最新冀教版八年级数学下册单元测试题及答案全套

合集下载

2021-2022学年度冀教版八年级数学下册第二十二章四边形章节测评试题(含答案解析)

2021-2022学年度冀教版八年级数学下册第二十二章四边形章节测评试题(含答案解析)

八年级数学下册第二十二章四边形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD 的对角线交于点O ,下列哪组条件不能判断四边形ABCD 是平行四边形( )A .OA =OC ,OB =ODB .AB =CD ,AO =COC .AB =CD ,AD =BCD .∠BAD =∠BCD ,AB ∥CD2、下列命题不正确的是( )A .三边对应相等的两三角形全等B .若a b =,则22a b =C .有一组对边平行、另一组对边相等的四边形是平行四边形D .ABC 的三边为a 、b 、c ,若222a c b -=,则ABC 是直角三角形.3、一个多边形从一个顶点引出的对角线条数是4条,这个多边形的边数是( )A .5B .6C .7D .84、下列说法错误的是( )A .平行四边形对边平行且相等B .菱形的对角线平分一组对角C .矩形的对角线互相垂直D .正方形有四条对称轴5、在下列条件中,不能判定四边形是平行四边形的是( )A .AB ∥CD ,AD ∥BCB .AB =CD ,AD =BC C .AB ∥CD ,AB =CD D .AB ∥CD ,AD =BC6、如图,点A ,B ,C 在同一直线上,且23AB AC =,点D ,E 分别是AB ,BC 的中点.分别以AB ,DE ,BC 为边,在AC 同侧作三个正方形,得到三个平行四边形(阴影部分)的面积分别记作1S ,2S ,3S ,若1S =23S S +等于( )A B C D 7、如图,平行四边形ABCD 的边BC 上有一动点E ,连接DE ,以DE 为边作矩形DEGF 且边FG 过点A .在点E 从点B 移动到点C 的过程中,矩形DEGF 的面积( )A .先变大后变小B .先变小后变大C .一直变大D .保持不变8、下列命题中是真命题的是( ).A .有一组邻边相等的平行四边形是菱形 B .对角线互相垂直且相等的四边形是菱形C .对角线相等的四边形是矩形D .有一个角为直角的四边形是矩形9、如图,在平面直角坐标系中,直线483l y x =-+:分别交x 轴,y 轴于A 、B 两点,C 为线段OB 上一点,过点C 作CD x ∥轴交l 于点D ,若CBDE 的顶点E 恰好落在直线13y x =上,则点C 的坐标为( )A .80,3⎛⎫ ⎪⎝⎭B .160,3⎛⎫ ⎪⎝⎭C .80,9⎛⎫ ⎪⎝⎭D .400,9⎛⎫ ⎪⎝⎭10、一个多边形的每个内角均为150°,则这个多边形是( )A .九边形B .十边形C .十一边形D .十二边形第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD 中,ABC ∠的角平分线BE 交AD 于点E ,连接EC ,EC 恰好平分BED ∠,若2AB =,则DE 的长为______.2、长方形纸片ABCD 按图中方式折叠,其中,EF EC 为折痕,如果折叠后',',A B E 在一条直线上,那么CEF ∠的大小是________度.3、如图,菱形ABCD 中,12AB =,60ABC ∠=︒,点E 在AB 边上,且2BE AE =,动点P 在BC 边上,连接PE ,将线段PE 绕点P 顺时针旋转60︒至线段PF ,连接AF ,则线段AF 长的最小值为__.4、如图,矩形ABCD 的两条对角线相交于点O ,已知120AOD ∠=︒, 2.5cm AB =,则矩形对角线BD 的长为_______cm .5、在Rt ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线,已知AC =2BC =,则ACD △的周长等于______.三、解答题(5小题,每小题10分,共计50分)1、【问题情境】如图1,在Rt ABC 中,90,ACB CD AB ∠=︒⊥,垂足为D ,我们可以得到如下正确结论:①2CD AD BD =⋅;②2AC AB AD =⋅;③2BC AB BD =⋅,这些结论是由古希酷著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③2BC AB BD =⋅.(2)【结论运用】如图2,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,过点C 作CF BE ⊥,垂足为F ,连接OF .①求证:BOF BED ∽.②若2CE =,求OF 的长.2、已知正方形ABCD 与正方形EFGH ,AB a ,()EF b b a =<.(1)如图1,若点C 和点H 重合,点E 在线段CB 上,点G 在线段DC 的延长线上,连接AC 、AG 、CG ,将阴影部分三角形ACG 的面积记作S ,则S = (用含有a 、b 的代数式表示).(2)如图2,若点B 与点E 重合,点H 在线段BC 上,点F 在线段AB 的延长线上,连接AC 、AG 、CG ,将阴影部分三角形ACG 的面积记作S ,则S = (用含有a 、b 的代数式表示).(3)如图3,若将正方形EFGH 沿正方形ABCD 的边BC 所在直线平移,使得点E 、H 在线段BC 上=,将阴影部分三角形(点H不与点C重合、点E不与点B重合),连接AC、AG、CG,设CH xACG的面积记作S,则S=(用含有a、b、x的代数式表示).(4)如图4,若将正方形EFGH沿正方形ABCD的边BC所在直线平移,使得点H、E在BC的延长线=,将阴影部分三角形ACG的面积记作S,则S=(用上,连接AC、AG、CG,设CH x含有a、b、x的代数式表示).3、(1)【发现证明】如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且45∠=︒,求证:EAF△绕点A顺时针旋转90°至ADG,使AB与AD重合时能够证EF DF BE=+.小明发现,当把ABE明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且45∠=︒,则EAF(1)中的结论还成立吗?若不成立,请写出EF,BE,DF之间的数量关系______(不要求证明)②如图3,如果点E,F分别是BC,CD延长线上的动点,且45∠=︒,则EF,BE,DF之间的EAF数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=AF的长.4、如图1,已知∠ACD是ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即:三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?(1)尝试探究:如图2,已知:∠DBC与∠ECB分别为ABC的两个外角,则∠DBC+∠ECB-∠A 180°.(横线上填<、=或>)(2)初步应用:如图3,在ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案:∠P= .(3)解决问题:如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠BAD、∠CDA的数量关系.5、(1)【探究一】如图1,我们可以用不同的算法来计算图形的面积.①方法1:如果把图1看成一个大正方形,那么它的面积为;②方法2:如果把图1看成是由2个大小不同的正方形和2个大小相同的小长方形组成的图形,那么它的面积为;(写成关于a、b的两次三项式)用两种不同的算法计算同一个图形的面积,可以得到等式.(2)【探究二】如图2,从一个顶点处引n条射线,请你数一数共有多少个锐角呢?①方法1:一路往下数,不回头数.以OA1为边的锐角有∠A1OA2、∠A1OA3、∠A1OA4、…、∠A1OAn,共有(n-1)个;以OA2为边的锐角有∠A2OA3、∠A2OA4、…、∠A2OAn,共有(n-2)个;以OA3为边的锐角有∠A3OA4、…、∠A3OAn,共有(n-3)个;以OAn-1为边的锐角有∠An-1OAn,共有1个;则图中锐角的总个数是;②方法2:每一条边都能和除它以外的(n-1)条边形成锐角,共有n条边,可形成n(n-1)个锐角,但所有锐角都数了两遍,所以锐角的总个数是;用两种不同的方法数锐角个数,可以得到等式.(3)【应用】分别利用【探究一】中得到的等式和【探究二】中运用的思想解决问题.①计算:19782+20222;②多边形中连接任意两个不相邻顶点的线段叫做对角线,如五边形共有5条对角线,则十七边形共有条对角线,n边形共有条对角线.-参考答案-一、单选题1、B【解析】略2、C【解析】【分析】根据三角形全等的判定定理(SSS定理)、乘方运算法则、平行四边形的判定、勾股定理的逆定理逐项判断即可得.【详解】解:A、三边对应相等的两三角形全等,此命题正确,不符题意;B 、若a b =,则22a b =,此命题正确,不符题意;C 、有一组对边平行、另一组对边相等的四边形有可能是等腰梯形,不一定是平行四边形,所以此项命题不正确,符合题意;D 、ABC 的三边为a 、b 、c ,若222a c b -=,即222a b c =+,则ABC 是直角三角形,此命题正确,不符题意;故选:C .【点睛】本题考查了三角形全等的判定定理、乘方运算法则、平行四边形的判定、勾股定理的逆定理,熟练掌握各定理是解题关键.3、C【解析】【分析】根据从n 边形的一个顶点引出对角线的条数为(n -3)条,可得答案.【详解】解:∵一个n 多边形从某个顶点可引出的对角线条数为(n -3)条,而题目中从一个顶点引出4条对角线,∴n -3=4,得到n =7,∴这个多边形的边数是7.故选:C .【点睛】本题考查了多边形的对角线,从一个顶点引对角线,注意相邻的两个顶点不能引对角线.4、C【解析】【分析】根据矩形的性质、平行四边形的性质、菱形的性质和正方形的性质分别进行判断即可.【详解】解:A、平行四边形对边平行且相等,正确,不符合题意;B、菱形的对角线平分一组对角,正确,不符合题意;C、矩形的对角线相等,不正确,符合题意;D、正方形有四条对称轴,正确,不符合题意;故选:C.【点睛】本题考查了矩形的性质、平行四边形的性质、菱形的性质和正方形的性质,掌握以上性质定理是解题的关键.5、D【解析】略6、B【解析】【分析】设BE=x,根据正方形的性质、平行四边形的面积公式分别表示出S1,S2,S3,根据题意计算即可.【详解】∵23AB AC=,AC AB BC=+∴AB=2BC,又∵点D,E分别是AB,BC的中点,∴设BE=x,则EC=x,AD=BD=2x,∵四边形ABGF是正方形,∴∠ABF=45°,∴△BDH是等腰直角三角形,∴BD=DH=2x,∴S1=DH•AD2x•2x∴x2∵BD=2x,BE=x,∴S2=MH•BD=(3x−2x)•2x=2x2,S3=EN•BE=x•x=x2,∴S2+S3=2x2+x2=3x2故选:B.【点睛】本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是90°是解题的关键.7、D【解析】连接AE ,根据11,22ADE ADE ABCD DEGF S S S S ==矩形,推出ABCD DEGF S S =矩形,由此得到答案. 【详解】解:连接AE ,∵11,22ADE ADE ABCD DEGF S S S S ==矩形,∴ABCD DEGF S S=矩形,故选:D . .【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE 是解题的关键.8、A【解析】【分析】根据平行线四边形的性质得到对边相等,加上一组邻边相等,可得到四边都相等,根据菱形的定义对A 、B 进行判断;根据矩形的判定方法对C 、D 进行判断. 【详解】解:A 、平行四边形的对边相等,若有一组邻边相等,则四边都相等,所以该选项正确;B 、对角线互相平分且垂直的四边形是菱形,所以该选项不正确;C 、对角线互相平分且相等的四边形为矩形,所以该选项不正确;D 、有三个角是直角的四边形是矩形,所以该选项不正确.【点睛】本题考查了命题与定理:判断事情的语句叫命题;正确的命题叫真命题;经过证明其正确性的命题称为定理.也考查了平行四边形、矩形和菱形的判定与性质.9、D【解析】【分析】 设点4,83D m m ⎛⎫-+ ⎪⎝⎭ ,根据CD x ∥轴,可得点40,83C m ⎛⎫-+ ⎪⎝⎭,再根据平行四边形的性质可得点ED y ∥轴,DE BC = ,则583DE m =-+,43BC m = ,即可求解. 【详解】 解:设点4,83D m m ⎛⎫-+ ⎪⎝⎭,∵CD x ∥轴, ∴点40,83C m ⎛⎫-+ ⎪⎝⎭ , ∵四边形CBDE 是平行四边形,∴ED y ∥轴,DE BC = , ∴点1,3E m m ⎛⎫ ⎪⎝⎭, ∴41588333DE m m m =-+-=-+ , ∵直线483l y x =-+:分别交y 轴于B 两点,∴当0x = 时,8y = ,∴点()0,8B ,∴448833BC m m⎛⎫=--+=⎪⎝⎭,∴45833m m=-+,解得:83m=,∴44840883339m-+=-⨯+=,∴点400,9C⎛⎫⎪⎝⎭.故选:D【点睛】本题主要考查了一次函数的图形和性质,平行四边形的性质,熟练掌握一次函数的图形和性质,平行四边形的性质,利用数形结合思想解答是解题的关键.10、D【解析】【分析】先求出多边形的外角度数,然后即可求出边数.【详解】解:∵多边形的每个内角都等于150°,∴多边形的每个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,故选:D.【点睛】本题考查多边形的内角和、外角来求多边形的边数,属于基础题,熟练掌握多边形中内角和定理公式是解决本类题的关键.