抽象函数的性质问题解析
抽象函数问题解法

抽象函数问题解法抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则的函数。
它与函数的奇偶性、单调性、周期性、对称性等函数性质联系在一起,具有很强的抽象性。
这类问题主要考查数学思想方法的运用能力,以及对数学语言以及符号的阅读理解能力。
本文结合具体问题分类剖析这类问题的求解策略。
一、利用函数性质的解题思想函数性质是反映函数特征的主要途径,充分利用题设条件中已表明或隐含的函数性质,选择适当的方法解决抽象函数问题。
1.利用对称性,数形结合例1:已知函数f(x)对一切实数x都有f(2+x)= f(2-x),如果方程f(x)=0恰好有4个不同的实根,求这些实根之和。
策略:由f(2+x)= f(2-x)可知是函数图像关于直线x=2对称。
又f(x)=0四个根按由小到大的顺序可设为x1、x2、x3、x4,则x1+x4=2×2=4,x2+x3=2×2=4,∴x1+x2+x3+x4=8。
2. 利用奇偶性分析函数特征例2:已知函数f(x)=ax+bsinx+3,且f(-3)=7,求f(3)的值。
策略:注意到g(x)=ax+bsinx=f(x)-3是奇函数,可得g(-3)= -g(3),即f(-3)-3= -[f(3)-3],f(3)=6-f(-3)= -1。
3. 利用单调性等价转化例3:已知奇函数f(x)在定义域(-1,1)上是减函数,试求满足不等式f(1-a)+f(1-a2)4.利用周期性研究函数特征例4:已知f(x)是定义在正整数集上的函数,对任意正整数x 都有f(x)=f(x-1)+f(x+1),且f(1)=2002,求f(2002)。
分析:根据x的任意性,判断函数的周期。
略解:由f(x)=f(x-1)+f(x+1),可得:f(x+3)=-f(x)。
∴f(x+6)=-f(x+3)=[-f(x)]=f(x),∴f(x)是以6为周期的周期函数,∴f(2002)=f(333×6+4)=f(4)=f(3+1)=-f(1)=-2002。
高考数学重难点第6讲 抽象函数及其性质8大题型(解析版)(全国通用)(老师专用)(新高考专用)

重难点第6讲 抽象函数及其性质8大题型——每天30分钟7天掌握抽象函数及其性质8大题型问题【命题趋势】抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一个函数,由抽象函数构成的数学问题叫做抽象函数问题。
抽象函数问题能综合考查学生对函数概念和各种性质的理解,但由于其表现形式的抽象性和多变性,学生往往无从下手,这类问题是高考的一个难点,也是近几年高考的热点之一。
第1天 认真研究满分技巧及思考热点题型【满分技巧】一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过()()12-f x f x 的变换判定单调性;3、令式子中出现()f x 及()-f x 判定抽象函数的奇偶性;4、换x 为+x T 确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试.①若给出的是“和型”抽象函数() =+y x f ,判断符号时要变形为:()()()()111212)(x f x x x f x f x f -+-=-或()()()()221212)(x x x f x f x f x f +--=-;②若给出的是“积型”抽象函数() =xy f ,判断符号时要变形为:()()()112112x f x x x f x f x f -⎪⎪⎭⎫ ⎝⎛⋅=-或()()()⎪⎪⎭⎫ ⎝⎛⋅-=-212212x x x f x f x f x f . 三、常见的抽象函数模型1、()()()+=+f x y f x f y 可看做()=f x kx 的抽象表达式;2、()()()+=f x y f x f y 可看做()=x f x a 的抽象表达式(0>a 且1≠a );3、()()()=+f xy f x f y 可看做()log =a f x x 的抽象表达式(0>a 且1≠a );4、()()()=f xy f x f y 可看做()=a f x x 的抽象表达式. 四、抽象函数中的小技巧1、很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质;2、解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值法可以找到函数的不变性质,这个不变性质往往是解决问题的突破口;3、抽象函数性质的证明是一种代数推理,和几何推理一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
压轴题型03 抽象函数问题(解析版)-2023年高考数学压轴题专项训练

压轴题03抽象函数问题抽象函数是高中数学的一个难点,也是近几年来高考的热点。
考查方法往往基于一般函数,综合考查函数的各种性质。
本节给出抽象函数中的函数性质的处理策略,供内同学们参考。
抽象函数是指只给出函数的某些性质,而未给出函数具体的解析式及图象的函数。
由于抽象函数概念抽象,性质隐而不显,技巧性强,因此学生在做有关抽象函数的题目时,往往感觉无处下手。
○热○点○题○型1定义域问题解决抽象函数的定义域问题——明确定义、等价转换。
函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围)。
○热○点○题○型2求值问题通过观察已知与未知的联系,巧妙地赋值,赋值法是解此类问题的常用技巧。
○热○点○题○型3值域问题○热○点○题○型4解析式问题通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。
○热○点○题○型5单调性与奇偶性问题○热○点○题○型6周期性与对称性问题○热○点○题○型7几类抽象函数解法(1)求解方法:1.借鉴函数模型进行类比探究(化抽象为具体)2.赋值法(令0=x 或1,求出)0(f 或)1(f 、令x y =或x y -=等等)(2)几种抽象函数模型:1.正比例函数:)0()(≠=k kx x f ——————————)()()(y f x f y x f ±=±;2.幂函数:2)(x x f =——————————————)()()(y f x f xy f =,)()()(y f x f y x f =;注:反比例函数:1)(-=x x f 一类的抽象函数也是如此,有部分资料将幂函数模型写成反比例函数模型。
3.指数函数:x a x f =)(———————————)()()(y f x f y x f =+,)()()(y f x f y x f =-4.对数函数:x x f a log )(=————————)()()(y f x f xy f +=,)()()(y f x f yxf -=5.三角函数:x x f tan )(=————————————)()(1)()()(y f x f y f x f y x f -+=+6.余弦函数:x x f cos )(=———————)()(2)()(y f x f y x f y x f =-++一、单选题1.已知定义在()0,∞+上的函数()f x 满足()()()102f xy f x f y +--=,若一组平行线()1,2,...,i x x i n ==分别与()y f x =图象的交点为()11,x y ,()22,x y ,...,(),n n x y ,且()2121n i i x x f -+=⎡⎤⎣⎦,其中1,2,...,i n =,则1nii y n==∑A .1B .12C .2nD .2n 【答案】B【分析】令1x y ==得到()112f =;令1,n i i x x y x -+==得到()()11n i i f x f x -++=,代入计算得(6)()6f x f x +-≥,则(2016)f =A .2015B .2016C .2017D .2018【答案】D【分析】根据递推式可得(6)()6f x f x +-=,再由(2016)f =[(2016)(2010][(2010)(2004)]......[(6)(0)](0)f f f f f f f -+-++-+即可得答案.【详解】解:(2)()2,f x f x +-≤ (4)(2)2,f x f x ∴+-+≤(6)(4)2f x f x ∴+-+≤三是相加得:(6)()6f x f x +-≤,又(6)()6f x f x +-≥,则(6)()6f x f x +-=,当且仅当(2)()2f x f x +-=时等号成立,(2016)f =[(2016)(2010][(2010)(2004)]......[(6)(0)](0)f f f f f f f -+-++-+633622018=⨯+=,故选:D.3.已知定义域为R 的函数()f x 满足()31f x +是奇函数,()21f x -是偶函数,则下列结论错误的是()A .()f x 的图象关于直线=1x -对称B .()f x 的图象关于点(1,0)对称C .()31f -=D .()f x 的一个周期为8【答案】C【分析】根据()31f x +是奇函数,可得()()20f x f x +-+=,判断B;根据()21f x -是偶函数,推出()()2f x f x --=,判断A;继而可得()()4f x f x +=-,可判断D ;利用赋值法求得(1)0f =,根据对称性可判断C.