0= 解:首先,设函数()y f x =在区间[a ,]b 上的图象如下图:上图满足f (a )f (b )0>,有可能存在实数(,)c a b ∈使得f (c )0=,故A 错误,B 正确; 其次,设函数()y f x =在区间[a ,]b 上的图象如图: 上图满足f (a )f (b )0<,但C 都错误,D 、根据零点存在定理,一定存在实数(,)c a b ∈使得f (c )0=,所以D 错误,故选:B .7设函数()f x 是定义在R 上的周期为2的函数,对任意的实数x ,恒()()0f x f x --=,当[1x ∈-,0]时,2()f x x =,若()()log (||1)a g x f x x =-+在R 上有且仅有五个零点,则a 的取值范围为( ) A .[3,5] B ..[2,4]C ..(3,5)D ..(2,4)解:())()0f x f x --=,()()f x f x ∴=-,()f x ∴是偶函数,根据函数的周期和奇偶性作出()f x 的图象如图所示()()log (||1)a g x f x x =-+在R 上有且仅有五个零点,又log (||1)a y x =+也是偶函数且都过(0,0)()y f x ∴=和log (||1)a y x =+在(0,)+∞上只有2个交点,∴(11)1(31)11a a log log a +'<⎧⎪+<⎨⎪>⎩,解得24a <<.故选:D .8.(2019秋•上饶期末)若函数2()1af x lg x =+在(0,)+∞内存在两个互异的x ,使得(1)()f x f x f +=+(1)成立,则a 的取值范围是( ) A.(3-+B.(3C.(1,3 D.(2,3+解:根据条件可得f (1)2alg=,0a >, 且在(0,)+∞上,存在两个不同的x 使得22(1)112a a alglg lgx x =++++成立, 即存在两个互异的(0,)x ∈+∞,使得2222(2)2(22)0a a x a x a a -++-=成立, ①若220a a -=,即2a =时,方程可化为840x +=,解得12x =-,不满足条件,②若220a a -≠时,2()20i a a ->,即2a >时,要想满足条件,则422222244(2)(22)02022202a a a a a a a a a aa a⎧⎪=--->⎪⎪->⎨-⎪⎪->⎪-⎩, 此时因为20a >,220a a ->,故22202a a a-<-矛盾;2()20ii a a -<,即02a <<时,则422222244(2)(22)02022202a a a a a a a a a aa a⎧⎪=--->⎪⎪->⎨-⎪⎪->⎪-⎩,此时(1,3a ∈-,故选:B . 9.(2019秋•安徽期中)定义在R 上的偶函数()f x 满足(4)()f x f x -=,且当[0x ∈,2]时,()f x x =,则(2019)f 的值为( )A .1-B .0C .1D .2解:根据题意,()f x 为偶函数,则()()f x f x -=,又由(4)()f x f x -=,则有(4)()f x f x -=-,变形可得(4)()f x f x +=, 即函数()f x 是周期为4的周期函数,又由[0x ∈,2]时,()f x x =,则()f x 的图象如图所示, 则(2019)(20194505)(1)f f f f =-⨯=-=(1)1=,故选:C .10.(2019秋•运城期中)已知定义在R 上的函数()f x 满足(32)(21)f x f x -=-,且()f x 在[1,)+∞上单调递增,则( )A .0.3 1.13(0.2)(log 0.5)(4)f f f <<B .0.3 1.13(0.2)(4)(log 0.5)f f f <<C . 1.10.33(4)(0.2)(log 0.5)f f f <<D .0.3 1.13(log 0.5)(0.2)(4)f f f <<解:因为由(32)(21)f x f x -=-,所以函数()f x 关于1x =对称, 又因为()f x 在[1,)+∞上单调递增,所以()f x 在(,1)-∞上单调递减,0.3 1.131log 0.500.2144-<<<<<<,所以0.3 1.13(02)(0.5)(4)f f log f <<,故选:A .11.