二、填空题1、2【解析】【分析】根据矩形的性质得//AD BC ,=AD BC ,=90A ︒∠,根据BE 是ABC ∠的角平分线,得45ABE CBE ∠=∠=︒,则45ABE CBE ∠=∠=︒,2AE AB ==,在Rt BAE 中,根据勾股定理得BE =DEC ECB ∠=∠,由因为EC 平分BED ∠则BEC DEC ∠=∠,等量代换得BEC ECB ∠=∠,所以BC BE ==AD =【详解】解:∵四边形ABCD 为矩形,∴//AD BC ,=AD BC ,=90A ︒∠,∵2AB =,BE 是ABC ∠的角平分线,∴45ABE CBE ∠=∠=︒,∴2AE AB ==,在Rt BAE 中,根据勾股定理得,BE∵//AD BC ,∴DEC ECB ∠=∠,∵EC 平分BED ∠,∴BEC DEC ∠=∠,∴BEC ECB ∠=∠, ∴BC BE == ∴AD =∴2DE AD AE =-=,故答案为:2.【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.2、90【解析】【分析】根据折叠的性质,∠1=∠2,∠3=∠4,利用平角,计算∠2+∠3的度数即可.【详解】如图,根据折叠的性质,∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,∠=90°,∴CEF故答案为:90.【点睛】本题考查了折叠的性质,两个角的和,熟练掌握折叠的性质,灵活运用两个角的和是解题的关键.3、【解析】【分析】在BC 上取一点G ,使得BG BE =,连接EG ,EF ,作直线FG 交AD 于T ,过点A 作AH GF ⊥于H .证明120BGF ∠=︒,推出点F 在射线GF 上运动,根据垂线段最短可知,当点F 与H 重合时,AF 的值最小,求出AH 即可.【详解】解:在BC 上取一点G ,使得BG BE =,连接EG ,EF ,作直线FG 交AD 于T ,过点A 作AH GF ⊥于H .60B ∠=︒,BE BG =,ΔBEG ∴是等边三角形,EB EG ∴=,60BEG BGE ∠=∠=︒,PE PF =,60EPF ∠=︒,ΔEPF ∴是等边三角形,60PEF ∴∠=︒,EF EP =,BEG PEF ∠=∠,BEP GEF ∴∠=∠,在ΔBEP 和GEF ∆中,BE GE BEP GEF PE PF =⎧⎪∠=∠⎨⎪=⎩,()ΔΔBEP GEF SAS ∴≅,60EGF B ∴∠=∠=︒,120BGF ∴∠=︒,∴点F 在射线GF 上运动,根据垂线段最短可知,当点F 与H 重合时,AF 的值最小,12AB =,2BE AE =,8BE ∴=,4AE =,60BEG EGF ∠=∠=︒,∴GT //AB∵BG //AT∴四边形ABGT 是平行四边形,8AT BG BE ∴===,60ATH B ∠=∠=︒,∴30TAH ∠=︒12TH AH = 在Rt ATH ∆中,222AT TH AH +=∴ 22218()2AH AH +=AH ∴=AF ∴的最小值为故答案为:【点睛】本题考查菱形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4、5【解析】【分析】由矩形的性质可证△AOB 为等边三角形,可求BO =AB 的长,即可求BD 的长.【详解】解:∵四边形ABCD 是矩形,∴AO =CO =BO =DO ,∵∠AOD =120°,∴∠AOB =60°,且AO =BO ,∴△ABO 为等边三角形,∴AO =BO =AB =2.5,∴BD =5,故答案为:5.【点睛】本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.5、4+4【解析】【分析】过点D 作DE AC ⊥,根据直角三角形斜边上的中线等于斜边的一半,可得DC AD =,根据等腰三角形的三线合一可得AE EC =,中位线的性质求得DE ,根据勾股定理求得AD ,继而求得ACD △的周长.【详解】解:如图,过点D 作DE AC ⊥在Rt ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线,12CD AB AD DB ∴=== DE AC ⊥12AE EC AC ∴===E ∴为AC 的中点,又D 为AB 的中点,则112ED BC ==在Rt AED △中,2AD ==2DC AD ∴==∴ACD △的周长等于4AD DC AC ++=+故答案为:4+【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三线合一,中位线的性质与判定,勾股定理,掌握以上知识是解题的关键.三、解答题1、 (1)见解析;(2)①见解析;②OF =【解析】【分析】(1)由AA 证明Rt CBD Rt ABC △△,再由相似三角形对应边称比例得到::CB AB BD BC =,继而解题;(2)①由“射影定理”分别解得2BC BO BD =⋅,2BC BF BE =⋅,整理出BO BF BE BD =,再结合∠=∠OBF EBD 即可证明BOF BED ∽;②由勾股定理解得BE OB ==BOF BED 得到OF BO DE BE=,代入数值解题即可. (1)证明:CD AB ⊥90BDC ∴∠=︒90ACB BDC ∴∠=∠=︒ CBD ABC ∠=∠Rt CBD Rt ABC ∴::CB AB BD BC ∴=2BC AB BD ∴=⋅(2) ①四边形ABCD 是正方形,90OC BO BCD ∴⊥∠=︒2BC BO BD ∴=⋅CF BE ⊥2BC BF BE ∴=⋅BO BD BF BE ∴⋅=⋅BO BF BE BD∴= OBF EBD ∠=∠BOF BED ∴②在Rt BCE 中,6,2BC CE ==BE ∴4DE BC CE ∴=-=在Rt OBC ,2OB BC == BOF BED OF BO DE BE∴=4OF ∴OF ∴. 【点睛】本题考查相似三角形的综合题,涉及勾股定理、正方形等知识,是重要考点,掌握相关知识是解题关键.2、 (1)12ab (2)212a (3)1()2a b x + (4)1()2a xb -3、(1)见解析;(2)①不成立,结论:EF DF BE =-;②BE EF DF =+,见解析;(3)【解析】【分析】(1)证明EAF GAF ∆≅∆,可得出EF FG =,则结论得证;(2)①将ABE ∆绕点A 顺时针旋转90︒至ADM ∆根据SAS 可证明EAF MAF ∆≅∆,可得EF FM =,则结论得证;②将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,证明AFE ANE ∆≅∆,可得出EF EN =,则结论得证;(3)求出2DG =,设DF x =,则3EF FG x ==+,6CF x =-,在Rt EFC ∆中,得出关于x 的方程,解出x 则可得解.【详解】(1)证明:把ABE ∆绕点A 顺时针旋转90︒至ADG ∆,如图1,BAE DAG ∴∠=∠,AE AG =,90B ADG ∠=∠=︒,180ADF ADG ∴∠+∠=︒,F ∴,D ,G 三点共线,45EAF ∠=︒,45BAE FAD ∴∠+∠=︒,45DAG FAD ∴∠+∠=︒,EAF FAG ∴∠=∠,AF AF =,()EAF GAF SAS ∴∆≅∆,EF FG DF DG ∴==+,EF DF BE ∴=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE ∆绕点A 顺时针旋转90︒至ADM ∆,EAB MAD ∴∠=∠,AE AM =,90EAM =︒∠,BE DM =,45FAM EAF ∴∠=︒=∠,AF AF =,()EAF MAF SAS ∴∆≅∆,EF FM DF DM DF BE ∴==-=-;②如图3,将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,AN AF ∴=,90NAF ∠=︒,45EAF ∠=︒,45NAE ∴∠=︒,NAE FAE ∴∠=∠,AE AE =,()AFE ANE SAS ∴∆≅∆,EF EN ∴=,BE BN NE DF EF ∴=+=+.即BE EF DF =+.故答案为:BE EF DF =+.(3)解:由(1)可知AE AG ==正方形ABCD 的边长为6,6DC BC AD ∴===,∴3DG .3BE DG ∴==,633CE BC BE ∴=-=-=,设DF x =,则3EF FG x ==+,6CF x =-,在Rt EFC 中,222CF CE EF +=,222(6)3(3)x x ∴-+=+,解得:2x =.2DF ∴=,AF ∴=【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.4、 (1)=(2)∠P =90°-12∠A(3)∠P =180°-12∠BAD -12∠CDA ,探究见解析【解析】【分析】(1)根据三角形外角的性质得:∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,两式相加可得结论;(2)根据角平分线的定义得:∠CBP =12∠DBC ,∠BCP =12∠ECB ,根据三角形内角和可得:∠P 的式子,代入(1)中得的结论:∠DBC +∠ECB =180°+∠A ,可得:∠P =90°−12∠A ;(3)根据平角的定义得:∠EBC =180°-∠1,∠FCB =180°-∠2,由角平分线得:∠3=12∠EBC =90°−12∠1,∠4=12∠FCB =90°−12∠2,相加可得:∠3+∠4=180°−12(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.(1)∠DBC +∠ECB -∠A =180°,理由是:∵∠DBC =∠A +∠ACB ,∠ECB =∠A +∠ABC ,∴∠DBC +∠ECB =2∠A +∠ACB +∠ABC =180°+∠A ,∴∠DBC +∠ECB -∠A =180°,故答案为:=;(2)∠P=90°-12∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=12∠DBC,∠BCP=12∠ECB,∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-12(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°-12(180°+∠A)=90°-12∠A.故答案为:∠P=90°-12∠A,(3)∠P=180°-12∠BAD-12∠CDA,理由是:如图,∵∠EBC=180°-∠1,∠FCB=180°-∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=12∠EBC=90°-12∠1,∠4=12∠FCB=90°-12∠2,∴∠3+∠4=180°-12(∠1+∠2),∵四边形ABCD 中,∠1+∠2=360°-(∠BAD +∠CDA ),又∵△PBC 中,∠P =180°-(∠3+∠4)=12(∠1+∠2),∴∠P =12×[360°-(∠BAD +∠CDA )]=180°-12(∠BAD +∠CDA )=180°-12∠BAD -12∠CDA .【点睛】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,熟练掌握三角形外角的性质是关键.5、(1)①()2a b +;②222a b ab ++;()2a b +=222a b ab ++;(2)①(n -1)+(n -2)+(n -3)+……+1;②()112n n -;(n -1)+(n -2)+(n -3)+……+1=()112n n -;(3)①8000968;②119,12n (n -3)【解析】【分析】(1)①根据边长为(a +b )的正方形面积公式求解即可;②利用矩形和正方形的面积公式求解即可;(2)①根据题中的数据求和即可;②根据题意求解即可;(3)①利用(1)的规律求解即可;②根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出(n -3)条,而每条重复一次,所以n 边形对角线的总条数为12n (n -3)(n ≥3,且n 为整数)可得答案.【详解】解:(1)①大正方形的面积为()2a b +;②由2个大小不同的正方形和2个大小相同的小长方形组成的图形的面积为222a b ab ++;可以得到等式:()2a b +=222a b ab ++; 故答案为:①()2a b +;②222a b ab ++;()2a b +=222a b ab ++;(2)①图中锐角的总个数是:(n -1)+(n -2)+(n -3)+……+1; ②锐角的总个数是12n (n -1);可以得到等式为(n -1)+(n -2)+(n -3)+……+1=12n (n -1);故答案为:①(n -1)+(n -2)+(n -3)+……+1;②12n (n -1);(n -1)+(n -2)+(n-3)+……+1=12n (n -1);(3)①19782+20222=[2000+(-22)]2+(2000+22)2=20002+(-22)2+2×2000×(-22)+20002+222+2×2000×22 =2×(20002+222)=2×[4000000+(20+2)2]=2×[4000000+(202+22+2×20×2)]=8000968;②一个四边形共有2条对角线,即12×4×(4-3)=2;一个五边形共有5条对角线,即12×5×(5-3)=5; 一个六边形共有9条对角线,即12×6×(6-3)=9;……, 一个十七边形共有12×17×(17-3)=119条对角线;一个n 边形共有12n (n -3)(n ≥3,且n 为整数)条对角线.故答案为:119,12n(n-3).【点睛】本题考查了图形的变化规律,完全平方公式,多边形的对角线,对于这种图形的变化规律的问题,读懂题目信息,找到变化规律是解题的关键.。