【详解】由题意知()31f x +是奇函数,即()()()()3131,11f x f x f x f x -+=-+∴-+=-+,即()()2f x f x -+=-,即()()20f x f x +-+=,故()f x 的图象关于点(1,0)对称,B 结论正确;又()21f x -是偶函数,故()()()()2121,11f x f x f x f x --=-∴--=-,即()()2f x f x --=,故()f x 的图象关于直线=1x -对称,A 结论正确;由以上可知()()()22f x f x f x =--=--+,即()()22f x f x -=-+,所以()()4f x f x +=-,则()()4()8x x f f f x =-=++,故()f x 的一个周期为8,D 结论正确;由于()()3131f x f x -+=-+,令0x =,可得(1)(1),(1)0f f f =-∴=,而()f x 的图象关于直线=1x -对称,故()30f -=,C 结论错误,故选:C【点睛】方法点睛:此类抽象函数的性质的判断问题,解答时一般要注意根据函数的相关性质的定义去解答,比如奇偶性,采用整体代换的方法,往往还要结合赋值法求得特殊值,进行解决.4.已知定义在R 上的函数()f x 在(),4-∞-上是减函数,若()()4g x f x =-是奇函数,且()40g =,则不等式()0f x ≤的解集是A .(](],84,0-∞-⋃-B .[)[)8,40,--⋃+∞C .[][)8,40,--⋃+∞D .[]8,0-【答案】C【详解】∵()()4g x f x =-是奇函数,∴函数()()4g x f x =-图象的对称中心为(0,0),∴函数()f x 图象的对称中心为()4,0-.又函数()f x 在(),4-∞-上是减函数,∴函数()f x 在()4,-+∞上为减函数,且()()400f g -==.∵()()400g f ==,∴()80f -=.画出函数()f x 图象的草图(如图).结合图象可得()0f x ≤的解集是[][)8,40,--⋃+∞.选C .点睛:本题考查抽象函数的性质及利用数形结合求不等式的解集.解题时要从函数()f x 的性质入手,同时也要把函数()()4g x f x =-的性质转化为函数()f x 的性质,进一步得到函数()f x 的单调性和对称性,进而画出其图象的草图,根据图象写出不等式的解集.其中在解题中不要忘了()f x 是定义在R 上的函数,故应该有()()400f g -==这一结论,即函数()f x 的图象中要有()4,0-这一个点.5.已知函数()y f x =是定义域为R 的偶函数,当0x ≥时()()()5sin ,014211,14xx x f x x π⎧⎛⎫≤≤ ⎪⎪⎝⎭⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若关于x 的方程()()20f x af x b ⎡⎤++=⎣⎦有6个根,则实数a 的取值范围是()A .59,24⎛⎫-- ⎪⎝⎭B .9,14⎛⎫-- ⎪⎝⎭C .59,24⎛⎫-- ⎪⎝⎭9,14⎛⎫⋃-- ⎪⎝⎭D .5,12⎛⎫-- ⎪⎝⎭二、多选题(共0分)6.下列说法中错误的为()A .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,1B .若(121f x =+,则()[)2243,1,f x x x x ∞=++∈+C .函数的421x x y =++值域为:1,4⎡⎫-+∞⎪⎢⎣⎭D .已知()25,1,1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩在R 上是增函数,则实数a 的取值范围是[]3,2--7.若定义在R 上的函数()f x 满足:(ⅰ)存在R a +∈,使得()0f a =;(ⅱ)存在R b ∈,使得()0f b ≠;(ⅲ)任意12,R x x ∈恒有()()()()1212122f x x f x x f x f x ++-=.则下列关于函数()f x 的叙述中正确的是()A .任意x ∈R 恒有()()4f x a f x +=B .函数()f x 是偶函数C .函数()f x 在区间[]0,a 上是减函数D .函数()f x 最大值是1,最小值是-18.已知的定义域为R ,且对任意,有1f x f y f x y ⋅=+-,且当1x >时,()1f x >,则()A .()11f =B .()f x 的图象关于点()()1,1f 中心对称C .()f x 在R 上不单调D .当1x <时,()01f x <<故选:AD9.已知定义域为()0,∞+的函数()f x 满足:①()0,x ∀∈+∞,()()55f x f x =;②当(]1,5x ∈时,()5f x x =-,则()A .105f ⎛⎫= ⎪⎝⎭B .m Z ∀∈,()30mf =C .函数()f x 的值域为[)0,∞+D .n Z ∃∈,()512019nf +=10.已知()f x 为非常值函数,若对任意实数x ,y 均有()()()1f x y f x f y +=+⋅,且当0x >时,()0f x >,则下列说法正确的有()A .()f x 为奇函数B .()f x 是()0,∞+上的增函数C .()1f x <D .()f x 是周期函数对于D:因为()f x 是()0,∞+上的增函数,又因为()f x 为奇函数且()00f =,所以()f x 是(),-∞+∞上的增函数,故()f x 不是周期函数,故D 错误.故选:ABC.11.定义在R 上的函数()f x 满足()()()312f x f x f +++=,()()24f x f x -=+,若1122f ⎛⎫= ⎪⎝⎭,则()A .()f x 是周期函数B .1(2022)2f =C .()f x 的图象关于1x =对称D .200111002k k f k =⎛⎫-=- ⎪⎝⎭∑可得())1(3f x f x +=-,从而可得()f x 是周期为4的周期函数,是解决本题的关键.12.已知函数()f x ,()g x 的定义域均为R ,其导函数分别为()f x ',()g x '.若()()32f x g x -+=,()()1f x g x ''=+,且()()20g x g x -+=,则()A .函数()2g x +为偶函数B .函数()f x 的图像关于点()2,2对称C .()202410i g n ==∑D .()202414048i f n ==-∑【答案】ACD【分析】由()()1f x g x ''=+,可设()()()1,R f x a g x b a b +=++∈,,由()()32f x g x -+=,得()()321g x a g x b --+=++,赋值1x =,则有2a b -=,即()()31g x g x -=+,函数()g x 的图像关于直线2x =对称,又()()20g x g x -+=得()()4g x g x =+,()f x 也是周期为4的函数,通过赋值可判断选项【详解】因为()()1f x g x ''=+,所以()()()1,R f x a g x b a b +=++∈.又因为()()32f x g x -+=,所以()()23f x g x +=-.于是可得()()321g x a g x b --+=++,令1x =,则()()31211g a g b --+=++,所以2a b -=.所以()()31g x g x -=+,即函数()g x 的图像关于直线2x =对称,即()()4g x g x -=+.因为()()20g x g x -+=,所以函数()g x 的图像关于点()1,0对称,即()()20g x g x ++-=,所以()()24g x g x +=-+,即()()2g x g x =-+,于是()()4g x g x =+,所以函数()g x 是周期为4的周期函数.因为函数()g x 的图像关于直线2x =对称,所以()2g x +的图像关于y 轴对称,所以()2g x +为偶函数,所以A 选项正确.将()g x 的图像作关于y 轴对称的图像可得到()y g x =-的图像,再向右平移3个单位长度,可得到()()33y g x g x =--=-⎡⎤⎣⎦的图像,再将所得图像向下平移2个单位长度,即可得到()()32g x f x --=的图像,因此函数()f x 也是周期为4的函数.又()g x 的图像关于点()1,0对称,所以()f x 的图像关于点()2,2-对称,所以B 选项不正确.因为()()20g x g x -+=,令1x =,得()()110g g +=,即()10g =,所以()()130g g ==;令0x =,得()()200g g +=,所以()()240g g +=,所以()()()()12340g g g g +++=,所以()202410i g n ==∑,所以C 选项正确.因为()()32f x g x =--,所以()()0322f g =-=-,()()2122f g =-=-,()()122f g =-,()()302f g =-,()()402f f ==-,则有()()()()()()()123422202f f f f g g +++=-+-+-()28+-=-,可得()202414048i f n ==-∑,所以D 选项正确.故选:ACD .【点睛】方法点睛:一般地,若函数的图像具有双重对称性,则一定可以得到函数具有周期性,且相邻的两条对称轴之间的距离为半个周期;相邻的两个对称中心之间的距离也是半个周期;相邻的一条对称轴和一个对称中心之间的距离为四分之一个周期.三、填空题13.下列命题中所有正确的序号是__________.①函数1()3x f x a -=+(1a >)在R 上是增函数;②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4);③已知53()8f x x ax bx =++-,且(2)8f -=,则(2)8f =-;④11()122x f x =--为奇函数.