已知定义在R 上的函数()f x ,对任意实数x ,y 满足:()()()f x y f x f y +=,若(0,)x ∈+∞时,0()1f x <<恒成立,则满足不等式2(4)1f x -<的实数x 的取值范围是 .解:特值法,不妨设()(01)x f x a a =<<,满足()()()f x y f x f y +=,且(0,)x ∈+∞时,0()1f x <<恒成立, 则不等式2(4)1f x -<等价于2(4)(0)f x f -<,由函数()f x 为R 上的减函数,故240x ->,解得2x <-或2x >; 故答案为:(-∞,2)(2-⋃,)+∞.12.(2019秋•沙坪坝区校级期末)定义在R 上的函数()f x 满足(2)f x -是偶函数,且对任意x R ∈恒有(3)(1)2020f x f x -+-=,又(2)2019f -=,则(2020)f = .解:定义在R 上的函数()f x 满足(2)f x -是偶函数,(2)(2)f x f x ∴--=-, x R ∀∈,有(3)(1)2020f x f x -+-=,(4)(2)2020f x f x ∴-+-=,(4)(2)2020f x f x ∴-+--=,即(4)(2)2020f x f x ++-=,从而有(6)()2020f x f x ++=,(12)(6)2020f x f x +++=,(12)()f x f x ∴+=,即函数()f x 的最小正周期为12,(2020)(121684)f f f ∴=⨯+=(4)2020(2)1f =--=,故答案为:1. 13.(2019秋•天河区校级期末)已知定义在R 上的函数()F x 满足()()()F x y F x F y +=+,且当0x >时,()0F x <,若对任意[0x ∈,1],不等式组22(2)(4)()(3)F kx x F k F x kx F k ⎧-<-⎨-<-⎩恒成立,则实数k 的取值范围是 . 解:设12x x <,则210x x ->,则21()0F x x -<;则22111()()()()F x F x x F x F x =-+<,则函数()F x 在R 上为减函数; 则对任意[0x ∈,1],不等式组22(2)(4)()(3)F kx x F k F x kx F k ⎧-<-⎨-<-⎩恒成立可化为 22243kx x k x kx k ⎧->-⎨->-⎩对[0x ∈,1]成立,依题22()240()30f x x kx k g x x kx k ⎧=-+-<⎨=--+>⎩对[0x ∈,1]成立,由于()0f x <对[0x ∈,1]成立,则(0)40(1)30f k f k =-<⎧⎨=--<⎩,解得,34k -<<;由于()0g x >对[0x ∈,1]成立,234(1)211x k x x x +∴<=++-++恒成立;2k ∴<;综上所述,32k -<<.故答案为:(3,2)-.14.(2020•攀枝花一模)已知函数()f x 对x R ∀∈满足(2)()f x f x +=-,(1)()(2)f x f x f x +=+,且()0f x >,若f (1)4=,则(2019)(2020)f f += . 解:(1)()(2)f x f x f x +=+,(2)(1)(3)f x f x f x ∴+=++,(2)()(2)(3)f x f x f x f x ∴+=++,且()0f x >, ()(3)1f x f x ∴+=,即1()(3)f x f x =+,则1(3)(6)f x f x +=+,()(6)f x f x ∴=+,即函数()f x 的周期为6,(2019)(2020)f f f ∴+=(3)f +(4), 令0x =,则f (1)(0)f f =(2)4=,且(0)f f =(2),()0f x >,(0)f f ∴=(2)2=, 令1x =,则f (2)f =(1)f (3),即24f =(3),∴1(3)2f =, 令2x =,则f (3)f =(2)f (4),即12(4)2f =,∴1(4)4f =, ∴113(2019)(2020)(3)(4)244f f f f +=+=+=.故答案为:34.。

