北京交通大学大学物理学_下_答案
北京交通大学大学物理学_下_答案

新教材下册习题解答(教师用) 第12章12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后,长度之比是多少)?解:活塞两侧气体的始末状态满足各自的理想气体状态方程左侧: T pV T V p 111= 得, T pT V p V 111=右侧:T pV T V p 222= 得, T pT Vp V 222=122121T p T p V V = 即隔板两侧的长度之比 122121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2atm ,密度32kg/m 1024.1-⨯=ρ.求该气体的摩尔质量.解:n k T p = (1)nm =ρ (2)A mN M = (3) 由以上三式联立得:12352232028.010022.610013.1100.12731038.11024.1----⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量.解:()V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ()()RT MM MVV p 2122-=- (2)(1)、(2)式联立得: ()()()Vp p RT M M V p Vp p RTM M M 212121221--=⎪⎪⎭⎫ ⎝⎛--=12.4在实验室中能够获得的最佳真空相当于大约10-14atm (即约为10-10mmHg 的压强),试问在室温(300K )下在这样的“真空”中每立方厘米内有多少个分子? 解: 由nkT p = 得,35311235141045.21045.21038.130010013.110----⨯=⨯=⨯⨯⨯⨯==cm m kT p n 12.5已知一气球的容积V =8.7m 3,充以温度t 1=150C 的氢气,当温度升高到370C 时,维持其气压p 及体积不变,气球中部分氢气逸出,而使其重量减轻了0.052kg ,由这些数据求氢气在00C,压力p 下的密度. 解:V p 1t m V p 2t ()V V -2 p 2t m ∆3V p 3t m 由221t V t V = (1)mmV V V ∆=-22 (2)331t V t V = (3) 3V m=ρ (4) 由以上四式联立得: 3231122109.815.2737.815.288052.02215.310--⋅⨯=⨯⨯⨯=∆-=m kg Vt t m t t t ρ 12.6真空容器中有一氢分子束射向面积2cm 0.2=S 的平板,与平板做弹性碰撞.设分子束中分子的速度13s m 100.1-⋅⨯=v ,方向与平板成60º夹角,每秒内有23100.1⨯=N 个氢分子射向平板.求氢分子束作用于平板的压强. [2.9×103Pa] 解: AN M m =Pa SNm S F p 323433230109.210022.6100.223100.110210260sin 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===--v12.7 下列系统各有多少个自由度:⑴在一平面上滑动的粒子;⑵可以在一平面上滑动并可围绕垂直于该平面的轴转动的硬币;⑶一弯成三角形的金属棒在空间自由运动. 解:(1) 2 (2) 3 (3) 612.8 容器内贮有氧气,其压强Pa 101.013atm 15⨯==p ,温度t =270C,求: (1)单位体积内的分子数;(2)分子的质量m ;(3)氧气的密度ρ;(4)分子的方均根速率;(5)分子的平均平动能;(6)在此温度下,4g 氧的内能. 解:(1) 由 nkT p = 得,3252351045.215.3001038.110013.1--⨯=⨯⨯⨯==m kT p n (2) kg N M m A 262331031.510022.61032--⨯=⨯⨯== (3) 3262530.11031.51045.2--⋅=⨯⨯⨯==m kg nm ρ(4) 12321084.4103215.30031.833--⋅⨯=⨯⨯⨯==s m M RTv (5) J kT k 21231021.615.3001038.12323--⨯=⨯⨯⨯==ε (6) J RT M m 21079.715.30031.82532425⨯=⨯⨯⨯==ε12.9 1mol 氢气,在温度270C 时,求⑴具有若干平动动能;⑵具有若干转动动能;⑶温度每升高10C 时增加的总动能是多少? 解: (1) J RT 311074.315.30031.82323⨯=⨯⨯==ε (2) J RT 321049.215.30031.822⨯=⨯==ε(3) J R 8.2025==∆ε12.10 试求1mol 氢气分别在0℃和500℃时的内能.解: J RT 3111067.515.27331.82525⨯=⨯⨯==ε J RT 4221061.115.77331.82525⨯=⨯⨯==ε12.11 (1)求在相同的T 、p 条件下,各为单位质量的 H 2气与He 气的内能之比.(2)求在相同的T 、p 条件下,单位体积的H 2气与He 气的内能之比. 