⑤函数()f x =[]0,4(3)构造奇函数求对应的函数值;(4)定义法判断函数奇偶性;(5)直接法求具体函数的值域.14.给出下列四个命题:①函数与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数的图像可由的图像向上平移1个单位得到;④若函数的定义域为,则函数的定义域为;⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根;其中正确命题的序号是_____________.(填上所有正确命题的序号)【答案】③⑤【详解】试题分析:①因为函数的定义域为R ,函数的定义域为{}|>0x x ,所以函数与函数不表示同一个函数;②奇函数的图像一定通过直角坐标系的原点,此命题错误,若奇函数在x=0处没定义,则奇函数的图像就不过原点;③函数的图像可由的图像向上平移1个单位得到;,正确.④因为函数的定义域为,所以0<2<2,0<x<1x 即,所以函数的定义域为[0,1];⑤设函数是在区间上图象连续的函数,且,则方程在区间上至少有一实根,正确.考点:函数的定义;奇函数的性质;图像的变换;抽象函数的定义域;函数零点存在性定理.点评:此题考查的知识点较多,较为综合,属于中档题.抽象函数的有关问题对同学们来说具有一定的难度,特别是求函数的定义域,很多同学解答起来总感棘手,鉴于此,我们在学习时要善于总结.①已知的定义域求的定义域,其解法是:若的定义域为,则在中,,从中解得x 的取值范围即为的定义域;②已知的定义域,求的定义域,其解法是:若的定义域为,则由确定的的范围即为的定义域.15.已知函数()241f x x -+-的定义域为[]0,m ,则可求得函数()21f x -的定义域为[]0,2,求实数m 的取值范围__________.【答案】[]24,【详解】 函数()21f x -的定义域为[]0,2,02,1213x x ∴≤≤∴-≤-≤,令241t x x =-+-,则13t -≤≤,由题意知,当[]0,x m ∈时,[]1,3t ∈-,作出函数241t x x =-+-的图象,如图所示,由图可得,当0x =或4x =时,1t =-,当2x =时,3,24t m =∴≤≤,时[]1,3t ∈-,∴实数m 的取值范围是24m ≤≤,故答案为24m ≤≤.16.给出下列说法:①集合{}1,2,3A =,则它的真子集有8个;②2(),((0,1))f x x x x=+∈的值域为(3,)+∞;③若函数()f x 的定义域为[0,2],则函数(2)()2f xg x x =-的定义域为[)0,2;④函数()f x 的定义在R 上的奇函数,当0x >时,()1f x x =-+,则当0x <时,()1f x x =-⑤设53()=5f x ax bx cx +++(其中,,a b c 为常数,x R ∈),若(2012)3f -=-,则(2012)13f =;其中正确的是_______(只写序号).【答案】②⑤【详解】试题分析:①集合{1,2,3}A =,则它的真子集有个;③由函数()f x 的定义域为[0,2]得:,解得;④设,则,所以,又因为()f x 是定义在R 上的奇函数,所以()f x =-;⑤设g(x)=,则g(x)是奇函数且()f x =g(x)+5,因为(2012)3f -=-,所以,所以.考点:本题考查真子集的性质、抽象函数的定义域、函数的奇偶性.点评:此题主要考查集合子集个数的计算公式、函数的奇偶性和抽象函数定义域的求法,是一道基础题,若一个集合的元素个数为n ,则其子集的个数为2n ,真子集的个数为2n -1个.17.函数()f x 满足()11f x f x ⎛⎫= ⎪+⎝⎭对任意[)0,x ∈+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有(){},0f y y f x x a A =≤≤=,则a 的取值范围为___________.18.对任意集合M ,定义()0,M f x x M⎧=⎨∉⎩,已知集合S 、T X ⊆,则对任意的x X ∈,下列命题中真命题的序号是________.(1)若S T ⊆,则()()S T f x f x ≤;(2)()1()X S S f x f x =-ð;(3)()()()S T S T f x f x f x =⋅ ;(4)()()1()[2S S T T f x f x f x ++= (其中符合[]a 表示不大于a 的最大正数)19.设()1f x -为()cos 488f x x x ππ=-+,[]0,x π∈的反函数,则()()1y f x f x -=+的最大值为_________.R ,对任意的都有且当0x ≥时,则不等式()0xf x <的解集为__________.【答案】(2,0)(0,2)- 【详解】当0x ≥时,由()220f x x x =->,得2x >;由()220f x x x =-<,得02x <<.∵()()f x f x -=-,∴函数()f x 为奇函数.∴当0x <时,由()220f x x x =->,得20x -<<;由()220f x x x =-<,得2x <-.不等式()0xf x <等价于()00x f x >⎧⎨<⎩或()00x f x <⎧⎨>⎩,解得02x <<或20x -<<.∴不等式()0xf x <的解集为()()2,00,2-⋃.答案:()()2,00,2-⋃21.已知函数21,0()21,0,x x f x x x x +≤⎧=⎨-+>⎩若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则实数a 的取值范围是_____.【答案】01a <<【分析】采用数形结合的方法,由2()()0f x af x -=确定有两个解()0f x =或()f x a =,在通过图象确定a 的范围.【详解】由2()()0f x af x -=得()0f x =或()f x a =,如图,作出函数()f x 的图象,由函数图象,可知()0f x =的解有两个,故要使条件成立,则方程()f x a =的解必有三个,此时0<a <1.所以a 的取值范围是(0,1).故答案为:01a <<.22.已知函数()f x 满足1(1)()f x f x +=-,且()f x 是偶函数,当[1,0]x ∈-时,2()f x x =,若在区间[1,3]-内,函数()()log (2)a g x f x x =-+有个零点,则实数a 的取值范围是______________.【答案】所以可得132a log ≥+(),∴实数a 的取值范围是[5+∞,).故答案为[5+∞,).考点:函数的周期性的应用,函数的零点与方程的根的关系【名师点睛】本题主要考查函数的周期性的应用,函数的零点与方程的根的关系,体现了转化的数学思想,属于基础题.四、双空题23.设函数()f x 是定义在整数集Z 上的函数,且满足()01f =,()10f =,对任意的x ,y ∈Z 都有()()()()2f x y f x y f x f y ++-=,则()3f =______;()()()()22222122023122023f f f f 2++⋅⋅⋅+=++⋅⋅⋅+______.五、解答题24.已知()f x 定义域为R 的函数,S ⊆R ,若对任意1212,,x x x x S ∈-∈R ,均有()()12f x f x S -∈,则称()f x 是S 关联.(1)判断函数()()12112f x xg x x =-=-、是否是[)1,+∞关联,并说明理由:(2)若()f x 是{}2关联,当[)0,2x ∈时,()2f x x x =-,解不等式:()02f x ≤≤;(3)判断“()f x 是{}2关联”是“()f x 是[]1,2关联”的什么条件?试证明你的结论.25.设函数(),f x x x M=⎨-∈⎩其中P ,M 是非空数集.记f (P )={y |y =f (x ),x ∈P },f (M )={y |y =f (x ),x ∈M }.(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);(Ⅱ)若P∩M=∅,且f(x)是定义在R上的增函数,求集合P,M;(Ⅲ)判断命题“若P∪M≠R,则f(P)∪f(M)≠R”的真假,并加以证明.【答案】(Ⅰ)[0,+∞);(Ⅱ)P=(﹣∞,0)∪(0,+∞),M={0};(Ⅲ)真命题,证明见解析【解析】(Ⅰ)求出f(P)=[0,3],f(M)=(1,+∞),由此能过求出f(P)∪f(M).(Ⅱ)由f(x)是定义在R上的增函数,且f(0)=0,得到当x<0时,f(x)<0,(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.由此能求出P,M.(Ⅲ)假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.证明0∈P∪M.推导出f(﹣x0)=﹣x0,且f(﹣x0)=﹣(﹣x0)=x0,由此能证明命题“若P∪M≠R,则f(P)∪f(M)≠R”是真命题.【详解】(Ⅰ)因为P=[0,3],M=(﹣∞,﹣1),所以f(P)=[0,3],f(M)=(1,+∞),所以f(P)∪f(M)=[0,+∞).(Ⅱ)因为f(x)是定义在R上的增函数,且f(0)=0,所以当x<0时,f(x)<0,所以(﹣∞,0)⊆P.同理可证(0,+∞)⊆P.因为P∩M=∅,所以P=(﹣∞,0)∪(0,+∞),M={0}.(Ⅲ)该命题为真命题.证明如下:假设存在非空数集P,M,且P∪M≠R,但f(P)∪f(M)=R.首先证明0∈P∪M.否则,若0∉P∪M,则0∉P,且0∉M,则0∉f(P),且0∉f(M),即0∉f(P)∪f(M),这与f(P)∪f(M)=R矛盾.