2021-2022学年度冀教版八年级数学下册第二十章函数章节测试试卷(精选含答案)

2021-2022学年度冀教版八年级数学下册第二十章函数章节测试试卷(精选含答案)

冀教版八年级数学下册第二十章函数章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列曲线中,表示y 是x 的函数的是( )A .B .C .D .2、用m 元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A .y =n (100m +0.6)B .y =n (100m )+0.6C.y=n(100m+0.6) D.y=n(100m)+0.63、为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m3,打开进水口注水时,游泳池的蓄水量y(m3)与注水时间t(h)之间满足一次函数关系,其图象如图所示,下列说法错误的是:()A.该游泳池内开始注水时已经蓄水100m3B.每小时可注水190m3C.注水2小时,游泳池的蓄水量为380m3D.注水2小时,还需注水100m3,可将游泳池注满4、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为()A.30km/h B.60km/h C.70km/h D.90km/h5、下面关于函数的三种表示方法叙述错误的是( )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示6、如图,一个矩形的长比宽多3cm,矩形的面积是S cm2.设矩形的宽为x cm,当x在一定范围内变化时,S随x的变化而变化,则S与x满足的函数关系是()A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x7、下列各表达式不是表示y是x的函数的是()A .18=y xB .1y x= C .(0)y x x =≥ D .23y x =8、在函数y =x 的取值范围是( )A .3x ≠B .0x ≥C .3x ≥D .3x >9、如图1,在矩形ABCD 中,AB <BC ,AC ,BD 交于点O .点E 为线段AC 上的一个动点,连接DE ,BE ,过E 作EF ⊥BD 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( ).A .线段EFB .线段DEC .线段CED .线段BE10、根据如图所示的程序计算函数y 的值,若输入x 的值为4时,输出的y 的值为7,则输入x 的值为2时,输出的y 的值为( )A .1B .2C .4D .5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在函数y =x 的取值范围是___________.2、函数y =的自变量x 的取值范围是_______的实数.3、等腰三角形中,底角的度数用x 表示,顶角的度数用y 表示,写出y 关于x 的函数解析式 ___,函数的定义域 ___.4、在一个变化过程中,数值发生变化的量为_____.在一个变化过程中,数值始终不变的量为_____.在同一个变化过程中,理解变量与常量的关键词:发生_____和始终不变.5、在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是________,y 是x 的________.三、解答题(5小题,每小题10分,共计50分)1、在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y (cm )与所挂物体质量x (kg )有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm .)(1)有下列说法:①x 与y 都是变量,且x 是自变量,y 是x 的函数;②所挂物体质量为6kg 时,弹簧伸长了3cm ;③弹簧不挂重物时的长度为6cm ;④物体质量每增加1kg ,弹簧长度y 增加0.5cm .上述说法中错误的是 (填序号)(2)请写出弹簧长度y (cm )与所挂物体质量x (kg )之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg 时,弹簧长度是多少?(4)当弹簧长度为20cm 时,求所挂物体的质量.2、如果用c 表示摄氏温度(℃),f 表示华氏温度(F ︒),则c 和f 之间的关系是:5(32) 9c f =-.某日伦敦和纽约的最高气温分别为72F ︒和88F ︒,请把它们换算成摄氏温度.3、植物呼吸作用受温度影响很大,观察如图,回答问题:(1)此图反映的自变量和因变量分别是什么?(2)温度在什么范围内时豌豆苗的呼吸强度逐渐变强?在什么范围内逐渐减弱?(3)要使豌豆呼吸作用最强,应控制在什么温度左右?4、在计算器上按下面的程序操作:填表:显示的计算结果y是输入数值x的函数吗?为什么?5、如图,已知△ABC中,∠C=90°,AC=5cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P 从点A开始沿AC运动,且速度为每秒1cm,点Q从点C开始沿CB运动,且速度为每秒2cm,其中一个点到达端点,另一个点也随之停止,它们同时出发,设运动的时间为t秒.(1)当t=2秒时,求PQ的长;(2)求运动时间为几秒时,△PQC是等腰三角形?(3)P、Q在运动的过程中,用含t(0<t<5)的代数式表示四边形APQB的面积.-参考答案-一、单选题1、C【解析】【分析】根据函数的定义进行判断即可.【详解】解:在某一变化过程中,有两个变量x、y,一个量x变化,另一个量y随之变化,当x每取一个值,另一个量y就有唯一值与之相对应,这时,我们把x叫做自变量,y是x的函数,只有选项C中图象所表示的符合函数的意义,故选:C.【点睛】本题考查函数的定义,理解函数的定义,理解自变量与函数值的对应关系是正确判断的前提.2、A【解析】由题意可得每本书的价格为100m 元,再根据每本书需另加邮寄费6角即可得出答案; 【详解】解:因为用m 元钱在网上书店恰好可购买100本书, 所以每本书的价格为100m 元, 又因为每本书需另加邮寄费6角,所以购买n 本书共需费用y =n (100m +0.6)元; 故选:A .【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.3、B【解析】【分析】根据图象中的数据逐项判断即可解答.【详解】解:A 、由图象可知,当t =0时,y =100,即该游泳池内开始注水时已经蓄水100m 3,正确,故选项A 不符合题意;B 、由(380-100)÷2=140(m 3),即每小时可注水140m 3,故选项B 错误,符合题意;C 、由图可知,注水2小时,游泳池的蓄水量为380m 3,正确,故选项C 不符合题意;D 、由图象可知,480-380=100(m 3),即注水2小时,还需注水100m 3,可将游泳池注满,正确,不符合题意,故选:B .本题考查一次函数的应用,能从图象中获取有效信息是解答的关键.4、B【解析】【分析】直接观察图象可得出结果.【详解】解:根据函数图象可知:t=1时,y=90;∵汽车是从距离某城市30km开始行驶的,∴该汽车行驶的速度为90-30=60km/h,故选:B.【点睛】本题主要考查了一次函数的图象,正确的识别图象是解题的关键.5、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.6、C【解析】【分析】先用x表示出矩形的长,然后根据矩形的面积公式即可解答.【详解】解:设矩形的宽为xcm,则长为(x+3)cm由题意得:S=x(x+3)=x2+3x.故选C.【点睛】本题主要考查了列函数解析式,用x表示出矩形的长以及掌握矩形的面积公式成为解答本题的关键.7、C【解析】略8、C【解析】【分析】x-≥解不等式即可得到答案.由二次根式有意义的条件,可得30,【详解】解:∵函数y=x-≥则30,x≥;∴3故选:C.本题考查了函数自变量的取值范围,二次根式有意义的条件,解题的关键是掌握被开方数大于或等于0.9、B【解析】【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】解:A、由图1可知,若线段EF是y,则y随x的增大先减小后增大,而由大变小的距离等于由小变大的距离,故此选项不符合题意;B、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故此选项符合题意;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故此选项不符合题意;D、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故此选项不符合题意;故选B.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.10、A【解析】【分析】直接利用已知运算公式公式得出b的值,进而代入求出x=3时对应的值.解:∵输入x的值是4时,输出的y的值为7,∴7=2×4+b,解得:b=-1,若输入x的值是2,则输出的y的值是:y=-1×2+3=1.故选:A.【点睛】此题主要考查了函数值,正确得出b的值是解题关键.二、填空题1、5x≥【解析】【分析】根据算术平方根的非负性即可完成.【详解】由题意,50x-≥∴5x≥故答案为:5x≥.【点睛】本题考查了求函数自变量的取值范围,关键是掌握算术平方根的非负性.2、23 x<【解析】【分析】根据分式有意义的条件,二次根式有意义的条件,列出不等式,进而可得自变量x 的取值范围.【详解】依题意230x -> 解得23x <【点睛】本题考查了函数的定义,分式有意义的条件,二次根式有意义的条件,掌握以上知识是解题的关键. 3、 1802y x =- 090x <<【解析】【分析】根据等腰三角形的性质可知两底角相等,根据三角形内角和定理即可列出函数解析式,根据角度底角和顶角都大于0,列出不等式组求得定义域.【详解】等腰三角形中,底角的度数用x 表示,顶角的度数用y 表示, 2180x y ∴+=即1802y x =-0,0y x >>180200x x ->⎧∴⎨>⎩ 解得090x <<故答案为:1802y x =-,090x <<.【点睛】本题考查了列函数解析式,一元一次不等式组的应用,等腰三角形的性质,三角形内角和定理,根据三角形内角和定理列出解析式是解题的关键.4、变量常量变化【解析】略5、自变量函数【解析】略三、解答题1、(1)③④;(2)y=0.5x+12(0≤x≤18);(3)弹簧长度是17cm;(4)所挂物体的质量为16kg.【解析】【分析】(1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度,可得答案;(2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式;(3)令x=10时,求出y的值即可;(4)令y=20时,求出x的值即可.(1)解:x与y都是变量,且x是自变量,y是x的函数,故①正确;当x=6时,y=15,当x=0时,y=12,15-12=3,故②正确,③错误;在弹性限度内,物体质量每增加1kg,弹簧长度y增加0.5cm,但是当超出弹性限度后,弹簧长度就不再增加,故④错误;故答案为:③④;(2)解:弹簧长度y (cm )与所挂物体质量x (kg )之间的关系式为y =0.5x +12,∵在弹性限度内该弹簧悬挂物体后的最大长度为21cm .∴0.5x +12≤21,解得:x ≤18,∴y =0.5x +12(0≤x ≤18);(3)解:当x =10kg 时,代入y =0.5x +12,解得y =17cm ,即弹簧长度是17cm ;(4)当y =20cm 时,代入y =0.5x +12,解得x =16,即所挂物体的质量为16kg .【点睛】本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.2、2009C ︒,2809C ︒ 【解析】【分析】分别把华氏温度代入关系式计算即可得到答案.【详解】解:将72f =代入5(32)9c f =⨯-中,解得:2009c =,将88f =代入5(32)9c f =⨯-中,解得:2809c =, 所以伦敦和纽约的温度换算成摄氏温度为:2009摄氏度,2809摄氏度. 【点睛】 本题考查了函数值的求解,将自变量的值代入函数关系式中即可,解题的关键是计算正确.3、(1)此图反映的自变量和因变量分别是温度和呼吸作用强度;(2)温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右)【解析】【分析】(1)根据函数图象即可得到结论;(2)根据图象中提供的信息即可得到结论;(3)根据图象中提供的信息即可得到结论.【详解】解:(1)此图反映的自变量是温度,因变量是呼吸作用强度;(2)由图象知,温度在0℃到35℃范围内时豌豆苗的呼吸强度逐渐变强;在35℃到50℃范围内逐渐减弱;(3)由图象知,要使豌豆呼吸作用最强,应控制在30℃到40℃左右(或者35℃左右).【点睛】本题考查了常量和变量,函数图象,正确的识别图象是解题的关键.4、7,11,3-,5,207, 5.4-,y 是x 的函数,符合函数定义.【解析】【分析】根据程序分别求出对应的y 的值,再根据函数的定义判断即可.解:当x=1时,y=1×2+5=7;当x=3时,y=3×2+5=11;当x=-4时,y=(-4)×2+5=-3;当x=0时,y=0×2+5=5;当x=101时,y=101×2+5=207;当x=-5.2时,y=3×2+5=-5.4;给出x的一个值,有唯一的y值与之对应,所以显示的计算结果y是输入数值x的函数.故答案为:7;11;-3;5;207;-5.4.【点睛】本题主要考查了函数的定义,注意:如果y是x的函数,则给出x的一个值,有唯一的y值与之对应.5、(1)PQ=5cm;(2)t=53;(3)S四边形APQB=30﹣5t+t2.【解析】【分析】(1)先分别求出CQ和CP的长,再根据勾股定理解得即可;(2)由∠C=90°可知,当△PCQ是等腰三角形时,CP=CQ,由此求解即可;(3)由S四边形APQB=S△ACB﹣S△PCQ进行求解即可.【详解】解:(1)由题意得,AP=t,PC=5﹣t,CQ=2t,∵∠C=90°,∴PQ,∴PQ5cm=,(2)∵∠C=90°,∴当CP=CQ时,△PCQ是等腰三角形,∴5﹣t=2t,解得:t=53,∴t=53秒时,△PCQ是等腰三角形;(3)由题意得:S四边形APQB=S△ACB﹣S△PCQ=1122AC CB PC CQ⋅-⋅=11512(5)2 22t t ⨯⨯-⨯-⨯=30﹣5t+t2.【点睛】本题主要考查了勾股定理,等腰三角形的定义,列函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.。

初中数学冀教版八年级下册第二十二章 四边形22.4 矩形-章节测试习题(1)

初中数学冀教版八年级下册第二十二章 四边形22.4 矩形-章节测试习题(1)

章节测试题1.【答题】如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=______度.【答案】22.5【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAC+∠OCA=2∠OAC,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA= =67.5°,∴∠BAE=∠OAB-∠OAE=22.5°.故答案为22.5.【点评】本题考查矩形的性质、等腰直角三角形的性质等知识,解题的关键是发现△AEO是等腰直角三角形这个突破口,属于中考常考题型.2.【答题】如图,将矩形ABCD沿对角线BD折叠,使点C与C′重合.若AB=3,则C′D的长为______.【答案】3【分析】根据矩形的对边相等可得CD=AB,再根据翻折变换的性质可得C′D=CD,代入数据即可得解.【解答】解:在矩形ABCD中,CD=AB,∵矩形ABCD沿对角线BD折叠后点C和点C′重合,∴C′D=CD,∴C′D=AB,∵AB=3,∴C′D=3.故答案为3.【点评】本题考查了矩形的对边相等的性质,翻折变换的性质,是基础题,熟记性质是解题的关键.3.【答题】如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是______.【答案】4【分析】根据矩形的性质得出AC=BD,OA=OC= AC,BO=DO= BD,推出OA=OC=OB=OD,根据等腰三角形的判定得出即可.【解答】∵四边形ABCD是矩形,∴AC=BD,OA=OC= AC,BO=DO= BD,∴OA=OC=OB=OD,∴等腰三角形有△OAB,△OAD,△OBC,△OCD,共4个.故答案为:4.【点评】本题考查了等腰三角形的判定,矩形的性质的应用,注意:矩形的对角线互相平分且相等,有两边相等的三角形是等腰三角形.4.【答题】如图,要使平行四边形ABCD是矩形,则∠ABC=______°.【答案】90【分析】根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.【解答】根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°.故答案为:∠ABC=90°.【点评】本题主要应用的知识点为:矩形的判定.①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.5.【答题】如图,矩形ABCD中,对角线AC、BD相交于点O,AC=6,则OD=______.【答案】3【分析】根据矩形的对角线相等,且互相平分即可求解.【解答】∵四边形ABCD是矩形,∴BD=AC=6,OD= BD=3.故答案是:3.【点评】本题考查了矩形的性质:矩形的对角线相等,且互相平分,理解性质定理是关键.6.【答题】如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,当∠B=______°时,四边形ABCD为矩形.【答案】90【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【解答】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.7.【答题】如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=______cm.【答案】9【分析】先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.【解答】解:在Rt△ABC中,AC=AB 2 +BC 2 =10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF= OD= BD= AC= 2.5cm,AF= AD= BC=4cm,AE= AO= AC= 2.5cm,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.【点评】本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质.8.【答题】如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为______度时,两条对角线长度相等.【答案】90【分析】根据矩形的判定方法即可求解.【解答】根据对角线相等的平行四边形是矩形,可以得到∠α=90°.故答案是:90°.【点评】本题考查了矩形的判定方法,理解矩形的定义是关键.9.【答题】如图,在四边形ABCD中,已知AB∥DC,AB=DC.在不添加任何辅助线的前提下,要想该四边形成为矩形,则∠A=______°.【答案】90【分析】根据平行四边形的判定先推出四边形是平行四边形,再根据矩形的定义即可得出答案.【解答】添加的条件是∠A=90°,理由是:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∵∠A=90°,∴平行四边形ABCD是矩形,故答案为:∠A=90°.【点评】本题考查了平行四边形的判定和矩形的判定的应用,能熟练地运用判定定理进行推理是解此题的关键,此题是一道比较好的题目.10.【答题】在四边形ABCD中,AB=DC,AD=BC,请再添加一个条件,使四边形ABCD是矩形.你添加的条件是______.(写出一种即可)【答案】对角线相等(答案不唯一)【分析】已知两组对边相等,如果其对角线相等可得到△ABD≌△ABC≌△ADC≌△BCD,进而得到,∠A=∠B=∠C=∠D=90°,使四边形ABCD是矩形.【解答】若四边形ABCD的对角线相等,则由AB=DC,AD=BC可得.△ABD≌△ABC≌△ADC≌△BCD,所以四边形ABCD的四个内角相等分别等于90°即直角,所以四边形ABCD是矩形,故答案为:对角线相等.【点评】此题属开放型题,考查的是矩形的判定,根据矩形的判定,关键是要得到四个内角相等即直角.11.【答题】如图,若希望平行四边形ABCD是矩形,则∠ABC=______°.【答案】90【分析】根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.【解答】根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故:∠ABC=90°.故答案为:∠ABC=90°.【点评】此题主要考查了矩形的判定定理,熟练掌握判定定理是解题的关键.12.【答题】如图,在▱ABCD中,对角线AC与BD相交于点O,在不添加任何辅助线和字母的情况下,请添加一个条件,使▱ABCD变为矩形,需添加的条件是______(写出一个即可).【答案】任意写出一个正确答案即可(如AC=BD或∠ABC=90°)【分析】矩形是特殊的平行四边形,矩形有而平行四边形不具有的性质是:矩形的对角线相等,矩形的四个内角是直角;可针对这些特点来添加条件.【解答】若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°等.(有一个角是直角的平行四边形是矩形)【点评】此题主要考查的是平行四边形的性质及矩形的判定方法,熟练掌握矩形和平行四边形的联系和区别是解答此题的关键.13.【答题】如图,四边形ABCD是平行四边形,当它为矩形时,∠BAD=______°.【答案】90【分析】根据矩形的判定定理解答,常用的有三种:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【解答】因为四边形ABCD中,AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,要判断平行四边形ABCD是矩形,根据矩形的判定定理,故:∠BAD=90°.【点评】此题是一道几何结论开放题,全面地考查了矩形的判定定理,可以大大激发学生的思考兴趣,拓展学生的思维空间,培养学生求异、求变的创新精神.14.【答题】在四边形ABCD中,对角线AC与BD互相平分,交点为O.在不添加任何辅助线的前提下,要使四边形ABCD成为矩形,还需添加一个条件,这个条件可以是______.【答案】AC=BD或者有个内角等于90度【分析】因为在四边形ABCD中,对角线AC与BD互相平分,所以四边形ABCD是平行四边形,根据矩形的判定条件,可得在不添加任何辅助线的前提下,要使四边形ABCD成为矩形,还需添加一个条件,这个条件可以是一个角是直角或者对角线相等,从而得出答案.【解答】∵对角线AC与BD互相平分,∴四边形ABCD是平行四边形,要使四边形ABCD成为矩形,需添加一个条件是:AC=BD或有个内角等于90度.故答案为:AC=BD或者有个内角等于90度.【点评】此题主要考查了矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.15.【题文】如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.(1)求证:DA⊥AE;(2)试判断AB与DE是否相等?并证明你的结论.【答案】见解答.【分析】(1)根据角平分线的性质,及∠BAC+∠BAF=180°可求出∠DAE=90°,即DA⊥AE;(2)要证AB=DE,需证四边形AEBD是矩形,由AB=AC,AD为∠BAC的角平分线,可知AD⊥BC,又因为DA⊥AE,BE⊥AE故,所以∠AEB=90°,∠DAE=90°即证四边形AEBD是矩形.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD= ∠BAC,又∵AE平分∠BAF,∴∠BAE= ∠BAF,∵∠BAC+∠BAF=180°,∴∠BAD+∠BAE= (∠BAC+∠BAF)= ×180°=90°,即∠DAE=90°,故DA⊥AE.(2)解:AB=DE.理由是:∵AB=AC,AD平分∠BAC,∴AD⊥BC,故∠ADB=90°∵BE⊥AE,∴∠AEB=90°,∠DAE=90°,故四边形AEBD是矩形.∴AB=DE.【点评】本题考查的是角平分线,等腰三角形的性质及矩形的判定定理.有一定的综合性.。