解:(1) RT E H 25102132⨯⨯=- RT E eH 2310413⨯⨯=-3102=eH H E E (2) 由nkT p =, 相同的T 、p 条件,可知: e H H n n =2 kT n E H H 2522= kT n E e e H H 23=352=eH H E E 12.12 设山顶与地面的温度均为273K,空气的摩尔质量为0.0289kg ·mol -1.测得山顶的压强是地面压强的3/4,求山顶相对地面的高度为多少? 解:依题意有,340=p p 由气压公式有:m p p g RT h 301030.234ln 81.90289.027331.8ln ⨯=⨯⨯==μ 12.13 求速率大小在p v 与1.01p v 之间的气体分子数占总分子数的百分率. 解:速率间隔在p p 1.01v ~v ,即p v v 01.0=∆1==p W v v 01.0=∆=∆pW v v在p p v v 01.1~间隔的分子数占总分子数的百分数为()%83.0422=∆=∆=∆-W e W W W f N N W π12.14 求00C 的氢气分子和氧气分子的平均速率、方均根速率和最概然速率. 解: 氢气分子相对应的各种速率为1331071.110215.27331.860.160.1--⋅⨯=⨯⨯⨯==s m M RT v 13321084.110215.27331.873.173.1--⋅⨯=⨯⨯⨯==s m M RT v 1331050.110215.27331.841.141.1--⋅⨯=⨯⨯⨯==s m M RT p v 由于三种速率均与分子的摩尔质量平方根成反比4122=o H M M 所以氧气分子的三种速率为氢气分子相应速率的四分之一 121026.4-⋅⨯=s m o v 1221061.4-⋅⨯=s m o v ()121076.3-⋅⨯=s m opv12.15 如图12-31所示.两条曲线分别表示氧气和氢气在同样温度下的速率分布曲线.试问哪条曲线对应氧(氢)气的分布曲线? 氧气和氢气的最概然速率各是多少? 方均根速率各是多少? 解: 由 MRT p 2=v 可知,温度相同时,p v 与M 成反比又由图可知,12p p v v > 因此 可得,21M M > 所以, (1)为氧气的速率分布曲线 (2)为氢气的速率分布曲线()()()()2222H M O M O H p p =v v ()12500-⋅=s m O p v()()()()122222000232500-⋅===s m O H M O M H p p v v由 MRT32=v MRT p 2=v 得, p v v 232= ()12261250023-⋅=⨯=s m O v))(v f 图12-31 习题12.14图()1222450200023-⋅=⨯=s m H v12.16 设质量为m 的N 个分子的速率分布曲线如图12-32所示.(1)由N 和0v 求a 值.(2)在速率2/0v 到30v /2间隔内的分子数;(3)分子的平均平动能. 解:(1)在区间内0~0v ()v v v 0aNf = 在区间内002~v v ()a Nf =v 在区间内02~0v ,分子总数为N()0202002023200000v v v v v v v v v v v v v v a a a ad d a N =+⎪⎪⎭⎫ ⎝⎛=+=⎰⎰ 032v Na =(2)()N a a a ad d a N 12787202322023200000000==+⎪⎪⎭⎫ ⎝⎛=+=∆⎰⎰v v v v v v v v v v v v v v v v 0 (3) ()v v v v v d f ⎰=02022202020022022363191461211121210v v v v v v v v v v v v v m m ad Nd a Nm m =⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+==⎰⎰ε 12.17 设N 个粒子系统的速度分布函数为⎩⎨⎧>>>=)0),0(d d 00v v v v v (为常量K K N v⑴画出分布函数图;⑵用N 和v 0定出常数K ;⑶用v 0表示出平均速率和方均根速率. 解:(1)KO )(v Nf 0图12-32习题12.15图0v v (2) 00v v v K Kd N ==⎰ 0v NK =(3) 211000000v v v v v v vv v ===⎰⎰d d NNv00254.032383v v v v ===ππ 12.18 试从麦克斯韦速率分布律出发推写出如下分布律:(a )以最概然速率mkTp 2=v 作为分子速率单位的分子速率p x v v =的分布律;(b )分子动能221v m k =ε的分布律.并求出最概然动能kp ε,它是否就等于221p m v ? 解:麦克斯韦速率分布律 ()2223224v v v kT m e kT m f -⎥⎦⎤⎢⎣⎡=ππ (a ) m kT p 2=v px v v= ()2224x e x kTm x f -=π (b)221v m k =ε()k kTk ke kT mf επεε-⎪⎭⎫ ⎝⎛=23124()0112423=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-kT e kT m d f k kT k k kεπεεε得, 01=⎪⎭⎫⎝⎛-kT k ε 221p kp m kT v ==ε12.19 设容器内盛两种不同单原子气体,原子质量分别为m 1和m 2的此混合气体处于平衡状态时内能相等,均为U ,求这两种气体平均速率1v 和2v 的比值以及混合气体的压力.