若∃x0∉P∪M,且x0≠0,则x0∉P,且x0∉M,所以x0∉f(P),且﹣x0∉f(M).因为f(P)∪f(M)=R,所以﹣x0∈f(P),且x0∈f(M).所以﹣x0∈P,且﹣x0∈M.所以f(-x0)=﹣x0,且f(-x0)=﹣(﹣x0)=x0,根据函数的定义,必有﹣x0=x0,即x0=0,这与x0≠0矛盾.综上,该命题为真命题.【点睛】本题考查函数新定义问题,考查学生的创新意识,考查命题真假的判断与证明,考查并集定义等基础知识,考查运算求解能力,是中档题.26.已知()f x 是定义在[]1,1-上的奇函数,且(1)1f =.若对任意的[],1,1m n ∈-,0m n +≠都有()()0f m f n m n+>+.(1)用函数单调性的定义证明:()f x 在定义域上为增函数;(2)若()()214f a f a +>,求a 的取值范围;(3)若不等式()()122f x a t ≤-+对所有的[]1,1x ∈-和[]1,1a ∈-都恒成立,求实数t 的取值范围.于难题.根据抽象函数的单调性解不等式应注意以下三点:(1)一定注意抽象函数的定义域(这一点是同学们容易疏忽的地方,不能掉以轻心);(2)注意应用函数的奇偶性(往往需要先证明是奇函数还是偶函数);(3)化成()()()()f g x f h x ≥后再利用单调性和定义域列不等式组.27.已知函数()f x ,若存在非零实数a 、b ,使得对定义域内任意的x ,均有()f x a +=()f x b +成立,则称该函数()f x 为阶梯周期函数.(1)判断函数()[]|sin |()f x x x x π=+∈R 是否为阶梯周期函数,请说明理由.(其中[]x 表示不超过x 的最大整数,例如:[3,5]4-=-,[2,1]2=)(2)已知函数()g x ,x ∈R 的图像既关于点(1,0)对称,又关于点(3,2)对称.①求证:函数()g x 为阶梯周期函数;②当[0,4]x ∈时,()[,]g x p q ∈(p 、q 为实数),求函数()g x 的值域.【答案】(1)是,理由见解析;(2)①证明见解析;②[4,4]n p n q ++,n ∈Z .【解析】(1)根据阶梯周期函数的定义求解判断.(2)①根据函数()g x 的图像既关于点(1,0)对称,又关于点(3,2)对称,得到()()()()2064g x g x g x g x ⎧-++=⎪⎨-++=⎪⎩求解.②根据①的结论,分[]()4,44,x n n n N ∈+∈和[]()4,44,x n n n N ∈--+∈两种情况讨论求解.【详解】(1)因为()()(1)[1]|sin 1|[]1|sin |1f x x x x x f x ππ+=+++=++=+,所以存在1,1a b ==,使得函数()f x 为阶梯周期函数(2)①因为函数()g x 的图像既关于点(1,0)对称,又关于点(3,2)对称,所以()()()()2064g x g x g x g x ⎧-++=⎪⎨-++=⎪⎩,两式相减得:()()624g x g x +-+=,即()()44g x g x +=+所以函数()g x 为阶梯周期函数;②当[]()4,44,x n n n N ∈+∈时,[]40,4x n -∈,由()()44g x g x +=+,得()()()444242...g x g x g x =-+=-⨯+⨯=()[]()444,4g x n n n p n q n N =-+∈++∈,当[]()4,44,x n n n N ∈--+∈时,[]40,4x n +∈,由()()44g x g x +=+,得()()()444242...g x g x g x =+-=+⨯-⨯=()[]()444,4g x n n n p n q n N =+-∈-+-+∈,综上:函数()g x 的值域是[4,4]n p n q ++n ∈Z .【点睛】关键点点睛:本题关键是阶梯周期函数定义的理解以及()f x 若关于点(),a b 对称,则()()22f x f a x b -++=结合应用.28.已知函数()f x 对于任意的,x y ∈R ,都有()()()f x y f x f y +=+,当0x >时,()0f x <,且1(1)2f =-.(1)求(0)f ,(1)f -的值;(2)当34x -≤≤时,求函数()f x 的最大值和最小值;(3)设函数2()()3()g x f x m f x =--,判断函数g (x )最多有几个零点,并求出此时实数m的取值范围.29.已知函数,如果存在给定的实数对,使得恒成立,则称()f x 为“S -函数”.(1)判断函数()1f x x =,()23xf x =是否是“S -函数”;(2)若()3tan f x x =是一个“S -函数”,求出所有满足条件的有序实数对(),a b ;(3)若定义域为R 的函数()f x 是“S -函数”,且存在满足条件的有序实数对()0,1和()1,4,当[]0,1x ∈时,()f x 的值域为[]1,2,求当[]2018,2018x ∈-时函数()f x 的值域.1(1)3f =-.(1)求证()f x 是奇函数;(2)求()f x 在区间[3,3]-上的最大值和最小值.【答案】(1)详见解析;(2)最小值-1,最大值1.【分析】(1)利用赋值法,令0x =,0y =代入函数式,可求得(0)f ,再令y x =-代入函数式,即可31.已知函数的定义域为,且同时满足①13f =;②2f x ≥恒成立,③若12120,0,1x x x x ≥≥+≤,则有()()()12122f x x f x f x ++-≥.(1)试求函数()f x 的最大值和最小值;(2)试比较f (12n)与122n +(n ∈N )的大小.(3)某人发现:当12nx =(n ∈N )时,有()22f x x <+,由此他提出猜想:对一切x ∈(0,1],都有()22f x x <+,请你判断此猜想是否正确,并说明理由.32.已知,1,2,n 是定义在M 上的一系列函数,满足:()1f x x =,()()11i i x f x f i x ++-⎛⎫== ⎪⎝⎭N .(1)求()()()234,,f x f x f x 的解析式;(2)若()g x 为定义在M 上的函数,且()11x g x g x x -⎛⎫+=+ ⎪⎝⎭.①求()g x 的解析式;②若方程()()()()222121318420x m x x g x x x x x ---++++++=有且仅有一个实根,求实数m 的取值范围.都有()()f x s f x s +-=,则称()y f x =是S -关联的.(1)判断函数2y x =和函数[]y x =是否是{1}-关联的,无需说明理由.([]x 表示不超过x 的最大整数)(2)若函数()y f x =是{2}-关联的,且在[0,2)上,()2x f x =,解不等式2()4f x <<.(3)已知正实数,a b 满足a b <,且函数()y f x =是[,]a b -关联的,求()f x 的解析式.【答案】(1)函数2y x =不是{1}-关联的,函数[]y x =是{1}-关联的;(2)(1,3)x ∈(3)()f x x C=+【分析】(1)根据()y f x =是S -关联的定义逐个判断可得结果;(2)根据函数()y f x =是{2}-关联的定义求出()f x 在[2,4)上的解析式,将()f x 代入2()4f x <<可解得结果;(3)根据()()f x t f x t +-=,得()()()f x t x t f x x +-+=-,令()()g x f x x =-,得()()g x t g x +=34.已知定义域为的函数y f x =满足:①对0,x ∈+∞,恒有22f x f x =;②当(]1,2x ∈时,()2f x x =-.(1)求18f ⎛⎫⎪⎝⎭的值;(2)求出当(12,2n n x +⎤∈⎦,Z n ∈时的函数解析式;(3)求出方程()12f x x =在(]0,100x ∈中所有解的和.【答案】(1)0;35.f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.【答案】(Ⅰ)x﹣y﹣2=0(Ⅱ)(﹣,0)【详解】试题分析:(I)利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f'(2)=g'(2)=1.即为关于a、b的方程,解方程即可.(II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2﹣3x+2﹣m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x ﹣1)恒成立问题转化为求函数f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围.解:(I)f'(x)=3x2+4ax+b,g'(x)=2x﹣3.由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.故有f(2)=g(2)=0,f'(2)=g'(2)=1.由此得,解得,所以a=﹣2,b=5..切线的方程为x﹣y﹣2=0.(II)由(I)得f(x)=x3﹣4x2+5x﹣2,所以f(x)+g(x)=x3﹣3x2+2x.依题意,方程x(x2﹣3x+2﹣m)=0,有三个互不相等的实根0,x1,x2,故x1,x2是x2﹣3x+2﹣m=0的两相异实根.所以△=9﹣4(2﹣m)>0,解得m>﹣.又对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,特别地取x=x1时,f(x1)+g(x1)<m(x1﹣1)成立,得m<0.由韦达定理得x1+x2=3>0,x1x2=2﹣m>0.故0<x1<x2.对任意的x∈[x1,x2],x﹣x2≤0,x﹣x1≥0,x>0.则f(x)+g(x)﹣mx=x(x﹣x1)(x﹣x2)≤0,又f(x1)+g(x1)﹣mx1=0.所以f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值为0.于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,综上得:实数m的取值范围是(﹣,0).点评:本题主要考查函数,导数,不等式等基础知识,同时考查综合运用数学知识进行推理论证的能立,以及函数与方程和特殊与一般的思想.。