2022年冀教版八年级数学下册第十八章数据的收集与整理专题测试试题(含答案及详细解析)

2022年冀教版八年级数学下册第十八章数据的收集与整理专题测试试题(含答案及详细解析)

八年级数学下册第十八章数据的收集与整理专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明3分钟共投篮80次,进了50个球,则小明进球的频率是()A.80 B.50 C.1.6 D.0.6252、成都市2021年约有13.15万名考生参加中考,为了了解这13.15万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的有()个①这种调查采用了抽样调查的方式;②13.15万名考生是总体;③1000名考生是总体的一个样本;④每名考生的数学成绩是个体.A.0 B.2 C.3 D.43、2022年北京冬季奥运会将在2022年2月4日至20日在北京市和张家口市联合举行.要反应我国在最近五届冬季奥运会上获得奖牌总数的变化情况最好应选择()A.统计表B.条形统计图C.折线统计图D.扇形统计图4、数字“20211202”中,数字“2”出现的频数是()A.1 B.2 C.3 D.45、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易()A.一,二B.二,一C.一,一D.二,二6、某电器商城统计了近五年销售的某种品牌的电冰箱销量,为了清楚地反应该品牌销量的增减变化情况,应选择使用的统计图是()A.条形统计图B.扇形统计图C.折线统计图D.以上都可以7、紧跟2006年第十八届世界杯足球赛的步伐,师大学生也举行了足球比赛,下表是师范大学四个系举行足球单循环赛的成绩:表中成绩栏中的比为行中所有球队比赛的进球之比.如①表示中文系与数学系的比赛中,中文系以1:0获胜;②表示与①同一场比赛,数学系输给了中文系.按规定,胜一场得3分,平一场得1分,负一场得0分,按得分由多到少排名次,则此次比赛的冠军队是().A.数学系B.中文系C.教育系D.化学系8、下列调查中,最适合采用全面调查(普查)方式的是()A.对长江忠县县城段水域污染情况的调查B.对某校九年级一班学生身高情况的调查C.对某工厂出厂的灯泡使用寿命情况的调查D.对某品牌上市的化妆品质量情况的调查9、以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力B.调查某市居民日平均用水量C.调查全国春节联欢晚会的收视率D.调查某班学生的身高情况10、下列调查中,其中适合采用抽样调查的是()A.调查某班50名同学的视力情况B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况C.为保证“神舟9号”成功发射,对其零部件进行检查D.检测中卫市的空气质量第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是某广告商制作甲、乙两种酒的价格变化的折线统计图,则酒的价格增长比较快的是__________.(填“甲”或“乙”)2、为了解某市参加中考的32000名学生的体重情况,抽查了其中1600名学生的体重进行统计分析,则样品容量是____________.3、检查一箱装有2500件包装食品的质量,按2%的抽查率抽查其中一部分的质量,在这个问题中,总体是________,样本是________.4、某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是___.5、已知一个样本,27,23,25,27,29,31,27,30,32,31,28,26,27,29,28,24,26,27,28,30,以2为组距画出频数分布直方图.解:(1)计算最大值与最小值的差:______.(2)确定组数与组距:已知组距为2,则94.52=,因此定为______组(3)列频数分布表:(4)画频数分布直方图:三、解答题(5小题,每小题10分,共计50分)1、2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)表2:小静随机抽取10名学生居家减压方式统计表(单位:人)表3:小新随机抽取60名学生居家减压方式统计表(单位:人)根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.2、第31届世界大学生夏季运动会定于2022年6月26日至7月7日举办,为了了解成都市锦江区中学生对大运会的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,调查组绘制了如图两幅不完整的统计图。

冀教版八年级数学下册第22章测试题及答案

冀教版八年级数学下册第22章测试题及答案

冀教版八年级数学下册第22章测试题及答案22.1 平行四边形的性质一、选择题1.平行四边形不一定具有的性质是()A.对角线互相平分B.对边平行C.对角线互相垂直D.对边相等2.如图,在平行四边形ABCD中,对角线AC,BD交于点O,图中全等三角形有()A.5对B.4对C.3对D.2对(第2题图)(第3题图)3.如图,在平行四边形ABCD中,对角线AC,BC相交于点O,已知△BOC与△AOB的周长之差为3,平行四边形ABCD的周长为26,则BC的长度为()A.5 B.6 C.7 D.84.已知平行四边形ABCD的一条边长是5,则两条对角线的长可能是()A.6和16 B.6和6 C.5和5 D.8和185.将一张平行四边形纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法有()A.1种B.2种C.3种D.无数种6.在平行四边形ABCD中,若∠A=30°,AB边上的高为8,则BC=()A.B.C.8 D.167.在平行四边形ABCD中,∠A的平分线交BC于点E,若CD=10,AD=16,则EC为()A.10 B.16 C.6 D.138.如图,在平行四边形ABCD中,若∠A=45°,,则AB与CD之间的距离为()A B C D.3(第8题图)(第9题图)(第10题图)9.如图,在平行四边形ABCD中,已知AC=3cm,若△ABC的周长为8cm,则平行四边形的周长为()A.5cm B.10cm C.16cm D.11cm10.如图,已知在平行四边形ABCD中,AB=6,BC=4,若∠B=45°,则平行四边形ABCD的面积为()A.8 B.C.D.24二、填空题11.平行四边形的对角线_________.12.如图,在平行四边形ABCD中,对角线AC,BD交于点O,若AO=4,BO=3,则CO=______,BD=________.(第12题图)(第13题图)(第14题图)13.如图,在平行四边形ABCD中,两条对角线交于点O,有△AOB≌△_______,△AOD≌△_______.14.如图,在平行四边形ABCD中,两条对角线交于点O,若AO=2cm,△ABC的周长为13cm,则平行四边形ABCD的周长为______cm.15.在平行四边形ABCD中,对角线AC,BD交于点O,若△AOB的面积为3,则平行四边形ABCD的面积为______.16.平行四边形的两组对边分别_________.17.夹在两平行线的平行线段_______,夹在两平行线间_______相等.18.在ABCD中,若AB=3cm,AD=4cm,则它的周长为________cm.19.已知平行四边形ABCD的周长为26,若AB=5,则BC=________.20.在平行四边形ABCD中,若AB:BC=2:3,周长为30cm,则AB=______cm,BC=______cm.三、解答题21.如图,在平行四边形ABCD中,AD⊥BD,AD=4,DO=3.(1)求△COD的周长;(2)直接写出Y ABCD 的面积.(第21题图)22.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:BM∥DN.(第22题图)参考答案一、1.C 2.B 3.D 4.B 5.D 6.D 7.C 8.B 9.B 10.B二、11.互相平分12.4,8 13.COD,COB 14.18 15.12 16.相等17.相等,的垂线段18.14 19.8 20.6,9三、21.(1)(2)2422.提示:证△ABM≌△CDN,得∠BMA=∠DNC,于是∠BMN=∠DNM,所以BM∥DN.22.2 平行四边形的判定一.选择题(共6小题)1.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()(第1题图)A.6 B.12 C.20 D.242.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF 是平行四边形的有()(第2题图)A.0个B.1个C.2个D.3个3.下列说法中错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形为平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形4.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()(第4题图)A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC5.下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6.在下列条件中,不能确定四边形ABCD为平行四边形的是()A.∠A=∠C,∠B=∠DB.∠A=∠B=∠C=90°C.∠A+∠B=180°,∠B+∠C=180°D.∠A+∠B=180°,∠C+∠D=180°二.填空题(共6小题)7.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.(第7题图)8.如图,已知四边形ABCD,对角线AC,BD交于点O,AB=CD,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.(第8题图)9.将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据.(第9题图)10.如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形:④图中共有四对全等三角形.其中正确结论是(填序号)(第10题图)11.如图,AD∥BC,要使四边形ABCD成为平行四边形还需要添加的条件是(只需写出一个即可)(第11题图)12.如图,在▱ABCD中,E,F是对角线BD上的两点,要使四边形AFCE是平行四边形,则需添加的一个条件可以是.(只添加一个条件)(第12题图)三.解答题(共12小题)13.如图,点E是平行四边形ABCD边CD上的中点,AE、BC的延长线交于点F,连接DF.求证:四边形ACFD为平行四边形.(第13题图)14.在▱ABCD中,∠DAB与∠DCB的角平分线AE,CF分别与对角线BD交于点E与点F,连接AF,CE.求证:四边形AECF是平行四边形.(第14题图)15.如图,在四边形ABCD中,AC、BD相交于点O,O是AC的中点,AB∥DC,AC=10,BD=8.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求平行四边形ABCD的面积.(第15题图)参考答案一.1.D 2.B 3.B 4.C 5.C 6.D二.7.BO=DO.(答案不唯一)8.AB∥CD或AD=BC(答案不唯一)9.两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)10.①②③11.AD=BC或AB∥CD 12.BF=DE 三.13.证明:∵在▱ABCD中,AD∥BF.∴∠ADC=∠FCD.∵E为CD的中点,∴DE=CE.在△ADE和△FCE中,,∴△ADE≌△FCE(ASA)∴AD=FC.又∵AD∥FC,∴四边形ACFD是平行四边形.14.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠DAB=∠DCB,∴∠ADB=∠DBC.∵AE平分∠DAB,CF平分∠DCB,∴∠DAE=∠DAB,∠BCF=∠DCB,∴∠DAE=∠BCF,∵∠DAE=∠DCF,∠ADB=∠DBC,AD=BC. ∴△DEB≌△BFC,∴AE=CF,∠DEA=∠CFB,∴∠AEF=∠CFE,∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.15.证明:(1)∵AB∥DC,∴∠OAB=∠OCD,∠AOB=∠COD,又∵AO=CO,∴△AOB≌△COD,∴OD=OB,∴四边形ABCD是平行四边形.(2)∵AC⊥BD,∴平行四边形ABCD是菱形,∴平行四边形ABCD的面积为S=AC×BD=40.22.3 三角形的中位线一.选择题1.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()(第1题图)A.B.2 C.D.32.如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()(第2题图)A.∠ECD=112.5°B.DE平分∠FDCC.∠DEC=30°D.AB=CD3.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC的周长是()(第3题图)A.6 B.12 C.18 D.244.在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()(第4题图)A.5 B.7 C.9 D.11二.填空题5.如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是cm.(第5题图)6.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是.(第6题图)7.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC 的周长,则DE的长是.(第7题图)8.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件,使△BED与△FDE全等.(第8题图)9.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.(第9题图)10.如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE 的面积是.(第10题图)三.解答题(共12小题)11.如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.(第11题图)12.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).(第12题图)13.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.(第13题图)14.如图,在Rt△ABC中,∠C=90°(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点,(保留作图痕迹,不写作法)(2)若AC=6,AB=10,连接CD,则DE=,CD=.(第14题图)15.观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:(第15题图)当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?16.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.(第16题图)参考答案一.1.C 2.C 3.B 4.B二.5.3 6.18 7.8.D是BC的中点9.40°10.6三.11.解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.(第11题答图)(2)∵AD=DB,AE=EC,∴DE∥BC,DE=BC,∵DE=4,∴BC=8.12.证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵EM∥CG,∴=,∵BM=CM,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).(第12题答图)13.(1)证明:∵AN平分∠BAC∴∠1=∠2∵BN⊥AN∴∠ANB=∠AND=90°在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.14.解:(1)如答图.(第14题答图)(2)∵DE是△ABC的中位线,∴DE=AC,∵AC=6,∴DE=3,∵AB=10,CD是Rt△斜边上的中线等于斜边的一半,∴CD=5.15.(1)证明:连接BD,如答图.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)填空依次为平行四边形,菱形,矩形,正方形;(3)中点四边形的形状是由原四边形的对角线的关系决定的.(第15题答图)16.解:(1)FH与FC的数量关系是FH=FC.证明如下:延长DF交AB于点G.由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.(第16题答图)22.4 矩形一.选择题1.如图,将矩形纸片ABCD折叠,使顶点B落在边AD的E点上,折痕FG交BC于G.交AB于F,若∠AEF=30°,则∠FGB的度数为()(第1题图)A.25°B.30°C.35°D.40°2.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,BO=4,则矩形的边BC的长是()(第2题图)A.6 B.8 C.6D.43.下列说法正确的是()A.平行四边形对角线相等B.矩形的对角线互相垂直C.菱形的四个角都相等D.菱形的对角线互相垂直平分且平分一组对角4.如图,在矩形ABCD中,M是BC边上一点,连接AM,DM.过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为()(第4题图)A.1 B.C.D.5.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角6.矩形具有下列性质()A.对角线相互垂直B.对角线相等C.一条对角线平分一组对角D.面积等于两条对角线乘积的一半7.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是()(第7题图)A.B.C.D.不确定8.如图,在矩形ABCD中,对角线AC,BD交于点E,DF⊥AC于F点,若∠ADF=3∠FDC,则∠DEC 的度数是()(第8题图)A.30°B.45°C.50°D.55°9.检查一个门框(已知两组对边分别相等)是不是矩形,可用的方法是()A.测量两条对角线是否相等B.用重锤线检查竖门框是否与地面垂直C.测量两条对角线是否互相平分D.用曲尺测量两条对角线是否互相垂直10.如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是()(第10题图)A.若BG∥CH,则四边形BHCG为矩形B.若BE=CE时,四边形BHCG为矩形C.若HE=CE,则四边形BHCG为平行四边形D.若CH=3,CG=4,则CE=2.511.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()(第11题图)A.3 B.C.D.4二.解答题12.如图,DB∥AC,DE∥BC,DE与AB交于点F,E是AC的中点.(1)求证:F是AB的中点;(2)若要使DBEA是矩形,则需给△ABC添加什么条件?并说明理由.(第12题图)13.如图,在▱ABCD中,AC=8,BD=12,点E、F在对角线BD上,点E从点B出发以1个单位每秒的速度向点D运动,同时点F从点D出发以相同速度向点B运动,到端点时运动停止,运动时间为t秒.(1)求证:四边形AECF为平行四边形.(2)求t为何值时,四边形AECF为矩形.(第13题图)14.如图,平行四边形ABCD中,AC,BD相交于点O,EF⊥BD于点O,EF分别交AD,BC于点E,F.且AE=EO=DE,那么平行四边形ABCD是否是矩形,为什么?(第14题图)参考答案一.1.B 2.D 3.D 4.D 5.C 6.B 7.C 8.B 9.B 10.C11.C二.12.证明:(1)∵DE∥BC,BD∥AC∴四边形DBCE是平行四边形∴DB=EC,∵E是AC中点∴AE=EC∵AE=EC,AC∥DB∴四边形ADBE是平行四边形∴AF=BF,即F是AB中点.(2)添加AB=BC∵AB=BC,AE=EC∴BE⊥AC∴平行四边形DBEA是矩形.13.证明:在▱ABCD中,∵AD∥BC,AD=BC,∴∠EBC=∠ADF,由题意知,BE=DF,在△BEC与△DFC中,,∴△BEC≌△DFC(SAS),∴CE=AF,同理可得AE=CF,∴四边形AECF为平行四边形;(2)当t=2或t=10时以点A,C,E,F为顶点的四边形为矩形;(第13题答图)理由:由矩形的性质知OE=OF、OA=OC,要使∠EAF是直角,只需OE=OF=OA=AC=4cm.则∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°即∠EDF=90°.此时BE=DF=(BD﹣EF)=(12﹣8)=2cm或BE=DF=12﹣2=10cm14.解:平行四边形ABCD是矩形.如图所示,取DE的中点G,连接OG,∵EF⊥BD,∴Rt△DOE中,OG=DE=EG=DG,∵AE=EO=DE,∴EO=OG=EG,∴△OEG是等边三角形,∴∠AEO=∠DGO=120°,又∵AE=DG,OE=OG,∴△AOE≌△DOG,∴AO=DO,又∵四边形ABCD是平行四边形,∴AC=2AO=2DO=BD,∴平行四边形ABCD是矩形.(第14题答图)22.5 菱形一.选择题(共6小题)1.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()(第1题图)A.8 B.7 C.4 D.32.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()(第2题图)A.24 B.18 C.12 D.93.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()(第3题图)A.20 B.24 C.40 D.484.如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()(第4题图)A.52 B.48 C.40 D.205.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形二.填空题6.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.(第6题图)7.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.(第7题图)8.如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于.(第8题图)9.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为.(第9题图)10.已知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是.三.解答题(共11小题)11.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.(第11题图)12.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.(第12题图)13.如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.(第13题图)14.如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.(第14题图)15.如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.(第15题图)参考答案一.1.A 2.A 3.A 4.A 5.B二.6.7.3 8.27 9.(2,﹣3)10.2.三.11.解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=212.(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.13.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.14.(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AF+FC=CD+FC,即AC=DF,∵AB=DE,∴△ABC≌△DEF.(2)如图,连接EB交AD于O.在Rt△EFD中,∵∠DEF=90°,EF=3,DE=4,∴DF==5,∵四边形EFBC是菱形,∴BE⊥CF,∴EO==,∴OF=OC==,∴CF=,∴AF=CD=DF﹣FC=5﹣=.15.证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,,∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,∴四边形BFDE为菱形.22.6 正方形一.选择题(共5小题)1.如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()(第1题图)A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)2.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形3.下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等4.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()(第4题图)A.B.2C.2 D.15.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()(第5题图)A.16 B.17 C.18 D.19二.填空题(共3小题)6.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.(第6题图)7.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).(第8题图)三.解答题(共4小题)9.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.(第9题图)10.如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.(第10题图)11.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD是正方形.(第11题图)12.如图,E是正方形ABCD对角线BD上的一点,求证:AE=CE.(第12题图)参考答案一.1.B 2.C 3.D 4.B 5.B二.6.(﹣1,)7.①③④8.①②④三.9.(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.10.(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,AD=AB,在△DAF和△ABE中,,∴△DAF≌△ABE(SAS),(2)由(1)知,△DAF≌△ABE,∴∠ADF=∠BAE,∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°,∴∠AOD=180°﹣(∠ADF+DAO)=90°.11.解:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,∵△AEF是等边三角形,∴AE=AF,∠AEF=∠AFE=60°,∵∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°﹣45°﹣60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD,∴矩形ABCD是正方形.12.证明:∵四边形ABCD是正方形,∴AB=CB,∠ABE=∠CBE,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE.22.7 多边形的内角和与外角和一.选择题1.一个正多边形的每一个外角都等于30°,则这个多边形的边数是()A.6 B.8 C.9 D.122.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α﹣5的值是()(第2题图)A.35°B.40°C.50°D.不存在3.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=()(第3题图)A.∠A+∠D﹣45°B.(∠A+∠D)+45°C.180°﹣(∠A+∠D)D.∠A+∠D4.如图,五边形ABCDE中,AE∥BC,则∠C+∠D+∠E的度数为()(第4题图)A.180°B.270°C.360°D.450°5.一个多边形的内角和等于360°,它是()A.四边形B.五边形C.六边形D.七边形6.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是()A.六边形B.八边形C.正六边形D.正八边形7.下列角度中,不能成为多边形内角和的是()A.460°B.540°C.900°D.1260°8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°9.若一个多边形的外角和与它的内角和相等,则这个多边形是()边形.A.三B.四C.五D.六10.四边形的四个内角可以都是()A.锐角B.直角C.钝角D.以上答案都不对二.11.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.小明一共走了米?这个多边形的内角和是度?(第11题图)12.一个正多边形的每个内角等于108°,则它的边数是.13.在图中,x的值为.(第13题图)14.如图,∠1+∠2+∠3+∠4+∠5+∠6=.(第14题图15.如图所示是三个边长相等的正多边形拼成的无缝隙、不重叠的图形的一部分,正多边形①和②的内角都是108°,则正多边形③的边数是.(第15题图)三.解答题(共3小题)16.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?(第16题图)17.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.(第17题图)18.解答题:(第18题图)(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE 的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)(作图2分,写出结果)参考答案一.1.D 2.A 3.D 4.C 5.A 6.B 7.A 8.C 9.B 10.B 二.11.120;3960 12.五13.135 14.360°15.10三.16.解:如答图.由三角形的外角性质,得∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.(第16题答图)17.解:(1)如答图.(第17题答图)∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=∠ABC=25°.∴∠2=∠3=25°.∵在△CFE中,∠CFE+∠2+∠C=180°(三角形内角和定理),∠C=70°,∴∠CFE=85°.18.解:(1)如答图1中,结论:2∠P=∠A.(第18题答图)理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)①如答图2中,解法一:由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得,∠DCE=∠A+∠D+∠ABC,∠PCE=∠P+∠PBC,∵BP、CP分别是∠ABC和∠DCE的平分线,∴∠PBC=∠ABC,∠PCE=∠DCE,∴∠P+∠PBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠P=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠P=(α+β)﹣90°;解法二:延长BA交CD的延长线于点F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知,∠P=∠F,∴∠P=(α+β)﹣90°;②如图3,延长AB交DC的延长线于F.∵∠F=180°﹣α﹣β,∠P=∠F,∴∠P=(180°﹣α﹣β)=90°﹣α﹣β。