设容器体积为V .解: RT M m U 231'= RT M m U 232''= 得,2''1'M m M m =21'''M M mm = 118m kT π=v 228m kTπ=v 则 1221m m =v v RT pV ν= RTUM m M m M m 3421'2''1'==+=ν 得, VU V RT RT U p 3434==12.20 求在标准状态下一秒内分子的平均自由程和平均碰撞次数.已知氢分子的有效直径为2.0×10-10 m.解:3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n ()m nd 72521021009.21069.2100.22121--⨯=⨯⨯⨯==ππλ1331070.110215.27331.888--⋅⨯=⨯⨯⨯==s m m RT ππv 19731013.81009.21070.1--⨯=⨯⨯==s z λv12.21 在足够大的容器中,某理想气体的分子可视为d=4.0×10-10 m 的小球,热运动的 平均速率为2100.5⨯=v m/s,分子数密度为n =3.0×1025 /m 3.试求:(1) 分子平均自由程和平均碰撞频率;(2) 气体中某分子在某时刻位于P 点,若经过与其他分子N 次碰撞后,它与P 点的距离近似可表为λN R =,那么此分子约经多少小时与P 点相距10米?(设分子未与容器壁碰撞) 解: (1)()m nd 8252102107.4100.3100.42121--⨯=⨯⨯⨯==ππλ110821006.1107.4100.5--⨯=⨯⨯==s z λv(2) λN R =h R R z N t 1182107.4100.5110018222=⨯⨯⨯⨯==⎪⎭⎫ ⎝⎛==-λυυλλ 12.22 设电子管内温度为300K ,如果要管内分子的平均自由程大于10cm 时,则应将它抽到多大压力?(分子有效直径约为3.0⨯10-8cm ) 解:nd 221πλ=若使cm 10>λ()3192102105.21.0100.32121--⨯=⨯⨯==m d n πλπ 需使 319105.2-⨯<m nPa nkT p 1.03001038.1105.22319=⨯⨯⨯⨯==- 即需使 Pa p 1.0<12.23 计算⑴在标准状态下,一个氮分子在1s 内与其他分子的平均碰撞次数;⑵容积为4L 的容器,贮有标准状况下的氮气,求1s 内氮分子间的总碰撞次数.(氮分子的有效直径为3.76⨯10-8cm )解: (1) λυ=z 3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n()m nd 8252102109.51069.21076.32121--⨯=⨯⨯⨯==ππλ1231054.4102815.27331.888--⋅⨯=⨯⨯⨯==s m M RT ππυ 1982107.7109.51054.4--⨯=⨯⨯=s z (2) mol V V mol 179.04.224===ν AN N ν=132923103.8107.710022.6179.0-⨯=⨯⨯⨯⨯===s z N z N z A ν12.24 实验测知00C 时氧的粘滞系数s)g/(cm 1092.14⋅⨯=-η,试用它来求标准状态下氧分子的平均自由程和分子有效直径.解:λυρη31=M RT πυ8= nm =ρ 其中 kT p n =, A N M m = 得:RTpM =ρ所以m MRT p RTMpMRT8355105.91032815.27331.810013.111092.1381383---⨯=⨯⨯⨯⨯⨯⨯⨯===ππηπηλpd kT nd 22221ππλ==m p kT d 108523100.3105.910013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.25 今测得氮气在00C 时的导热系数为237103.W m K 11⨯⋅⋅---,计算氮分子的有效直径.已知氮的分子量为28. 解:⎪⎭⎫⎝⎛=M C VM λυρκ31 R C VM 25= RT pM nm ==ρ m RMT p R MRT M pM RT73531069.131.8815.273102810013.11107.235681565283---⨯=⨯⨯⨯⨯⨯⨯⨯⨯===ππκπκλpd kT nd 22221ππλ==m p kT d 107523102.21069.110013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.26 在270C 时,2mol 氮气的体积为0.1L ,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气a =0.828atm ⋅L 2⋅mol -2, b =3.05⨯10-2L ⋅mol . 