抽象函数的概念与性质

抽象函数的概念与性质抽象函数是计算机科学中的一个重要概念,它在面向对象编程中扮演着关键的角色。
本文将介绍抽象函数的基本概念与性质,并探讨其在软件开发中的应用。
一、抽象函数的概念抽象函数是指一个没有具体实现的函数,它只定义了函数的名称、参数和返回值,但没有具体的函数体。
与之相对的是具体函数,具体函数是指已经实现了函数体的函数。
抽象函数主要用于描述一类对象的共同行为和特征,它只定义了接口而没有提供具体的实现细节。
在面向对象的编程语言中,抽象函数通过抽象类或接口来定义。
抽象类是一个普通类和接口的折中,它可以定义抽象函数和具体函数,并且可以包含属性和其他方法。
接口是一种特殊的抽象类,它只能定义抽象函数和常量,不包含属性和具体函数的实现。
二、抽象函数的性质1. 抽象函数不能被实例化:由于抽象函数没有具体的实现代码,所以不能直接创建抽象函数的对象。
只有通过继承抽象类或实现接口,并重写抽象函数,才能实现抽象函数的功能。
2. 抽象函数必须被重写:任何继承抽象类或实现接口的子类都必须提供抽象函数的具体实现。
否则,子类也必须声明为抽象类,无法被实例化。
3. 抽象函数可以有参数和返回值:与具体函数一样,抽象函数可以定义参数和返回值。
参数和返回值的类型可以是任意数据类型,包括基本类型和自定义类型。
4. 抽象函数可以有多态性:由于抽象函数的具体实现由子类来决定,所以同一个抽象函数在不同的子类中可以有不同的行为。
这种特性称为多态性,它能增加代码的灵活性和可扩展性。
三、抽象函数在软件开发中的应用1. 实现接口:接口是抽象函数的一种重要应用方式。
通过实现接口,可以定义一组抽象函数,并在不同的类中提供具体的实现。
这样可以保证不同类的对象都能具有相同的行为。
2. 辅助设计模式:抽象函数在许多设计模式中起着关键的作用。
例如,工厂方法模式中的抽象工厂类就定义了一组抽象函数,而具体的工厂类则负责提供具体的实现。
3. 封装算法:抽象函数可以用于封装一些常用的算法,通过定义抽象函数接口,不同的子类可以提供不同的算法实现。
微专题:抽象函数

抽象函数 一、内容回顾抽象函数,即没有给出具体解析式的函数.由于抽象函数问题可以把函数的三要素、函数性质的考查集于一体,因此在高考试题中常常出现抽象函数问题.1、抽象函数性质(1)单调性:对于函数()f x ,若在定义域内某个区间上任取12,x x ,当12x x <时,都有1212()()(()())f x f x f x f x <>,则称函数()f x 在这个区间上是增(减)函数.(2)奇偶性:对于函数()f x ,若在定义域内任取x ,都有()()(()())f x f x f x f x -=-=-,则称函数()f x 为偶(奇)函数.(3)周期性:对于函数()f x ,如果存在一个非零常数T ,使得当x 取定义域的每一个值时,都有()()f x T f x +=,那么,函数()f x 就叫做周期函数.T 叫这个函数的周期.(ⅰ)若0,()(),a f x a f x ≠+=-则()f x 的一个周期2T a =;(ⅱ)若10,(),()a f x a f x ≠+=±则()f x 的一个周期2T a =. (4)对称性:(ⅰ)若函数)(x f y =的定义域为R ,且()(2)f x f a x =-恒成立,则函数)(x f y =的图像关于直线x a =对称,反之亦然;(ⅱ)若函数)(x f y =的定义域为R ,且()(2)2f x f a x b +-=恒成立,则函数)(x f y =的图像关于点(,)a b 对称,反之亦然.例1(2019上饶模拟理)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________.解 由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+. 优解 由性质知()()()()()114(),51(5)(3).(1)5f x f x f f f f f f f +=∴==-===- 类型二 判断抽象函数的奇偶性例2 (2019宜春模拟理)已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,则()f x 为( ).A.奇函数B.偶函数C.非奇非偶函数D.不能确定解 令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……①在①中令y =0则2(0)f =2(0)f ∵ (0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数.选B.优解 联想公式cos()cos()2cos cos ,x y x y x y ++-=不妨视()cos f x x =,显然此函数为偶函数,选B.类型三 证明抽象函数单调性例3 (2019宝安单元理)设()f x 定义于实数集上,当0x >时,()1f x >,且对于任意实数,x y 有()()()f x y f x f y +=,求证:()f x 在R 上为增函数.证明 在()()()f x y f x f y +=中取0x y ==,得2(0)[(0)]f f =.若(0)0f =,令0,0x y >=,则()0f x =,与()1f x >矛盾.所以()0f x ≠,即有(0)1f =.当0x >时,()10f x >>;当0x <时,0,()10x f x ->->>, 而()()(0)1f x f x f -==,所以1()0()f x f x =>-. 又当0x =时,(0)10f =>,所以对任意x R ∈,恒有()0f x >,设12x x -∞<<<+∞,则21210,()1x x f x x ->->,所以21211211()(()]()()()f x f x x x f x f x x f x =+-=->.所以()y f x =在R 上为增函数. 类型四 抽象函数的周期性例4 (2018全国2卷)已知是定义域为的奇函数,满足(1)(1),f x f x -=+若,则( ).A .50-B .0C .2D .50解 因为是定义域为的奇函数,且,所以,,,因此,,,,从而,选C .优解 由题设知,()f x 关于原点对称,且关于直线1x =对称,类比正弦函数的图像,可知()f x 的一个周期为4(10)4,(1)(2)(3)(4)(1)(2)(1)(2)0,T f f f f f f f f =-=∴+++=+--=,从而,选C . 例5 (2019宝安单元理)已知函数()f x 的定义域为R ,对任意实数,m n 都有1()()()2f m n f m f n +=++,且1()02f =,当12x >时, ()f x >0. (1)求(1)f ; (2)求和(1)(2)(3)...()f f f f n ++++*()n ∈N ;(3)判断函数()f x 的单调性,并证明.解 (1)令12m n ==,则1111()2()2222f f +=+1(1)2f ⇒=. (2)∵1(1),2f =111(1)(1)()()()1222f n f f n f n f n +=++=++=+ ∴(1)()1f n f n +-=,∴数列{}()f n 是以12为首项,1为公差的等差数列, 故(1)(2)(3)...()f f f f n ++++=(1)22n n n -+=22n =. (3)任取1212,,x x x x ∈<R 且,则212111()()[()]()f x f x f x x x f x -=-+-()f x (,)-∞+∞(1)2f =(1)(2)(3)(50)f f f f ++++=…()f x (),-∞+∞()()11f x f x -=+()()11f x f x +=--()()()311f x f x f x ∴+=-+=-4T ∴=()()()()()()()()()()1235012123412f f f f f f f f f f ++++=+++++⎡⎤⎣⎦()()()()3142f f f f =-=-,()()()()12340f f f f ∴+++=()()()()22220f f f f =-=-∴=()()()()()1235012f f f f f ++++==()()()()22220f f f f =-=-∴=()()()()()1235012f f f f f ++++==211121211111()()()()()()0,2222f x x f x f x f x x f x x f =-++-=-+=-+>> 12()().f x f x ∴<故函数()f x 是R 上的单调增函数.三、方法总结1.计算函数数值:抽象函数值的计算,一般采用赋值方法.如何赋值,不但取决于函数定义域,还需要根据题设的具体情况.如果自变量的数值较大,则可能要关注抽象函数的周期情况.2.判断奇偶性质:解题时,应紧扣定义,先判断定义域是否关于原点对称,再看是否满足()(),f x f x -=或()()f x f x -=-;若给出的条件涉及x 、y 两个变量,则可考虑对其中一个变量以恰当的特值,如0,使之变成一个变量.3.