最新冀教版八年级数学下册单元测试题及答案全套

最新冀教版八年级数学下册单元测试题及答案全套

最新冀教版八年级数学下册单元测试题及答案全套第十八章测试题时间:120分钟满分:120分班级:________ 姓名:________ 得分:________一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列调查中,适宜采用普查的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人民的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况2.西柏坡是我国著名的红色旅游胜地,如果用统计图表示2017年“十一”黄金周期间西柏坡地区的气温变化情况,应利用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图3.某新品种葡萄试验基地种植了10亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随机抽查了4株葡萄,在这个统计工作中,4株葡萄的单株产量是()A.总体B.总体中的一个样本C.样本容量D.个体4.下列调查的样本选取方式,最具有代表性的是()A.在青少年中调查年度最受欢迎的男歌手B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查D.对某市的出租车司机进行体检,以此反映该市市民的健康状况5.如图是P,Q两国2016年财政经费支出情况的扇形统计图.根据统计图,下面对两国全年教育经费支出判断正确的是()A.P国比Q国多B.Q国比P国多C.P国与Q国一样多D.无法确定哪国多第5题图第6题图6.如图,某实验中学制作了学生选择象棋、曲艺、园艺、制陶四门业余课程情况的扇形统计图,从中可以看出选择制陶的学生占()A.25% B.30%C.35% D.40%7.用频数分布直方图描述数据,下列说法正确的是()A.所分的组数与数据的个数无关B.长方形的高越高,说明落在这个区域的数据越多C.可以不求最大值和最小值的差D.可以看出数据的变化趋势8.如图,小明用条形统计图记录某地汛期一个星期的降雨量,如果日降雨量在25mm及以上为大雨,那么这个星期下大雨的天数为()A.3天B.4天C.5天D.6天第8题图第10题图9.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频率为()A.0.04 B.0.5 C.0.45 D.0.410.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是() A.第一天B.第二天C.第三天D.第四天11.某单位在植树节派出50名员工植树造林,统计每个人植树的棵数之后,绘制成如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵以上(包含7棵)的人数占总人数的() A.40% B.70% C.76% D.96%第11题图第12题图12.某中学各年级人数如图所示,根据图中的信息,下列结论不正确的是()A.七、八年级的人数相同B.九年级的人数最少C.女生人数多于男生人数D.女生人数少于男生人数13.如图是某班全体学生到校时乘车、步行、骑车人数的频数分布直方图和扇形统计图(两图都不完整),则下列结论中错误的是()A.该班总人数为50人B.步行人数为30人C.骑车人数占总人数的20%D.乘车人数是骑车人数的2.5倍14.(2016·迁安期中)嘉嘉将100个数据分成①~⑧组,如下表所示,则第⑤组的频率为()组号①②③④⑤⑥⑦⑧频数38152218149A.11 B.12 C.0.11 D.0.1215.某市统计局统计了2017年第一季度每月人均GDP的增长情况,并绘制了如图所示的统计图.下列结论:①1月份的人均GDP增长率最高;②2月份的人均GDP比1月份低;③这三个月的人均GDP都在增长.其中正确的是()A.①②③B.①②C.①③D.②③16.如图是某手机店1~4月份各月手机销售总额统计图与三星手机销售额占该手机店当月手机销售总额的百分比统计图.根据图中信息,下列结论正确的为()A.4月份三星手机销售额为65万元B.4月份三星手机销售额比3月份有所上升C.4月份三星手机销售额比3月份有所下降D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.为了解一批保温瓶的保温性能,从中抽取了10只保温瓶进行试验.在这个问题中,样本是______________________.18.第十二届全国人大常委会第二十九次会议审议通过的《中华人民共和国国歌法》将于2017年10月1日正式实施.为了解居民对国歌法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对国歌法“非常清楚”的居民约有________人.第18题图第19题图19.为了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为________,参加这次测试的学生有________人.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)下列调查中,哪些适合抽样调查?哪些适合全面调查?(1)工厂准备对一批即将出厂的饮料中含有细菌总数的情况进行调查;(2)小明准备对全班同学所喜爱的球类运动的情况进行调查;(3)某农田保护区对区内的水稻秧苗的高度进行调查.21.(9分)2017年某市城市居民年龄状况调查中,青少年、成年人、老年人的人数比为3:4:3.在所抽取的样本中,青少年的人数为450人,那么这个样本的容量是多少?22.(9分)在对某地区的一次人口抽样统计分析中,各年龄段(年龄为整数)的人数如下表所示.请根据此表回答下列问题:(2)哪个年龄段的人数最多?哪个年龄段的人数最少?(3)年龄在60岁以上(含60岁)的频数是多少?所占百分比是多少?23.(9分)(2016·沧州模拟)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沧州——我最喜爱的沧州小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:调查问卷在下面四种沧州小吃中,你最喜爱的是()(单选)A.泊头老豆腐B.羊肠子C.连镇烧鸡D.油酥烧饼请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“泊头老豆腐”的同学有多少人?24.(10分)“校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小.25.(11分)某市实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了________名同学,其中C类女生有________名,D类男生有________名;(2)将下面的条形统计图补充完整.26.(12分)为弘扬中华传统文化,某校组织八年级1000名学生参加汉字听写大赛,为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,请根据尚未完成的下列图表,解答问题:(1)本次抽样调查的样本是__________________,样本容量为________,表中m=________,n=________;(2)补全频数分布直方图;(3)若抽取的样本具有较好的代表性,且成绩超过80分为优秀,根据样本估计该校八年级学生中汉字听写能力优秀的约有多少人?参考答案与解析1.C 2.C 3.B 4.B 5.D 6.B7.B8.B9.D10.B11.C12.D13.B14.C15.C16.B17.10只保温瓶的保温性能18.270019.1050解析:总数是5÷0.1=50(人),则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,即第四小组的频数为10,参加这次测试的学生有50人.20.解:(1)适合抽样调查.(3分)(2)适合普查.(6分)(3)适合抽样调查.(8分)21.解:450÷33+4+3=1500.(7分)答:这个样本的容量是1500.(9分)22.解:(1)共调查了9+11+17+18+17+12+8+6+2=100(人).(3分)(2)人数最多的年龄段是30岁~39岁,人数最少的年龄段是80岁~89岁.(6分)(3)年龄在60岁以上(含60岁)的人数是8+6+2=16(人),(8分)即频数是16,所占百分比为16%.(9分)23.解:(1)根据题意得喜欢“连镇烧鸡”人数为50-(14+21+5)=10(人),(2分)补图略.(5分) (2)根据题意得2000×1450=560(人),则估计全校同学中最喜爱“泊头老豆腐”的同学有560人.(9分)24.解:(1)60(2分)(2)“了解”的学生人数为60-10-15-30=5(名),(4分)补全折线统计图如图所示.(7分)“基本了解”部分所对应的扇形圆心角是360°×1560=90°.(10分)25.解:(1)20 2 1(6分) (2)补图略.(11分)26.解:(1)抽取的200名学生的汉字听写成绩 200 80 0.12(4分) (2)补全的频数分布直方图如图所示.(8分)(3)∵抽取的样本具有较好的代表性,∴样本中80分以上的频率即为该校八年级学生中汉字听写成绩80分以上的频率.(10分)∵样本中成绩在80.5~90.5内的频率是0.4,成绩在90.5~100.5内的频率是0.12,∴该校八年级学生中汉字听写能力优秀的人数为1000×(0.4+0.12)=520(人).(12分)第十九章测试题时间:120分钟 满分:120分班级:________ 姓名:________ 得分:________一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表示物体位置的方法中,不正确的是( ) A .小林在教室的第1排从右数第3列的位置B .我国首都北京的位置是东经116.4°,北纬39.9°C .黄骅港在沧州市的北偏东70°,距离沧州市80km 处D .信誉楼在胜利大街上2.(2016·广东中考)在平面直角坐标系中,点P(-2,-3)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是( ) A .(1,3) B .(2,2) C .(2,4) D .(3,3)4.平面直角坐标系内的点A(-1,2)与点B(-1,-2)的位置关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.无法确定5.已知点A(n,2),B(-3,m),如果线段AB与y轴垂直,则()A.m=2 B.n=-3C.m=2且n≠-3 D.n=-3且m≠26.在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为() A.15 B.7.5 C.6 D.37.如图,在边长为1的正方形网格中,将△ABC向右平移2个单位长度得到△A′B′C′,则与点B′关于x轴对称的点的坐标是()A.(0,-1)B.(1,1)C.(2,-1)D.(1,-2)8.在坐标平面内,将点A(0,0)、B(2,4)、C(3,0)、D(5,4)、E(6,0)顺次连接起来,此图形是英文字母()A.V B.E C.W D.M9.生态园位于县城东北方向5公里处,如图表示准确的是()10.小明住在学校正东方向200米处,从小明家出发向北走150米就到了李华家.若选取李华家为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,则学校的坐标为() A.(-150,-200) B.(-200,-150) C.(0,-50) D.(-150,200)11.(2017·邢台县期中)如图,在5×4的方格纸中,每个小正方形的边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有() A.2个B.3个C.4个D.5个第11题图第13题图12.若点A(a+2,b-1)在第二象限,则点B(-a,b-1)在()A.第一象限B.第二象限C.第三象限D.第四象限13.(2016·哈尔滨中考)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里14.在平面直角坐标系中,把△ABC 的各顶点的横坐标都除以14,纵坐标都乘13,得到△DEF ,把△DEF与△ABC 相比,下列说法中正确的是( )A .横向扩大为原来的4倍,纵向缩小为原来的13B .横向缩小为原来的14,纵向扩大为原来的3倍C .△DEF 的面积为△ABC 面积的12倍D .△DEF 的面积为△ABC 面积的11215.(2017·邢台县期中)在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2)16.在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P 1,再将点P 1绕原点旋转90°得到点P 2,则点P 2的坐标是( )A .(3,-3)B .(-3,3)C .(3,3)或(-3,-3)D .(3,-3)或(-3,3)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(2017·定州市期中)若点P(m +3,m +1)在x 轴上,则点P 的坐标为________.18.同学们玩过五子棋吗?它的比赛规则是只要同色五子先成一条直线就算胜.如图是两人玩的一盘棋,若的位置是(1,-5),的位置是(2,-4),现轮到黑棋走,你认为黑棋放在________位置就获得胜利了.第18题图 第19题图19.如图,将边长为2的等边三角形沿x 轴正方向连续翻折2016次,依次得到点P 1,P 2,P 3,…,P 2016,则点P 1的坐标是________,点P 2016的坐标是________.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)在平面直角坐标系中,已知点P 的坐标为(2a +6,a -3). (1)当点P 的坐标为(4,-4)时,求a 的值; (2)若点P 在第四象限,求a 的取值范围.21.(9分)如图是中国象棋棋盘的一部分,棋盘中“马”所在的位置用(2,3)表示.(1)图中“象”的位置可表示为____________;(2)根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角;“象”只能从“田”字的一角走到与它相对的另一角.请按此规则分别写出“马”和“象”下一步可以到达的位置.22.(9分)如图是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)学校、商场和停车场分别在小明家的什么方位?(3)如果学校距离小明家400m,那么商场和停车场分别距离小明家多远?23.(9分)如图,四边形ABCD是边长为4的正方形,在正方形的一个角上剪去长方形CEFG,其中E,G分别是边CD,BC上的点,且CE=3,CG=2,剩余部分是六边形ABGFED,请你建立适当的直角坐标系求六边形ABGFED各顶点的坐标.24.(10分)△ABC与△A′B′C′在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A′________;B′________;C′________;(2)说明△A′B′C′由△ABC经过怎样的平移得到;(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为________;(4)求△ABC的面积.25.(11分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a、b满足a-4+|b-6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O→C→B→A→O的线路移动.(1)a=________,b=________,点B的坐标为________;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.26.