解:RT pV ν=Pa VRTp 731099.4101.015.30031.82⨯=⨯⨯⨯==-ν ()RT b V V a p ννν=-⎪⎭⎫ ⎝⎛+22p 2p 0V 02V V()()PaV a b V RT p 72532221044.91.010013.1828.04101005.321.015.30031.82⨯=⨯⨯⨯-⨯⨯⨯-⨯⨯=--=--ννν 第13章13.1 (1)理想气体经过下述三种途径由初态I (2p 0,V 0)变到终态Ⅱ(p 0,2V 0).试计算沿以下每一路径外界对气体所作的功:(a )先从V 0到2V 0等压膨胀然后等体积降压;(b )等温膨胀;(c )先以V 0等体积降压到p 0后再等压膨胀.(2)对1mol 的范氏气体重复以上三个过程的计算? [答案:(1)(a)2p 0V 0,(b) 2p 0V 0ln2,(c)p 0V 0;(2) (a)2p 0V 0, (b)00002002ln ))(( V a b V b V b V V ap ----+,(c)p 0V 0] 解:(1)(a) ()00000222200V p V V p pdV A V V =-==⎰ (b) 200222ln 2ln 00V p RT dV VRTpdV A V V V V ====⎰⎰(c) ()00000220V p V V p pdV A V V =-==⎰(2) 范德瓦尔斯方程: ()RT b V V a p mol mol=-⎪⎪⎭⎫ ⎝⎛+2 (a) 00220V p pdV A V V ==⎰(b)()000020000222222ln 22ln 000V ab V b V b V V a p V a V a RT dV V a b V RTpdV A bV b V V V V V ----⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛--==--⎰⎰(c) 0020V p pdV A V V ==⎰13.2 由如图13-40所示.一系统由状态a 沿acb 到达状态b ,吸热量80Cal ,而系统做功126J.⑴经adb 过程系统做功42J ,问有多少热量传入系统?⑵当系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84J ,试问系统是吸热还是放热?热量是多少? 解:1Cal=4.2J(1) A E Q +∆= J Q 3362.480=⨯=J A Q E 210126336=-=-=∆ 所以经adb 过程传入系统的热量 J A E Q 252422101=+=+∆= (2) J A 84-=029484210<-=--=+∆=J A E Q 所以系统是放热,热量是294J13.3 如图13-41所示.单原子理想气体从状态a 经过程abcd 到状态d ,已知p a =p d =1atm ,p b =p c =2atm ,V a =1L ,V b =1.5L ,V c =3L ,V a =4L .⑴试计算气体在abcd 过程中内能的变化、功和热量;⑵如果气体从状态d 保持压力不变到状态a (图中虚线),求以上三项的结果;⑶若过程沿曲线从a 到c 状态,已知该过程吸热257Cal ,求该过程中气体所做的功. 解:(1) b a →()a b m V T T C E -=∆.νa a a RT V p ν= RV p T a a a ν=b b b RT V p ν= RV p T bb b ν=()a a b b a a b b V p V p R V p R V p R E -=⎪⎭⎫ ⎝⎛-=∆2323ννν()J 231004.31010132515.1223⨯=⨯⨯-⨯⨯=- ()J p d V A b aV V 231076.010*******.02121⨯=⨯⨯⨯+⨯==-⎰J A E Q 21080.3⨯=+∆= 同理: c b →()()J V p V p E b b c c 231056.4101013255.12322323⨯=⨯⨯⨯-⨯⨯=-=∆-图13-41 习题13.3图pp 12J pdV A cbV V 231004.3105.11013252⨯=⨯⨯⨯==-⎰J A E Q 21060.7⨯=+∆=d c →()()J V p V p E c c d d 231004.31010132532412323⨯-=⨯⨯⨯-⨯⨯=-=∆- ()J pdV A d cV V 231052.1101013252121⨯=⨯⨯+⨯==-⎰J A E Q 21052.1⨯-=+∆=J E 21056.4⨯=∆总 J A 21032.5⨯=总 J Q 21088.9⨯=总(2) ()()J V p V p E d d a a 231056.410101325412323⨯-=⨯⨯-⨯=-=∆- J pdV A adV V 231004.3103101325⨯-=⨯⨯-==-⎰J A E Q 21060.7⨯-=+∆=(3) c a →()J E 221060.71056.404.3⨯=⨯+=∆J E Q A 221019.31060.72.4257⨯=⨯-⨯=∆-=13.4 如图13-42所示.一定质量的氧气在状态A 时,V 1=3L ,p 1=8.2×105Pa ,在状态B时V 2=4.5L ,p 2=6×105Pa .分别计算气体在下列过程吸收的热量,完成的功和内能的改变:⑴经ACB 过程,⑵经ADB 过程. 