证明单调性质:首先是基于函数定义域,在依照函数单调性定义进行证明. 如遇思维受阻,可以透过所给抽象函数关系,寻觅隐藏在背后的具体函数进行类比推理证明.4.性质综合求解:综合求解问题,不仅可以涉及以上纵向的多层面的知识方法,还可涉及不等式、数列等横向的数学知识方法.解决此类问题的关键在于,搞清问题结构,针对问题题型,采取相应的求解策略,如对选填题,常常可以采取特值法,归纳推理求解;对于解答题,可以采取化整为零的解题策略.四、高考链接1.(2014全国1卷)设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( ).A..()f x ()g x 是偶函数B.()f x |()g x 是奇函数C..()f x |()g x |是奇函数D.|()f x ()g x |是奇函数解析 设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.2. (2014湖南理)已知分别是定义在R 上的偶函数和奇函数,且()()f x f x -=321x x ++,=( ).A .-3B .-1C .1D .3解析 用x -换x ,得32()()()()1f x g x x x ---=-+-+,化简得 32()()1f x g x x x +=-++,令1x =,得(1)(1)1f g +=,选C .3.(2017天津理)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ).A .a b c <<B .c b a <<C .b a c <<D .b c a <<解析 由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-=,又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .4.(2017全国1卷)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ).A .[2,2]-B . [1,1]-C . [0,4]D . [1,3]解析 因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤,等价于()()()121f f x f --≤≤,又()f x 在()-∞+∞,单调递减,121x ∴--≤≤,3x ∴1≤≤,选D .(),()f x g x (1)(1)f g +则5. (2014山东理)对于函数()fx ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是( ).A .()f x x =B .2()f x x =C .()tan f x x =D .()cos(1)f x x =+解析 由()(2)f x f a x =-可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;选D .6.(2011陕西理)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+= ,则()y f x =的图像可能是( ).解析 由得是偶函数,所以函数的图象关于轴对称,可知B ,D 符合;由得是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,选B .7. (2016山东理)已知函数f (x )的定义域为R .当x <0时, ;当 时, ;当 时,,则f (6)= ( ). A .−2B .−1C .0D .2 解析 当11x -时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=,所以(6)2f =,选D .8.( 2016全国2卷理)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑( ).A .0B .mC .2mD .4m解析 由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111022m m m i i i i i i i m x y x y m ===+=+=+⋅=∑∑∑,选B . ()()f x f x -=()y f x =()y f x =y (2)()f x f x +=()y f x =3()1f x x =-11x -≤≤()()f x f x -=-12x >11()()22f x f x +=-9. (2018北京理)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.解析这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如()sin f x x =,答案不唯一.10.(2014全国2卷)偶函数()f x 的图像关于直线2x =对称,(3)3f =,则(1)f -=___.解析 ∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==.11.(2016天津理)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.解析 ∵f (x )是偶函数,且在(-∞,0)上单调递增,∴f (x )在(0,+∞)上单调递减,f (-2)=f (2),∴f (2|a -1|)>f (2),∴2|a -1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32. 12. (2014湖北理)设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点(,())a f a ,(,())b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(b a c b a M f +==,即),(b a M f 为b a ,的算术平均数. (Ⅰ)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数;(Ⅱ)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数b a ab +2; (以上两空各只需写出一个符合要求的函数即可)解析 过点(,())a f a ,(,())b f b -的直线的方程为()()()()f a f b y f a x a a b +-=--, 令0y =得()()()()af b bf a c f a f b +=+.()()()()af b bf a f a f b +=+()()()()a b bf a af b ⇒+=+,可取()0)f x x =>. (Ⅱ)令调和平均数2()()()()ab af b bf a a b f a f b +=++,得()()()()ab ba af b bf a a b f a f b ++=++,可取()(0)f x x x =>.五、巩固提高1.(2019邵阳联考理)若函数()f x 的定义域为[0,6],则函数()3f x x -的定义域为( ). A.(0,3) B.[1,3](3,8] C.[1,3) D.[0,3)解析 ∵函数()f x 的定义域为[0,6] ,由02603,30,x x x ≤≤⇒≤≤-≠∴函数()3f x x -的定义域为[0,3).选D .2.(2019九江模拟理)已知函数()f x 满足:①对任意,()()0,x f x f x ∈+-=R(4)()0f x f x ++-=成立;②当(0,2)x ∈]时,()(2),f x x x =-则(2019)f =( ).A .1B .0C .2D .﹣1解析 ()()0,()f x f x f x +-=∴为奇函数. (4)()0,f x f x ++-=(4)(),f x f x ∴+=故()f x 是以4为周期的奇函数,(2019)1)(1)1,f f f ∴=-=-=选A .3. (2019湖南师大附中月考理)已知函数y =f (x )满足y =f (-x )和y =f (x +2)都是偶函数,且f (1)=1,则f (-1)+f (7)=( ).A .0B .1C .2D .3解析 ∵y =f (-x )为偶函数,∴f (-(-x ))=f (-x ),∴f (-x )=f (x ),∴y =f (x )为偶函数,∴当x =1时,有f (-1)=f (1)=1.又y =f (x +2)是偶函数,∴f (-x +2)=f (x +2),∴f (x -2)=f (x +2).则f (x )=f (x +4),∴函数y =f (x )为周期函数,且周期为4.∴f (7)=f (8-1)=f (-1)=1.故f (-1)+f (7)=2.选C.4. (2019唐山期末理)已知偶函数f x 在0,单调递减,若20f ,则满足10xf x 的x 的取值范围是( ).A.,10,3B.1,03,C.,11,3D.1,01,3解析 ∵偶函数在单调递减,且,∴函数在单调递增,且.结合图象可得不等式等价于 或,即或,解得或. 故的取值范围为.选A .5.(2019东北师大附中摸底理)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ).A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析 因为奇函数f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上是增函数.