(12分)已知△ABC是等腰直角三角形,AB=2,把△ABC沿直线BC向右平移得到△DEF.如果E是BC的中点,AC与DE交于P点,以直线BC为x轴,点E为原点建立直角坐标系.(1)求△ABC与△DEF的顶点坐标;(2)判断△PEC的形状;(3)求△PEC的面积.参考答案与解析1.D 2.C 3.C 4.B 5.C 6.D 7.D 8.D 9.B 10.B 11.B 12.A 13.D 14.A15.B 解析:如图,设完成指令后的位置为A ,作AB ⊥x 轴,垂足为B, 则∠BAO =30°,OA =4,在Rt △AOB 中,OB =12OA =2,AB =AO 2-BO 2=23,∴A (-2,-23),故选B.16.D 解析:∵把点P (-5,3)向右平移8个单位得到点P 1,∴点P 1的坐标为(3,3).若将点P 1绕原点逆时针旋转90°得到点P 2,则其坐标为(-3,3);若将点P 1绕原点顺时针旋转90°得到点P 2,则其坐标为(3,-3),故点P 2坐标为(3,-3)或(-3,3),故选D.17.(2,0) 18.(2,0)或(7,-5) 19.(1,3) (4031,3) 解析:∵等边三角形的边长为2,∴P 1(1,3),而P 1P 2=P 2P 3=2,∴P 2(3,3),P 3(5,3),依此类推,P n (1+2n -2,3),即P n (2n -1,3).当n =2016时,P 2016的坐标是(4031,3).20.解:(1)∵点P 的坐标为(4,-4),∴⎩⎪⎨⎪⎧2a +6=4,a -3=-4,解得a =-1.(3分)(2)∵点P (2a +6,a -3)在第四象限,∴⎩⎪⎨⎪⎧2a +6>0,a -3<0,(5分)解得-3<a <3.(8分)21.解:(1)(5,3)(3分)步可到达的位置有(3,1),(7,1),(3,5),(7,5).(9分)22.解:(1)∵点C 为OP 的中点,∴OC =12OP =12×4=2(cm).(2分)∴OC =OA ,即距小明家距离相同的是学校和公园.(3分)(2)学校在小明家北偏东45°方向,商场在小明家北偏西30°方向,停车场在小明家南偏东60°方向.(6分)(3)图上1cm 表示400÷2=200(m),商场距离小明家2.5×200=500(m),停车场距离小明家4×200=800(m).(9分)23.解:分别以边AB ,AD 所在的直线为坐标轴,建立直角坐标系,如图所示.(3分)∵点A 是原点,∴A (0,0).∵点B ,D 分别在x 轴、y 轴上,且AB =AD =4,∴B (4,0),D (0,4).(5分)∵点D ,E 的纵坐标相等,且DE =CD -CE =1,∴E (1,4).(6分)∵点B ,G 的横坐标相等,且BG =BC -CG =2,∴G (4,2).(7分)∵点F 与点E 的横坐标相等,与点G 的纵坐标相等,∴F (1,2).(8分)综上所述,六边形ABGFED 各顶点的坐标分别为A (0,0),B (4,0),G (4,2),F (1,2),E (1,4),D (0,4).(答案不唯一)(9分)24.解:(1)(-3,1) (-2,-2) (-1,-1)(3分)(2)△ABC 先向左平移4个单位,再向下平移2个单位得到△A ′B ′C ′.(5分) (3)(a -4,b -2)(7分)(4)S △ABC =2×3-12×2×2-12×1×3-12×1×1=2.(10分)25.解:(1)4 6 (4,6)(3分)(2)∵点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动,∴2×4=8.∵OA =4,OC =6,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是8-6=2,(6分)∴点P 的坐标是(2,6).(7分)(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况:第一种情况,当点P 在OC 上时,点P 移动的时间是5÷2=2.5(秒);(9分)第二种情况,当点P 在BA 上时,点P 移动的时间是(6+4+1)÷2=5.5(秒).故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.(11分)26.解:(1)连接AE ,CD .∵△ABC 是等腰直角三角形,E 是BC 的中点,∴AE ⊥BC ,∴AE 2+CE 2=2CE 2=AC 2,∴CE =22AC .(2分)又∵△DEF 是由△ABC 平移得到的,∴CE =AE =BE =CF =CD =22AC =22×2=1,EF =2CE =2.(4分)∴A (0,1),B (-1,0),C (1,0),D (1,1),E (0,0),F (2,0).(5分) (2)根据平移的性质,可知DE ∥AB ,∴∠PEC =∠B =45°,∠EPC =∠A =90°,∴△PEC 是等腰直角三角形.(9分)(3)S △PEC =12PC ·PE =12PC 2=12×12CE 2=14.(12分)第二十章 函数班级:________ 姓名:________ 得分:________一、选择题(每小题4分,共40分)1.星期天小丽为加班的妈妈烧了一壶水,水壶里水的温度随时间的变化而变化,在这个变化过程中,变量是()A.水壶的容量B.水的温度C.烧水的方式D.水的温度和烧水的时间2.下列关系式中,y不是x的函数的是()A.y=2x B.y=x2 C.y=±x D.y=x-23.(2016·秦皇岛卢龙县期末)学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()4.长方形的周长为24cm,其中一边长为x cm(x>0),面积为y cm2,则y与x的关系式可以写为() A.y=x2B.y=(12-x)2C.y=(12-x)·x D.y=2(12-x)5.已知两个变量x和y则y与x之间的函数关系式可能是()A.y=x B.y=2x+1 C.y=x2+x+1 D.y=3x6.小强骑自行车去郊游,9时出发,15时返回.如图表示他离家的路程y(千米)与相应的时刻x(时)之间的函数关系的图像.根据图像可知小强14时离家的路程是()A.13千米B.14千米C.15千米D.16千米第6题图第7题图7.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图像如图所示.根据图像信息,下列说法正确的是()A.乙比甲晚出发1h B.甲比乙晚到B地3hC.甲的速度是4km/h D.乙的速度是10km/h8.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状大致是下列的()9.在△ABC中,AB=AC,设∠A的度数为x,∠B的外角的度数为y,则y与x的函数关系式与x 的取值范围分别是()A.y=90°+12x,0<x<90° B.y=90°+12x,0<x<180°C.y=180°-x,0<x<90° D.y=90°+x,0<x<180°10.(2016·唐山古冶区模拟)甲、乙两人在操场上赛跑,他们赛跑的路程s(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行的是1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点第10题图第12题图二、填空题(每小题4分,共16分)11.(2016·绥化中考)函数y=12x-1中自变量x的取值范围是________.12.根据图中的程序,当输入x=2时,输出结果y=________.13.小李驾驶汽车以50千米/时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程y(千米)与行驶时间t(小时)的函数图像大致如图所示,则接电话后小李的行驶速度为________千米/时.第13题图第14题图14.甲、乙两人在一段长为1200m的笔直路上匀速跑步,甲、乙的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100m处.若同时起跑,甲、乙两人在从起跑至其中一人先到达终点的过程中,他们之间的距离y(m)与时间t(s)的函数图像如图所示.则t1=________s,y2=________m.三、解答题(本大题有5个小题,共44分)15.(8分)某工程队维修一段长60千米的高速公路,已知该工程队每天修4千米,修了x天,还剩余y千米.(1)写出y与x的函数关系式,并指出自变量x的取值范围;(2)用描点法画出这个函数的图像(要求描出的点不少于6个).16.(8分)某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图像回答问题:(1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?(2)第三天12时这头骆驼的体温约是多少?17.(9分)某公司销售人员的个人月收入由两部分组成,即基本工资与销售奖金,已知个人月收入y(元)与其每月的销售量x(百件)之间的函数关系如图所示.(1)求销售奖金为每百件多少元;(2)如果某月小王的销售量为3百件,求小王该月的收入.18.(9分)已知点P(x,y)是第一象限内的点,且x+y=8,点A的坐标为(10,0).设△OAP的面积为S.求S与x的函数关系式,并写出自变量x的取值范围;19.(10分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的进度均保持不变).储运部库存物资w(吨)与时间t(小时)之间的函数关系如图所示,请问这批物资从开始调进到全部调出需要多长时间?参考答案与解析1.D 2.C 3.A 4.C 5.B 6.C 7.A 8.B 9.B10.C 解析:从图像可以看出,甲、乙两人进行1000米赛跑,选项A 正确;甲先慢后快,乙先快后慢,选项B 正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,选项C 不正确;甲先到达终点,选项D 正确,故选C.11.x >1212.2 13.5814.50 300 解析:当y =0时,6t =4t +100,解得t =50,即t 1=50.当0≤t <50时,甲在乙的前面,∴y =4t +100-6t =-2t +100,1200÷6=200(s);当50<t ≤200时,乙在甲的前面,∴y =6t -(4t +100)=2t -100;当t =200时,y 2=2×200-100=300.(2)y60504030201016.解:(1)第一天中,从4时到16时这头骆驼的体温是上升的,(2分)它的体温从最低上升到最高需要12小时.(5分)(2)第三天12时这头骆驼的体温约是38.5℃.(8分)17.解:(1)(4500-3500)÷(2-1)=1000(元/百件),即销售奖金为每百件1000元.(4分) (2)设销售人员的基本工资为x 元,则x +1000=3500,解得x =2500.(6分)则2500+3×1000=5500(元). 答:小王该月的收入为5500元.(9分)18.解:∵P (x ,y )在第一象限内,∴x >0,y >0.(1分)作PM ⊥OA 于M ,则PM =y .(3分)∵x +y =8,∴y =8-x ,∴S =12OA ·PM =12×10(8-x ),即S =40-5x ,(7分)x 的取值范围是0<x <8.(9分)19.解:根据函数图像可知,调进物资的速度为302=15(吨/时),调出物资的速度为30-102+15=25(吨/时).(4分)4小时后剩余物资10吨,还需调出时间为1025=0.4(小时),(7分)则4+0.4=4.4(小时).(9分)答:这批物资从调进到全部调出需要的时间为4.4小时.(10分)第二十一章 一次函数时间:120分钟 满分:120分班级:________ 姓名:________ 得分:________一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,y 是x 的一次函数的是( )A .y =2x -1 B .y =12x 2 C .y =1 D .y =1-x2.下列四个点中,在正比例函数y =-25x 的图像上的点是( )A .(2,5)B .(5,2)C .(2,-5)D .(5,-2)3.对于函数y =-12x +3,下列说法:①函数图像经过点(2,2);②y 随着x 的增大而减小;③函数图像与x 轴的交点是(6,0);④函数图像与坐标轴围成的三角形面积是9.其中正确的有( )A .1个B .2个C .3个D .4个4.(2016·秦皇岛期末)一次函数y =kx +b 的图像经过(1,1),(2,-4)两点,则k 与b 的值为( )A .⎩⎪⎨⎪⎧k =3,b =-2B .⎩⎪⎨⎪⎧k =-3,b =4C .⎩⎪⎨⎪⎧k =-5,b =6D .⎩⎪⎨⎪⎧k =6,b =-5A .-3B .3C .-9D .96.(2017·沧州南皮县期中)若函数y =(a +3)x +b -2的图像与x 轴交于正半轴,与y 轴交于负半轴,则( )A .a >-3,b >2B .a <-3,b <2C .a >-3,b <2D .a <-3,b >27.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图像如图所示,则关于x 的不等式k 1x +b >k 2x 的解集为( )A .x >-1B .x <-1C .x <-2D .x >-2第7题图 第8题图8.如图,一次函数y =2x 和y =ax +4的图像相交于点A(m ,3),则方程ax +4=0的解为( ) A .x =6 B .x =3 C .x =-6 D .x =-39.在同一直角坐标系中,一次函数y =kx +k 与正比例函数y =kx 的图像可能是( )10.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( )A .1<m <7B .3<m <4C .m >1D .m <411.如图,点A ,B ,C 在一次函数y =-2x +m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积和是( )A .1B .3C .3(m -1)D .32(m -2)第11题图 第12题图12.由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间t(天)与蓄水量V(万立方米)之间的函数关系图像如图所示,则V 与t 的函数关系式为( )A .无法确定B .V =1200+20t(0≤t ≤60)13.(河北中考)已知一次函数y =kx +b ,如果3≤x ≤4时,3≤y ≤6,则bk的值是( )A .2B .5C .2或-5D .-2或-514.某通讯公司提供了两种移动电话的收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟.其中,正确的是( )A .①②B .③④C .①②③D .①②③④15.(2016·安徽中考)一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米,甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C ,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图像是( )16.(2017·莱芜中考)对于实数a ,b ,定义符号min {a ,b},其意义为:当a ≥b 时,min {a ,b}=b ;当a <b 时,min {a ,b}=a.例如:min ={2,-1}=-1.若关于x 的函数y =min {2x -1,-x +3},则该函数的最大值为( )A .23B .1C .43D .53二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.若点(-1,m)和点(1,n)在一次函数y =-3x +6的图像上,则m______n(填“>”“<”或“=”). 18.如图,直线AB 是一次函数y =kx +b 的图像,若线段AB 的长度为5,则此函数的表达式为________________.。