专题05 函数周期性,对称性,奇偶性问题(解析版)

专题05 函数周期性,对称性,奇偶性问题(解析版)

【详解】因为 f (x 1) 为偶函数,所以 f (x 1) f (x 1) ,所以 f (x 2) f (x) , 因为 f (x 2) 为奇函数,所以 f (x 2) f (x 2) ,
所以 f (x 2) f (x) ,所以 f (x 4) f (x 2) f (x) ,
专题 05 函数周期性,对称性,奇偶性问题
一、结论(同号周期,异号对称.)
1、周期性:
已知定义在 R 上的函数 f (x) ,若对任意 x R ,总存在非零常数T ,使得 f (x T ) f (x) ,则称 f (x)
是周期函数, T 为其一个周期.除周期函数的定义外,还有一些常见的与周期函数有关的结论如下: (1)如果 f (x a) f (x) ( a 0 ),那么 f (x) 是周期函数,其中的一个周期 T 2a
所以 f x 关于 3,0 对称,所以 f x f 6 x 0 ,
因为 f x f 2 x , f x f 6 x 0 ,
所以 f 6 x f 2 x ,故 f x f x 4 f x 8 ,故 f x 的周期为 8,
因为 f x 关于 x 1 对称,关于 3,0 对称,所以 f x 关于 x 5 对称,
所以 f (x 2) f (x) ,从而 f (x 4) f (x 2) f (x) , f (x) 是周期函数,且周期为 4,所以 f (2k 1) 0, k Z , 因为 f (x) 的图象关于直线 x 2 对称,也关于点 (1, 0) 对称, 所以 f (x) 的图象关于点 (3, 0) 对称,所以 f (2) f (4) 0 , 所以 f (2) f (3) f (4) f (5) 0 ,
所以 f (x) 是以 4 为周期的周期函数, 由 f (x 2) f (x 2) ,令 x 0 ,得 f (2) f (2) ,则 f (2) 0 , 又 f (1) f (2) 2 ,得 f (1) 2 , 由 f (x 2) f (x 2) ,令 x 1 ,得 f (1) f (3) ,则 f (3) 2 , 由 f (x 2) f (x) ,令 x 2 ,得 f (4) f (2) 0 , 则 f (1) f (2) f (3) f (4) 0 ,

单调性、奇偶性、周期性、对称性、抽象函数知识点(函数性质)

单调性、奇偶性、周期性、对称性、抽象函数知识点(函数性质)

f (x1) f (x2 )
f ( x1 x2 x2 ) f (x2 )
f (x1 x2 ) f (x2 ) f (x2 )
f ( x1 x2 )
3. f (xy) f (x) f ( y)
f (x1)
f (x2 )
f ( x1 x2
x2 )
f (x2 )
f ( x1 ) x2
求此函数的周期。
1. f (x y) f (x) f ( y)
f (x1) f (x2 ) f (x1 x2 x2 ) f (x2 ) f (x1 x2 ) f (x2 ) f (x2 ) f (x1 x2 ) 2. f (x y) f (x) f ( y)
ห้องสมุดไป่ตู้
如果在所有的周期中存在着一个最小的 正数,就把这个最小的正数叫做最小正周期.
如:潮汐现象的函数中,12h、24h、36h 都是 一个周期,但是最小的是12h,所以这 函数的最小正周期是12h.
注意:今后所称周期,若无特别说明,均指 函数的最小正周期。
3.诱导公式1:终边相同角的同名三角函数值 相等
抽象概括:
1.函数的周期性 对于函数y=f(x),如果存在一个不为零的 常数T,使得当x取定义域内的每一个值时,
f(x+T)=f(x) 都成立,那么就把函数y=f(x)叫做周期函数, T叫做函数的一个周期,称y=f(x)具有周期性。
①常数T≠0,不一定是正数; ②如果T 为函数的一个周期,那么T的整数倍nT 也是函数的周期; ③对定义域内任意x, f(x+T)=f(x)都成立;
由此,你能得出正弦、余弦、正切函数 的周期性的哪些结论?
(1) f (x a) f (x a)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽象函数的对称性、奇偶性与周期性总结及习题一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。

分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。

把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。

[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。

分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。

关于点与(函数),(0)2,2(0),b a y b x a F y x F =--=(2)轴对称:对称轴方程为:0=++C By Ax 。

①))(2,)(2(),(),(2222//BA C By AxB y B AC By Ax A x B y x B y x A +++-+++-=与点关于直线成轴对称;0=++C By Ax ②函数))(2()(2)(2222B A C By Ax A x f B A C By Ax B y x f y +++-=+++-=与关于直线0=++C By Ax 成轴对称。

③0))(2,)(2(0),(2222=+++-+++-=BA C By AxB y B AC By Ax A x F y x F 与关于直线 0=++C By Ax 成轴对称。

二、函数对称性的几个重要结论(一)函数)(x f y =图象本身的对称性(自身对称)若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。