又因为函数f (x )满足f (x -4)=-f (x ),所以f (x -8)=-f (x -4)=f (x ),所以函数f (x )为周期函数,且周期为8,因此f (-25)=f (-1)<f (0)=f (80)<f (11)=f (3)=-f (-1)=f (1).选D.6. (2019宜春模拟理)已知定义在R 上的函数()f x 满足(1)(1),f x f x +=-且在[1,+∞)上是增函数,不等式(2)(1)f ax f x +≤-对任意1[,1]2x ∈恒成立,则实数a 的取值范围是( ). A.[-3,-1] B.[-2,0] C.[-5,-1] D.[-2,1]解析 由定义在R 上的函数f(x)满足f(x+1)=f(1-x),且在[1,+∞)上是增函数,可得函数图象关于直线x=1对称,且函数f(x)在(-∞,1)上递减,由此得出自变量离1越近,函数值越小.观察四个选项,发现0,1不存在于A,C 两个选项的集合中,B 中集合是D 中集合的子集,故可通过验证a 的值(取0与1时两种情况)得出正确选项.当a=0时,不等式f(ax+2)≤f(x-1)变为f(2)≤f(x-1),由函数f(x)的图象特征可得|2-1|≤|x-1-1|,解得x≥3或x≤1,满足不等()f x [)0,+∞()20f -=()f x (),0-∞()20f =()10xf x ->()0{10x f x >->()0{ 10x f x <-<0{ 13x x >-<<0{ 1x x <<-03x <<1x <-x ()(),10,3-∞-⋃式f(ax+2)≤f(x-1)对任意x ∈[12,1]恒成立,由此排除A,C 两个选项.当a=1时,不等式f(ax+2)≤f(x-1)变为f(x+2)≤f(x-1),由函数f(x)的图象特征可得|x+2-1|≤|x-1-1|,解得x≤12 ,不满足不等式f(ax+2)≤f(x-1)对任意x ∈[12,1]恒成立,由此排除D 选项.综上可知,选B.7. (2019宝安检测理)已知定义在R 上的函数()2y f x =-是奇函数,且满足(1)1,f -=则(0)(1)f f += .解析 函数()2y f x =-为奇函数,(0)20,()2(()2),()()4,f f x f x f x f x -=--=---+=(1)(1)4,(1)3,(0)(1) 5.f f f f f +-==+=8. (2019广东百校联考)已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,()()f x g x -=222x x x b +++(b 为常数),则=-+-)1()1(g f.解析: 由()f x 为定义在R 上的奇函数可知(0)0f =,所以0(0)(0)20f g b -=+=,得1b =-,所以(1)(1)4f g -=,于是(1)(1)(1)(1)[(1)(1)] 4.f g f g f g -+-=-+=--=-9. (2019湛江模拟理)设定义在[-2,2]上的奇函数f (x )在区间[0,2]上单调递减,若f (1+m )+f (m )<0,则实数德州模拟理已知定义在上的函数在区间上单调递增,且(1)y f x =-的图像关于1x =对称,若满足12(log )(2),f x f <-则a 的取值范围是____________.解析 由于(1)y f x =-的图像关于1x =对称,所以()f x 是偶函数,又()f x 在区间[0,)+∞上单调递增,故由12(log )(2),f a f <-可得 11221(|log |)(2),|log |2(,4).4f a f a a <∴<⇒∈ 11. (2019宝安单元理)已知函数是定义在上的增函数,且满足对于任意的正实数、,都有()()()f xy f x f y =+,且(1)求的值;(2)解不等式解(1)(2)1,(4)(2)(2)2,(8)(4)(2)21 3.f f f f f f f ==+==+=+=(2).由函数是定义在上的增函数,则即, 依题设,有,,从而不等式的解集为. )(x f ),0(+∞x y .1)2(=f )8(f .3)2()(+->x f x f )]2(8[)()8()2()(3)2()(->⇔+->⇔+->x f x f f x f x f x f x f )(x f ),0(+∞)2(8->x x 716<x ⎩⎨⎧>->020x x ∴2>x )716,2(12. (2019宝安单元理)已知函数()f x 的定义域为R ,对任意实数,m n 都有()()()f m n f m f n +=,且当0x >时,0()1f x <<.(1)证明:(0)1,0()1f x f x =<>且时,;(2)证明: ()f x 在R 上单调递减;(3)设A=22{(,)()()(1)}x y f x f y f >,B={(,)(2)1,x y f ax y a -+=∈R },若,A B =∅试确定a 的取值范围.解 (1)证明 令0,1m n ==,则(01)(0)(1)f f f +=⋅.∵当0x >时,0()1f x <<,故(1)0f >,∴(0)1f =,∵当0x >时,0()1f x <<.∴当0x <时,0x ->,则(0)1()()()()1()()f f x x f x f x f x f x f x -+=-⇒==>--. (2)证明: 任取1212,,x x x x ∈<R 且,则2121112111()()[()]()()()()f x f x f x x x f x f x x f x f x -=-+-=--211[()1]()f x x f x =--.∵210x x ->,∴0<210()1f x x <-<,故21()1f x x --<0,又∵1()0,f x >∴211[()1]()0f x x f x -->,故12()()f x f x >.∴函数()f x 是R 上的单调减函数.(3) ∵{}{}2222(,)()()(1)(,)()(1)A x y f x f y f x y f x y f =>⇒+>。
抽象函数性质的万能结论

有关抽象函数性质问题的万能结论知识准备:1.奇函数与偶函数已知函数)(x f 的定义域为D ,对于D x ∈∀ 若都有)()(x f x f =-,则函数)(x f 为偶函数; 若都有)()(x f x f -=-,则函数)(x f 为奇函数.则类似的我们可以对周期性和对称性做形式类似的定义 2. 函数的对称性已知函数)(x f 的定义域为D ,对于D x ∈∀若都有)()(x a f x a f -=+,则函数)(x f 关于a x =对称; 若都有)()(x a f x a f --=+,则函数)(x f 关于),(0a 对称. 3. 函数的周期性已知函数)(x f 的定义域为D ,对于D x ∈∀若都有)()(x f T x f =+,则函数)(x f 为周期函数,周期为T ; 若都有)()(x f T x f -=+, 则函数)(x f 为周期函数,周期为2T.由于上面三种定义的形式高度统一,所以我们可以把这三种性质用一个定义来表示:已知函数)(x f 的定义域为D ,对于D x ∈∀ 满足①)()( f f =,②)()( f f -=,①中括号里面的式子相加是常数a 2则具有对称性,关于a x =对称;②中括号里面的式子相加是常数a 2则具有对称性,关于()0,a 对称;①中括号里面的式子相减是常数T 则具有对周期性,周期为T ;②中括号里面的式子相减是常数T 则具有对周期性,周期为2T 。
4.对称性和周期性的关系只要一个函数具有两个对称性则一定是周期函数,对称性相同则周期为两倍的两对称之间的距离,对称性不同则周期为四倍的两对称之间的距离 例如:(1)若函数)(x f 同时关于a x =和bx=对称,则函数)(x f 周期为b a -2(2)若函数)(x f 同时关于a x =和)0,(b 对称,则函数)(x f 周期为b a -4 典型例题:1.已知定义在R 上的函数)(x f y =满足)()23(x f x f -=+且函数)43(-=x f y 是奇函数,给出下面4个命题,真命题的序号是______________①)(x f 为周期函数;②)(x f 关于)043(,-对称;③)(x f 为偶函数;④)(x f 在R上单调【解析】因为)()23(x f x f -=+3,①正确,④一定错误,周期函数不可能具有单调性;又)43(-=x f y 是奇函数,即)43()43(--=--x f x f ,则函数)(x f y =关于)043(,-对称,②正确;判断③的对错是个难点,此时可以联立⎪⎩⎪⎨⎧-=+--=--(2))()23((1))43()43(x f x f x f x f将(1)式中的x 代换为43+x 得)()23(x f x f -=--,然后减去(2)式得0)23--(-)23(=+x f x f)(x f 关于0=x 对称,即为偶函数.2.(09全国I 理11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数【说明】这是一道得分率很低的题目,但用上面的结论后会很简单,所以看答案之前不妨自己试探着做做.【解析】(1)f x +与(1)f x -都是奇函数,(1)(1),(1)(1)f x f x f x f x ∴-+=-+--=--,函数()f x 关于点(1,0),及点(1,0)-()f x 是周期2[1(1)]4T =--=的周期函数.(14)(14)f x f x ∴--+=--+,(3)(3)f x f x -+=-+,即(3)f x +是奇函数。
10 第二章 微专题 抽象函数的性质

THANKS
(3)如果f (x+a)+f (x)=c(a≠0),那么f (x)是周期函数,其中一个周期T=2a.