2022年精品解析冀教版八年级数学下册第二十一章一次函数章节测试试卷(含答案详解)

2022年精品解析冀教版八年级数学下册第二十一章一次函数章节测试试卷(含答案详解)

八年级数学下册第二十一章一次函数章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知()1,1A -、()2,3B 两点,在y 轴上存在点P 使得AP BP +的值最小,则点P 的坐标为( )A .10,4⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .10,4⎛⎫- ⎪⎝⎭D .10,3⎛⎫- ⎪⎝⎭ 2、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x 件(x >2),则应付货款y (元)与商品件数x 的函数关系式( )A .y =54x (x >2)B .y =54x +10(x >2)C .y =54x -90(x >2)D .y =54x +100(x >2)3、已知点(﹣1,y 1),(4,y 2)在一次函数y =3x +a 的图象上,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定4、一次函数2y kx k =+的大致图象是( )A .B .C .D .5、如图,点P 是▱ABCD 边上一动点,沿A →D →C →B 的路径移动,设P 点经过的路径长为x ,△BAP 的面积是y ,则下列能大致反映y 与x 的函数关系的图象是( )A .B .C .D .6、在平面直角坐标系中,若函数2y x b =+的图象经过第一、二、三象限,则b 的取值( )A .小于0B .等于0C .大于0D .非负数 7、直线23y x =-不经过点( )A .(0,0)B .(﹣2,3)C .(3,﹣2)D .(﹣3,2)8、如图,在平面直角坐标系中,线段AB 的端点为A (﹣2,1),B (1,2),若直线y =kx ﹣1与线段AB 有交点,则k 的值不能是( ).A .-2B .2C .4D .﹣49、下列图形中,表示一次函数y =mx +n 与正比例函数y =﹣mnx (m ,n 为常数,且mn ≠0)的图象不正确的是( )A .B .C .D .10、若实数a 、c 满足0a c +=且a c >,则关于x 的一次函数y cx a =-的图像可能是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、根据如图所示的程序计算函数值,若输入x 的值为32,则输出的y 值为_.2、在平面直角坐标系中,已知一次函数21y x =-+的图象经过11(,)P y π、22P y )两点,则1y ________2y .(填“>”“<”或“”=)3、如图,一次函数4y 3=x +4的图像与x 轴交于点A ,与y 轴交于点B ,C 是x 轴上的一动点,连接BC ,将ABC 沿BC 所在的直线折叠,当点A 落在y 轴上时,点C 的坐标为_____.4、已知点 P (a ,b )在一次函数 y =3x -1 的图像上,则 3a -b +1=_________.5、将直线y x =-向上平移p 个单位后,经过点(,)m n ,若3m n +=,则p =___.三、解答题(5小题,每小题10分,共计50分)1、如图,直线l :22y x =-与y 轴交于点G ,直线l 上有一动点P ,过点P 作y 轴的平行线PE ,过点G 作x 轴的平行线GE ,它们相交于点E .将△PGE 沿直线l 翻折得到△PGE′,点E 的对应点为E′.(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;(2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;(3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.2、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.(1)N95型和一次性成人口罩每箱进价分别为多少元?(2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?(3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?3、甲、乙两人相约周末登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)b =______米;(2)求出甲距地面的高度y 与登山时间x 的关系式,并指出一次项系数的实际意义;(3)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则在整个爬山过程中,登山多长时间时,甲乙两人距离地面的高度差为70米?4、如图,一次函数2y k x b =+的图象与y 轴交于点B ,与正比例函数1y k x =的图象相交于点()3,4A ,且OA OB =.(1)分别求出这两个函数的解析式;(2)点P 在x 轴上,且POA 是等腰三角形,请直接写出点P 的坐标.5、A 、B 两地相距20千米,甲、乙两人某日中午12点同时从A 地出发匀速前往B 地,甲的速度是每小时4千米,如图,线段OM 反映了乙所行的路程s 与所用时间t 之间的函数关系,根据提供的信息回答下列问题:(1)乙由A 地前往B 地所行的路程s 与所用时间t 之间的函数解析式是 ,定义域是 ;(2)在图中画出反映甲所行驶的路程s 与所用时间t 之间的函数图象;(3)下午3点时,甲乙两人相距 千米.-参考答案-一、单选题1、B【解析】【分析】解:作点A 关于y 轴的对称点C ,得C (-1,-1),直线AC 与y 轴交点即为点P ,此时AP BP +的值最小,求出直线BC 的函数解析式,令x =0时得y 的值即为点P 的坐标.【详解】解:作点A 关于y 轴的对称点C ,得C (-1,-1),直线AC 与y 轴交点即为点P ,此时AP BP +的值最小,设直线BC 的函数解析式为y=kx+b ,将()2,3B 、C (-1,-1)代入,得123k b k b -+=-⎧⎨+=⎩,解得4313k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线BC 的函数解析式为y=43x+13, 当x =0时,得y =13,∴P (0,13).故选:B .【点睛】此题考查了轴对称求最短路径,求一次函数解析式,一次函数图象与坐标轴交点坐标,正确掌握利用轴对称知识解决最短路径问题是解题的关键.2、B【解析】【分析】由题意得2x >,则销售价超过100元,超过的部分为60100x -,即可得.【详解】解:∵2x >,∴销售价超过100元,超过的部分为60100x -,∴100(60100)0.910054905410y x x x =+-⨯=+-=+(2x >且为整数),故选B .【点睛】本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.3、A【解析】【分析】根据一次函数y =3x +a 的一次项系数k >0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:∵一次函数y =3x +a 的一次项系数为3>0,∴y 随x 的增大而增大,∵点(﹣1,y 1),(4,y 2)在一次函数y =3x +a 的图象上,﹣1<4,∴y 1<y 2,故选:A .【点睛】本题考查了一次函数的性质,掌握y kx b =+,0k >时,y 随x 的增大而增大是解题的关键.4、A【解析】【分析】由2(2)y kx k k x =+=+知直线2y kx k =+必过(2,0)-,据此求解可得.【详解】解:2(2)y kx k k x =+=+,∴当2x =-时,0y =,则直线2y kx k =+必过(2,0)-,如图满足条件的大致图象是:故选:A .【点睛】本题主要考查一次函数的图象,解题的关键是掌握一次函数y kx b =+的图象性质:①当0k >,0b >时,图象过一、二、三象限;②当0k >,0b <时,图象过一、三、四象限;③当0k <,0b >时,图象过一、二、四象限;④当0k <,0b <时,图象过二、三、四象限.5、A【解析】【分析】分三段来考虑点P 沿A →D 运动,BAP △的面积逐渐变大;点P 沿D →C 移动,BAP △的面积不变;点P 沿C →B 的路径移动,BAP △的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.【详解】解:如图,过点B 作BH ⊥DA 交DA 的延长线于H ,设BH =h ,则当点P 在线段AD 上时,12y hx =,h 是定值,y 是x 的一次函数,点P 沿A →D 运动,BAP 的面积逐渐变大,且y 是x 的一次函数,点P 沿D →C 移动,BAP 的面积不变,点P 沿C →B 的路径移动,BAP 的面积逐渐减小,同法可知y 是x 的一次函数,故选:A .【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.6、C【解析】【分析】一次函数y kx b =+过第一、二、三象限,则0,0k b >>,根据图象结合性质可得答案.【详解】解:如图,函数2y x b =+的图象经过第一、二、三象限,则函数2y x b =+的图象与y 轴交于正半轴,0,b故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数y kx b =+过第一、二、三象限,则0,0k b >>”是解本题的关键.7、B【解析】【分析】将各点代入函数解析式即可得.【详解】解:A 、当0x =时,0y =,即经过点(0,0),此项不符题意;B 、当2x =-时,24(2)333y =-⨯-=≠,即不经过点(2,3)-,此项符合题意; C 、当3x =时,2323y =-⨯=-,即经过点(3,2)-,此项不符题意;D 、当3x =-时,2(3)23y =-⨯-=,即经过点(3,2)-,此项不符题意;故选:B .【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.8、B【解析】【分析】当直线y =kx −1过点A 时,求出k 的值,当直线y =kx −1过点B 时,求出k 的值,介于二者之间的值即为使直线y =kx −1与线段AB 有交点的x 的值.【详解】解:①当直线y =kx −1过点A 时,将A (−2,1)代入解析式y =kx −1得,k =−1,②当直线y =kx −1过点B 时,将B (1,2)代入解析式y =kx −1得,k =3,∵|k |越大,它的图象离y 轴越近,∴当k ≥3或k ≤-1时,直线y =kx −1与线段AB 有交点.故选:B .【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB 是线段这一条件,不要当成直线.9、B【解析】【分析】利用一次函数的性质逐项进行判断即可解答.【详解】解:A 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项不符合题意;B 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn >,两结论不一致,故本选项符合题意;C. 由一次函数的图象可知,0m >,0n >故0mn >;由正比例函数的图象可知0mn >,两结论一致,故本选项不符合题意;D. 由一次函数的图象可知,0m >,0n <故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项不符合题意;故选B .【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:当0k >,0b >函数y kx b =+的图象经过第一、二、三象限;当0k >,0b <函数y kx b =+的图象经过第一、三、四象限;当0k <,0b >函数y kx b =+的图象经过第一、二、四象限;当0k <,0b <函数y kx b =+的图象经过第二、三、四象限.10、B【解析】【分析】根据实数a 、c 满足0a c +=可知,a 、c 互为相反数,再根据a c >,可确定a 、c 的符号,进而确定图象的大致位置.【详解】解:∴实数a 、c 满足0a c +=,∴a 、c 互为相反数,∵a c >,∴0a >,0c <,∴0a -<∴一次函数y cx a =-的图像经过二、三、四象限,故选:B .【点睛】本题考查了一次函数图象的性质,解题关键是根据已知条件,确定a 、c 的符号.二、填空题1、12##0.5【解析】【分析】根据x 的值选择相应的函数关系式求解函数值即可解答.【详解】解:∵x =32,∴1<x <2,∴y =-x +2=-32+2=12,即输出的y 值为12,故答案为:12.【点睛】本题考查求一次函数的函数值,明确每段函数的自变量取值范围是解答的关键.2、<【解析】【分析】根据一次函数的性质,当0k <时,y 随x 的增大而减小,即可得答案.【详解】 解:一次函数21y x =-+中20k =-<,y ∴随x 的增大而减小, 2π>,12y y ∴<.故答案为:<.【点睛】本题考查了一次函数的性质,关键是掌握一次函数0y kx b k =+≠(),当0k >时,y 随x 的增大而增大,当0k <时,y 随x 的增大而减小.3、(12,0)或(-43,0) 【解析】【分析】由一次函数解析式求出点A 、B 的坐标,进而求得OA 、OB 、AB ,分点C 在x 轴正半轴和在x 轴负半轴,利用折叠性质和勾股定理求解OC 即可.【详解】解:当x =0时,y =4,当y =0时,x =-3,∴A (-3,0),B (0,4),∴OA =3,OB =4,∴5AB =,设点A 的对应点为A 1,OC =x ,当点C 在x 轴正半轴时,如图,根据轴对称性质得:BA 1=AB =5,OA 1=5+4=9,CA 1=AC =3+x ,在Rt△A 1OC 中,由勾股定理得:2229(3)x x +=+,解得:x =12,即OC =12,∴点C 坐标为(12,0);当点C 在x 轴负半轴时,如图,根据折叠性质得:BA 1=AB =5,OA 1=5-4=1,CA 1=AC=3-x ,在Rt△A 1OC 中,由勾股定理得:2221(3)x x +=-, 解得:43x =,即OC = 43, ∴点C 的坐标为(-43,0),综上,点C的坐标为(12,0)或(-43,0),故答案为:(12,0)或(-43,0).【点睛】本题考查一次函数与坐标轴的交点问题、折叠性质、勾股定理、坐标与图形,熟练掌握轴对称性质,利用分类讨论思想解决问题是解答的关键.4、2【解析】【分析】由点P在一次函数图象上,利用一次函数图象上点的坐标特征可得出b=3a-1,再将其代入(3a-b+1)中即可求出结论.【详解】解:∵点P(a,b)在一次函数y=3x-1的图象上,∴b=3a-1,∴3a-b+1=3a-(3a-1)+1=2.故答案为:2.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.5、3【解析】【分析】根据直线平移的规律得到平移后的函数解析式,将点(,)m n 代入即可.【详解】解:将直线y x =-向上平移p 个单位后得到的直线解析式为y x p =-+,点(,)m n 在平移后的直线上,n m p ∴=-+,3m n +=,3p ∴=.故答案为:3.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记规律是解题的关键.三、解答题1、 (1)见解析 (2)5,32⎛⎫ ⎪⎝⎭(3)6【解析】【分析】(1)作出过点E 的l 的垂线即可解决;(2)设直线l 交x 轴于点D ,则由直线解析式可求得点D 、点G 的坐标,从而可得OD 的长.由对称性及平行可得E D E G ''=,设点P 的坐标为(a ,2a -2),则可得点E 的坐标,由E G EG '=及勾股定理可求得点E '的坐标;(3)分别过点A 、B 作y 轴的平行线,与过点G 的垂直于y 轴的直线分别交于点C 、M ,则点E 在线段CM 上运动,根据对称性知,点E '运动路径的长度等于CM 的长,故只要求得CM 的长即可,由A 、B 两点的坐标即可求得CM 的长.(1)所作出点E 的对应点E′如下图所示:(2)设直线l 交x 轴于点D在y =2x -2中,令y =0,得x =1;令x =0,得y =-2则点D 、点G 的坐标分别为(1,0)、(0,-2)∴OD =1,OG =2由对称性的性质得:E G EG '=,EGD E GD '∠=∠∵GE ∥x 轴∴EGD E DG '∠=∠∴E GD E DG ''∠=∠∴E D E G ''=∴E D EG '=设点P 的坐标为(a ,2a -2),其中a >0,则可得点E 的坐标为(a ,-2)∴EG =a∴E D a '=∴1OE E D OD a ''=-=-在Rt △OGE '中,由勾股定理得:2222(1)a a +-= 解得:52a =当52a =时,5232232a -=⨯-= 所以点P 的坐标为5,32⎛⎫ ⎪⎝⎭(3)分别过点A 、B 作y 轴的平行线,与过点G 的垂直于y 轴的直线分别交于点C 、M ,则点E 在线段CM 上运动,根据对称性知,点E '运动路径的长度等于CM 的长∵A ,B 两点的坐标分别为(-2,-6),(4,6)∴CM =4-(-2)=6则点E '运动路径的长为6故答案为:6【点睛】本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.2、(1)N 95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N 95型40箱;(3)采购N 95型40个,一次性成人口罩40个可获得最利润为24000元.【解析】【分析】(1)设N 95型每箱进价x 元,一次性成人口罩每箱进价y 元,依题意得10x +20y =32500,30x +40y =87500,联立求解即可;(2)设购进N 95型a 箱,依题意得:2250×(1+10%)a +500×80%×(80-a )≤115000,求出a 的范围,结合a 为正整数可得a 的最大值;(3)设购进的口罩获得最大的利润为w ,依题意得:w =500a +100(80-a ),然后对其进行化简,结合一次函数的性质进行解答.【详解】(1)解:设N 95型每箱进价x 元,一次性成人口罩每箱进价y 元,依题意得:102032500{304087500x y x y +=+= ,解得: 2250{500x y == , 答:N 95型和一次性成人口罩每箱进价分别为2250元、500元.(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得:()(﹣).++⨯≤a a2250110%50080%80115000解得:a≤40.∵a取正整数,0<a≤40.∴a的最大值为40.答:最多可购进N95型40箱.(3)解:设购进的口罩获得最大的利润为w,则依题意得:w=500a+100(80﹣a)=400a+8000,又∵0<a≤40,∴w随a的增大而增大,∴当a=40时,W=400×40+8000=24000元.即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.答:最大利润为24000元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.3、 (1)30;(2)y=10x+100;一次项的系数是表示甲登山的速度;(3)3或10或13分钟【解析】【分析】(1)根据图象直接得到答案;(2)利用待定系数法解答;(3)求出甲登山速度,由此求出乙登山的函数解析式,列方程当10x+100−(30x−30)=70时,解得,当30x−30−(10x+100)=70时,当300−(10x+100)=70时,解方程即可.(1)解:由图象可得b=15÷1×2=30米,故答案为:30.(2)解:设甲距地面的高度y与登山时间x的关系式y=kx+m,由图象可得,过点C(0,100)、D(20,300),∴10020300mk m=⎧⎨+=⎩,解得10010mk=⎧⎨=⎩,∴甲距地面的高度y与登山时间x的关系式y=10x+100;一次项的系数是表示甲登山的速度;(3)解:甲登山速度为(300-100)÷20=10(米/分钟),当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x-2)=30x-30.当y=30x-30=300时,x=11.甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0⩽x⩽20),当10x+100−(30x−30)=70时,解得:x=3;当30x−30−(10x+100)=70时,解得:x=10;当300−(10x+100)=70时,解得:x=13.∴登山3分钟、10分钟或13分钟时,甲乙两人距离地面的高度差为70米.【点睛】此题考查了一次函数的图象,一元一次方程的应用,待定系数法求函数解析式,正确理解函数图象并应用解决问题是解题的关键.4、 (1)正比例函数的解析式为:43y x =,一次函数的解析式为:35y x =- (2)()5,0-或()5,0或()6,0或25,06⎛⎫⎪⎝⎭ 【解析】【分析】(1)把点()3,4A 代入1y k x =可得143k =,再由OA OB =,可得点()0,5B - ,即可求解; (2)分三种情况:当OP =OA =5时,当AP =OA 时,当AP =OP 时,即可求解.(1)解:∵一次函数2y k x b =+的图象与y 轴交于点B ,与正比例函数1y k x =的图象相交于点()3,4A ,∴134k =,解得:143k =∴正比例函数的解析式为:43y x =, ∵()3,4A ,∴5OA ,∵OA OB =,∴5OB = ,∴点()0,5B - ,把点()3,4A ,()0,5B - 代入2y k x b =+,得:{b =−53b 2+b =4 ,解得:235k b =⎧⎨=-⎩ , ∴一次函数的解析式为:35y x =-;(2)解:当OP =OA =5时,点P 的坐标为()5,0-或()5,0;当AP =OA 时,过点A 作AC x ⊥ 轴于点C ,∴OC =PC =3,∴OP =6,∴点()6,0P ;当AP =OP 时,过点P 作PD ⊥OA 于点D ,过点D 作DE x ⊥ 轴于点E ,∴点D 为AO 的中点,即1522OD AD OA === , ∵点()3,4A , ∴点3,22D ⎛⎫ ⎪⎝⎭, ∴3,22OE DE == , 设点(),0P m ,则OP m = ,∴PD ==, ∵2AOP ODP S S = , ∴11222OA PD OP DE ⋅=⨯⋅ ,即112222m ⨯=⨯⨯ , 解得:256m = 或256- (舍去) ∴点25,06P ⎛⎫ ⎪⎝⎭, 综上所述,点P 的坐标为()5,0-或()5,0或()6,0或25,06⎛⎫⎪⎝⎭. 【点睛】 本题主要考查了一次函数的图象和性质,等腰三角形的性质,熟练掌握一次函数的图象和性质,等腰三角形的性质,利用分类讨论思想和数形结合解答是解题的关键.5、 (1)s =103t ;0≤t ≤6 (2)见解析(3)2【解析】【分析】(1)设直线OM 的解析式为s kt =,将(6,20)M 代入即可求出k ,由图象可直接得出t 的范围;(2)根据甲的速度,可得出行驶时间,得到终点时点N 的坐标,作出直线即可;(3)用甲行驶的路程减去乙行驶的路程即可.(1)解:设直线OM 的解析式为s kt =,且(6,20)M ,620k ∴=,解得103k =; 103s t ∴=; 由图象可知,06t ; 故答案为:103s t =;06t ; (2) 解:甲的速度是每小时4千米,∴甲所用的时间2054t ==(小时), (5,20)N ∴,图象如下图所示:(3)解:下午3点时,甲、乙两人之间的距离为:1043323⨯-⨯=. 故答案为:2.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