推论1:)()(x a f x a f -=+ ⇔)(x f y =的图象关于直线a x =对称推论2、)2()(x a f x f -= ⇔)(x f y =的图象关于直线a x =对称推论3、)2()(x a f x f +=- ⇔)(x f y =的图象关于直线a x =对称推论1、b x a f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),(b a 对称推论2、b x a f x f 2)2()(=-+ ⇔)(x f y =的图象关于点),(b a 对称推论3、b x a f x f 2)2()(=++- ⇔)(x f y =的图象关于点),(b a 对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数3、函数)(x f y =与()y f x =-图象关于X 轴对称4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称推论1:函数)(x a f y +=与)(x a f y -=图象关于直线x =a 对称推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称(三)抽象函数的对称性与周期性1、抽象函数的对称性性质1 若函数y =f(x)关于直线x =a 轴对称,则以下三个式子成立且等价:(1)f(a +x)=f(a -x) (2)f(2a -x)=f(x) (3)f(2a +x)=f(-x) 性质2 若函数y =f(x)关于点(a ,0)中心对称,则以下三个式子成立且等价:(1)f(a +x)=-f(a -x)(2)f(2a -x)=-f(x)(3)f(2a +x)=-f(-x)易知,y =f(x)为偶(或奇)函数分别为性质1(或2)当a =0时的特例。

2、复合函数的奇偶性定义1、 若对于定义域内的任一变量x ,均有f[g(-x)]=f[g(x)],则复数函数y =f[g(x)]为偶函数。

定义2、 若对于定义域内的任一变量x ,均有f[g(-x)]=-f[g(x)],则复合函数y =f[g(x)]为奇函数。

说明:(1)复数函数f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]而不是f[-g(x)]=f[g(x)],复合函数y =f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]而不是f[-g(x)]=-f[g(x)]。

(2)两个特例:y =f(x +a)为偶函数,则f(x +a)=f(-x +a);y =f(x +a)为奇函数,则f(-x +a)=-f(a +x)(3)y =f(x +a)为偶(或奇)函数,等价于单层函数y =f(x)关于直线x =a 轴对称(或关于点(a ,0)中心对称)3、复合函数的对称性性质3复合函数y =f(a +x)与y =f(b -x)关于直线x =(b -a )/2轴对称 性质4、复合函数y =f(a +x)与y =-f(b -x)关于点((b -a )/2,0)中心对称推论1、 复合函数y =f(a +x)与y =f(a -x)关于y 轴轴对称推论2、 复合函数y =f(a +x)与y =-f(a -x)关于原点中心对称4、函数的周期性若a 是非零常数,若对于函数y =f(x)定义域内的任一变量x 点有下列条件之一成立,则函数y =f(x)是周期函数,且2|a|是它的一个周期。

①f(x+a)=f(x -a) ②f(x+a)=-f(x)③f(x+a)=1/f(x) ④f(x+a)=-1/f(x)5、函数的对称性与周期性性质5 若函数y =f(x)同时关于直线x =a 与x =b 轴对称,则函数f(x)必为周期函数,且T =2|a -b|性质6、若函数y =f(x)同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x)必为周期函数,且T =2|a -b|性质7、若函数y =f(x)既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x)必为周期函数,且T =4|a -b|6、函数对称性的应用(1)若k y y h x x k h x f y 2,2),)(//=+=+=对称,则关于点(,即 k x h f x f x f x f 2)2()()()(/=-+=+nk x h f x h f x h f x f x f x f n n n 2)2()2()2()()()(1121=-++-+-++++-(2)例题1、1)1()(2121)(=-++=x f x f a a a x f x x)对称:,关于点(; 2)()(1012214)(1=-++--=+x f x f x x f x x )对称:,关于( 1)1()2121)0,(11)(=+≠∈+=x f x f x R x x f ()对称:,关于(αα 2、奇函数的图像关于原点(0,0)对称:0)()(=-+x f x f 。

3、若)(),()()2()(x f y x a f x a f x a f x f =+=--=则或的图像关于直线a x =对称。

设个不同的实数根,则有n x f 0)(=na x a x x a x x a x x x x n n n =-+++-++-+=+++)2()2()2(22221121 .),212(111a x x a x k n =⇒-=+=时,必有当(四)常用函数的对称性三、函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+ ⇔)(x f y =的周期为a T 2=5、)(1)(x f a x f -=+ ⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3= 7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6=10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=四、用函数奇偶性、周期性与对称性解题的常见类型灵活应用函数奇偶性、周期性与对称性,可巧妙的解答某些数学问题,它对训练学生分析问题与解决问题的能力有重要作用.下面通过实例说明其应用类型。

1.求函数值例1.(1996年高考题)设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于(-0.5)(A )0.5; (B )-0.5; (C )1.5; (D )-1.5.例2.(1989年北京市中学生数学竞赛题)已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,,32)1(+=f 求)1989(f 的值.23)1989(-=f 。

相关文档
最新文档