ห้องสมุดไป่ตู้
微专题 抽象函数的性质
类型三 抽象函数的奇偶性和对称性
【例3】已知定义在R上的函数f (x)满足f (x+6)=f (x),y=f (x+3)为偶函数.若
f (x)在(0,3)内单调递减,则下面结论正确的是( )
D.c>b>a
A
解析:因为∀x1,x2∈(-∞,0]且x1≠x2时,有f
x1 -f
x1-x2
x2 >0,
所以函数f (x)在(-∞,0]上单调递增.
由f (x)为偶函数,得函数f (x)在[0,+∞)上单调递减.
因为0<sin 3<1,1<ln 3<2,21.5>2,f
ln
1 3
=f (-ln 3)=f (ln 3),
所以f (sin 3)>f (ln 3)>f (21.5),即a>b>c.
微专题 抽象函数的性质
思维建模 比较大小,利用奇偶性把不在同一单调区间上的两个或多个自变量的函数值转 化到同一单调区间上,进而利用函数单调性比较大小.
微专题 抽象函数的性质
类型二 抽象函数的周期性 【例2】(2022·新高考全国Ⅱ卷)若函数f (x)的定义域为R,且f (x+y)+f (x-y)=f
22
所以∑ f k =f (1)+f (2)+f (3)+f (4)=1-1-2-1=-3.故选A.
k=1
微专题 抽象函数的性质
思维建模
抽象函数的周期
(1)如果f (x+a)=-f (x)(a≠0),那么f (x)是周期函数,其中一个周期T=2a.
关于抽象函数问题的解法

抽象函数问题有关解法一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽象函数的性质问题解析抽象函数是高中数学的一个难点,也是近几年来高考的热点。
考查方法往往基于一般函数,综合考查函数的各种性质。
本节给出抽象函数中的函数性质的处理策略,供内同学们参考。
1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。
材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=xf y 的定义域。
解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=xf y 而言,有1124x-≤+<,解之得:),21(]31,(+∞--∞∈ x 。
所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞ 总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x 的范围等同。
2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。
材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。
解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。
总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。
3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。
材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( )A 、直线0=y 对称B 直线0=x 对称C 直线1=y 对称D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m ,所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。
解法二(图象变换法):由函数)(x f y =的图象向右平移1个单位得到函数)1(-=x f y 的图象;由函数)(x f y =的图象关于y 轴对称得到函数)(x f y -=的图象,再向右平移1个单位,得到)1()]1([x f x f y -=--=的图象。
如图所示,选D 。
解法三(特值代入法):由已知可得点))1(,0(-f P 在函数)1(-=x f y 的图象上,点))1(,2(-f Q 在函数)1(x f y -=的图象上,又点P 、Q 关于直线1=x 对称,选D 。
总结:了解一些简单结论对解题也是很有好处的。
如:函数)(x f y =满足)()(x b f x a f -=+,则函数)(x f y =的自对称轴为2b a x +=;函数)(x a f y +=与)(x b f y -=的互对称轴为x b x a -=+,即2a b x -= 4、 周期性:解决抽象函数的周期性问题——充分理解与运用相关的抽象式是关键。
材料四:设)(x f y =是定义在R 上的奇函数,其图象关于直线1=x 对称。
证明)(x f y =是周期函数。
证明:由)(x f y =的图象关于直线1=x 对称,得)()2(x f x f -=+,又)(x f y =是定义在R 上的奇函数,所以)()(x f x f -=-∴)()2(x f x f -=+,则)()]([)2()]2(2[)4(x f x f x f x f x f =--=+-=++=+ 由周期函数的定义可知4是它的一个周期。
总结:一般地,)()(x f T x f -=+,)(1)(x f T x f ±=+均可断定函数的周期为2T 。
5、 奇偶性:解决抽象函数的奇偶性问题——紧扣定义、合理赋值。
材料五:已知)(x f y =是定义在R 上的不恒为零的函数,且对于任意的R b a ∈,,都满足:)()()(a bf b af b a f +=⋅。
判断)(x f y =的奇偶性,并证明你的结论。
解析:令1==b a ,则)1(1)1(1)11(f f f ⋅+⋅=⋅,得0)1(=f ;令1-==b a ,则)1()1()1()1()]1()1[(-⋅-+-⋅-=-⋅-f f f ,得0)1(=-f ; 令1-=a ,x b =得)1()()1(])1[(-⋅+⋅-=⋅-f x x f x f ,得)()(x f x f -=-因此函数)(x f y =为奇函数。
总结:赋值是解决多变量抽象函数的重要手段。
6、 单调性:解决抽象函数的单调性问题——紧密结合定义、适当加以配凑。
材料六:设)(x f y =是定义在[-1,1]上的奇函数,且对于任意的]1,1[,-∈b a ,当0≠+b a时,都有:0)()(>++ba b f a f 。
若b a >,试比较)(a f 与)(b f 的大小。
解析:)]([)()()()()()()(b a b a b f a f b f a f b f a f -+∙-+-+=-+=-, b a >,∴0>-b a ,又0)()(>++ba b f a f , ∴0)()(>-b f a f ,即)()(b f a f >。
总结:本题实质上是证明函数的单调性,有时也用到1)()(12>x f x f (或1)()(12<x f x f )来判断。
抽象函数的单调性,一般不用导数判断。
7、 可解性:由抽象式求解析式问题——视)(x f 为未知数,构造方程(组)。
材料七:设函数)(x f 满足x xx f x f +=-+1)1()(……①)10(≠≠x x 且,求)(x f 。
解析:以x x 1-代x ,得xx x f x x f 12)11()1(-=--+-,……② 以11--x 代x ,得12)()11(--=+--x x x f x f ,……③ ①+③-②得:x x x x x x f 12121)(2----++= 所以)1(21)(23---=x x x x x f )10(≠≠x x 且 总结:在所给的抽象式中紧紧围绕)(x f ,将其余的式子替换成)(x f ,构造一个或几个方程,然后设法求解。
8、 凹凸性:解决函数的凹凸性问题——捕捉图象信息,数形结合。
材料八:如图所示,)(x f i )4,3,2,1(=i 是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的1x 和2x ,任意]1,0[∈λ,)()1()(])1([2121x f x f x x f λλλλ-+<-+恒成立”的只有( )A 、)(1x fB 、)(2x fC 、)(3x fD 、)(4x f 解析:令21=λ,则不等式变为2)()()2(2121x f x f x x f +<+,可知函数)(x f i 是一个凹函数,故只有)(1x f 正确,选A 。
总结:函数的凹凸性在高中阶段没有专门研究,但也逐渐走入高考殿堂。
总之,因为抽象函数密切联系函数的单调性、奇偶性、周期性、对称性等诸多性质,加上本身的抽象性、多变性,使得抽象函数这一难点更加扑朔迷离。
因此应不断挖掘隐含,灵活运用上述解题策略,定会收到良好的效果。
课外练习:函数()f x 是定义域在[0,1]上的增函数,满足()2()2xf x f =且(1)1f =,在每个区间111(,]22i i -(1,2,)i =上,()y f x =的图象都是斜率为同一常数k 的直线的一部分。
(1)、求(0)f 、1()2f 及1()4f 的值,并归纳出1()2i f (1,2,)i =的表达式; (2)、直线12i x =,112i x -=,x 轴及()y f x =的图象围成的图形的面积为i a (1,2,)i =,记12()lim()n x S k a a a →∞=+++,求()S k 的表达式,并写出其定义域和最小值。
(04,北京,18)解析:(1)为了求(0)f ,只需在条件()2()2x f x f =中,令0x =,即有(0)2(0f f =(0)0f ⇒=。
由1(1)2()2f f =及(1)1f =,得111()(1)222f f ==。
同理1111()()4224f f ==。
归纳11()22i i f =(1,2,)i =。
(2)、11122i i x -<≤时,1111()()22i i f x k x --=+-, 1111211111111[()]()(1)22222242i i i i i i i i k a k -----=++--=-(1,2,)i =。
故{}n a 是首项为1(1)24k -,公比为14的等比数列,所以12()lim()n x S k a a a →∞=+++1(1)224(1)3414k k -==--。
()S k 的定义域是01k <≤,当1k =时取得最小值12。