冀教版八年级数学下册第二十一章一次函数测试题含答案

冀教版八年级数学下册第二十一章一次函数测试题含答案
y=2(x+1)﹣1,即y=2x+1,
故选B.
考点:一次函数图象与几何变换
8.B
【解析】
【分析】
根据正比例函数的定义,知1-m=0,即可求出m的值.
【详解】
依题意得1-m=0,2m+6 0,求得m=1,故选B.
【点睛】
此题主要考察正比例函数的定义.
9.A
【解析】
由题意可得: ,即: .
故选A.
10.C
(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.
(2)求甲、乙第一次相遇的时间.
(3)直接写出乙回到侧门时,甲到侧门的路程.
参考答案
1.C
【解析】
【分析】
根据一次函数的定义即可判断.
【详解】
①y=x;②y=2x-1是一次函数;;③y= ;④y=x2-1不是一次函数,
故选C.
∴它是递增的一次函数,与x、y轴的交点分别是(1,0)、(0,1)
∴它的图象经过第一、二、四象限
5.D
【解析】
试题分析:根据正比例函数图象的特点可直接解答.
解:∵正比例函数y=(k+5)x中若y随x的增大而减小,
∴k+5<0.
∴k<﹣5,
故选D.
6.B
【解析】
【分析】
把(-2,-6),(0,4)代入一次函数解析式,求出k、b的值,即可知解析式,再令y=0,求得x即可.
【详解】
把(-2,-6),(0,4)代入y=kx+b,得 ,
解得 ,∴y=5x+4,
当y=0时,即5x+4=0,解得x=- ,故选B.
【点睛】
此题主要考察待定系数法确定函数关系式,熟练利用二元一次方程组是解题的关键.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是( )
A.第一天 B.第二天C.第三天 D.第四天
11.某单位在植树节派出50名员工植树造林,统计每个人植树的棵数之后,绘制成如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵以上(包含7棵)的人数占总人数的( )
C.调查我校某班学生喜欢上数学课的情况
D.调查某类烟花爆竹燃放的安全情况
2.西柏坡是我国著名的红色旅游胜地,如果用统计图表示2017年“十一”黄金周期间西柏坡地区的气温变化情况,应利用( )
A.条形统计图 B.扇形统计图
C.折线统计图 D.频数分布直方图
3.某新品种葡萄试验基地种植了10亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随机抽查了4株葡萄,在这个统计工作中,4株葡萄的单株产量是( )
A.①②③
B.①②
C.①③
D.②③
16.如图是某手机店1~4月份各月手机销售总额统计图与三星手机销售额占该手机店当月手机销售总额的百分比统计图.根据图中信息,下列结论正确的为( )
A.4月份三星手机销售额为65万元
B.4月份三星手机销售额比3月份有所上升
C.4月份三星手机销售额比3月份有所下降
D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额
5.如图是P,Q两国2016年财政经费支出情况的扇形统计图.根据统计图,下面对两国全年教育经费支出判断正确的是( )
A.P国比Q国多 B.Q国比P国多
C.P国与Q国一样多 D.无法确定哪国多
第5题图第6题图
6.如图,某实验中学制作了学生选择象棋、曲艺、园艺、制陶四门业余课程情况的扇形统计图,从中可以看出选择制陶的学生占( )
二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)
17.为了解一批保温瓶的保温性能,从中抽取了10只保温瓶进行试验.在这个问题中,样本是______________________.
18.第十二届全国人大常委会第二十九次会议审议通过的《中华人民共和国国歌法》将于2017年10月1日正式实施.为了解居民对国歌法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对国歌法“非常清楚”的居民约有________人.
A.总体 B.总体中的一个样本
C.样本容量 D.个体
4.下列调查的样本选取方式,最具有代表性的是( )
A.在青少年中调查年度最受欢迎的男歌手
B.为了解班上学生的睡眠时间,调查班上学号为双号的学生的睡眠时间
C.为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查
D.对某市的出租车司机进行体检,以此反映该市市民的健康状况
A.25% B.30%C.35% D.40%
7.用频数分布直方图描述数据,下列说法正确的是( )
A.所分的组数与数据的个数无关
B.长方形的高越高,说明落在这个区域的数据越多
C.可以不求最大值和最小值的差
D.可以看出数据的变化趋势
8.如图,小明用条形统计图记录某地汛期一个星期的降雨量,如果日降雨量在25mm及以上为大雨,那么这个星期下大雨的天数为( )
20.(8分)下列调查中,哪些适合抽样调查?哪些适合全面调查?
(1)工厂准备对一批即将出厂的饮料中含有细菌总数的情况进行调查;
(2)小明准备对全班同学所喜爱的球类运动的情况进行调查;
(3)某农田保护区对区内的水稻秧苗的高度进行调查.
21.(9分)2017年某市城市居民年龄状况调查中,青少年、成年人、老年人的人数比为3:4:3.在所抽取的样本中,青少年的人数为450人,那么这个样本的容量是多少?
A.3天 B.4天C.5天 D.6天
第8题图第10题图
9.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频率为( )
A.0.04 B.0.5C.0.45 D.0.4
22.(9分)在对某地区的一次人口抽样统计分析中,各年龄段(年龄为整数)的人数如下表所示.请根据此表回答下列问题:
A.该班总人数为50人
B.步行人数为30人
C.骑车人数占总人数的20%
D.乘车人数是骑车人数的2.5倍
14.(2016·迁安期中)嘉嘉将100个数据分成①~⑧组,如下表所示,则第⑤组的频率为( )
组号








频数
3
8
15
22
18
14
9
A.11 B.12C.0.11 D.0.12
15.某市统计局统计了2017年第一季度每月人均GDP的增长情况,并绘制了如图所示的统计图.下列结论:①1月份的人均GDP增长率最高;②2月份的人均GDP比1月份低;③这三个月的人均GDP都在增长.其中正确的是( )
第18题图第19题图
19.为了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为________,参加这次测试的学生有________人.
三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)
最新冀教版八年级数学下册单元测试题及答案全套
第十八章测试题
_
一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列调查中,适宜采用普查的是( )
A.了解我国民众对乐天集团“萨德事件”看法
B.了解湖南卫视《人民的பைடு நூலகம்义》反腐剧收视率
A.40% B.70%C.76% D.96%
第11题图第12题图
12.某中学各年级人数如图所示,根据图中的信息,下列结论不正确的是( )
A.七、八年级的人数相同
B.九年级的人数最少
C.女生人数多于男生人数
D.女生人数少于男生人数
13.如图是某班全体学生到校时乘车、步行、骑车人数的频数分布直方图和扇形统计图(两图都不完整),则下列结论中错误的是( )
相关文档
最新文档