解:(1) ACB 过程C A → ()()35103102.862525-⨯⨯⨯-⨯=-=∆A A C C V p V p EJ 31065.1⨯-=J A 0=J Q 31065.1⨯-=B C → ()()J V p V p E C C B B 3531025.21061035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 335122109.01035.4106⨯=⨯-⨯⨯=-=- J Q 31015.3⨯=图13-42 习题13,4图J E 3106.0⨯=∆总 J A 3109.0⨯=总 J Q 3105.1⨯=总(2) ADB 过程D A →()()J V p V p E A A D D 35310075.3102.81035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 3351211023.11035.4102.8⨯=⨯-⨯⨯=-=-J Q 310305.4⨯=B D → ()()J V p V p E D D B B 33510475.2105.4102.862525⨯-=⨯⨯⨯-⨯=-=∆-J A 0=J Q 310475.2⨯-=J E 3106.0⨯=∆总 J A 31023.1⨯=总 J Q 31083.1⨯=总13.5压强为p =1.01×103Pa,体积为0.0082 m 3的氮气,从初始温度300K 加热到400K. (1)如加热时分别体积不变需要多少热量?(2) 如加热时分别压强不变需要多少热量? [答案: Q V =683J; Q p =957J]解:(1) RT pV ν= RTpV=ν ()J R RT pV T C E m V 6901003000082.01001.125300400255.=⨯⨯⨯⨯=-=∆=∆νJE Q V 690=∆=(2)J T R RTpVT C Q m p p 9661003000082.01001.1271255.=⨯⨯⨯⨯=∆⎪⎭⎫⎝⎛+=∆=ν 13.6 将500J 的热量传给标准状态下2 mol 氢气.(1)若体积不变,问此热量变为什么?氢气的温度变为多少?(2)若温度不变,问此热量变为什么?氢气的压强及体积各变为多少?(3)若压强不变, 问此热量变为什么? 氢气的温度及体积各变为多少?[答案: (1) T=285K; (2)Pa 1007.942⨯=p ,V 2=0.05m 3,(3)T =281.6K; V 2=0.046 m 3] 解:(1) 全部转化为内能 T C Q m V V ∆=.ν K R C Q T m V 12252500.=⨯==∆ν K T 15.2851215.2732=+=(2) 全部转化为对外界做功 12lnV V RT Q T ν= 12V e V RTQ T ν= 3310448.0104.222m V =⨯⨯=-3205.0m V =2211V p V p = Pa V V p p 4521121007.905.00448.010013.1⨯=⨯⨯==(3) 一部分用于对外做功,一部分用于内能增加 T C Q m p p ∆=.νK R C Q T mp p6.8272500.=⨯==∆ν K T 75.2816.815.2732=+=2211T V T V = 32112046.075.28115.2730448.0m T T V V =⨯==13.7 一定量的理想气体在某一过程中压强按2Vcp =的规律变化,c 是常量.求气体从V 1增加到 V 2所做的功.该理想气体的温度是升高还是降低? [答案: 2121);11(T T V V c A >-= ]解:⎪⎪⎭⎫ ⎝⎛-===⎰⎰212112121V V c dV V cpdV W V V V V 由理想气体状态方程 RT pdV ν= 得,RTV V c ν=2RT V cν= 可知1221V V T T = 因为 12V V > , 所以 21T T > 即气体的温度降低13.8 1mol 氢,在压强为1.0×105Pa,温度为20o C 时体积为0V .今使它分别经如下两个过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80o C,然后令它等温膨胀使体积变为原来的2倍;(2)先等温膨胀至原体积的2倍,然后保持体积不变加热至80o C .试分别计算以上两种过程中吸收的热量、气体做的功和内能的增量,并作出p-V 图.[答案: Q 2=2933J,A =1687J,∆U =1246J]解:(1) 定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ 等温过程 J E 0=∆ ()J RT V V RT Q A T 16.20342ln 8015.27331.82ln ln12=⨯+⨯==== J Q 66.3280=总 J A 16.2034=总 J E 50.1246=∆总 (2) 等温过程J E 0=∆J RT Q A T 56.16882ln 15.29331.82ln =⨯⨯===定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ J Q 06.2935=总 J A 56.1688=总 J E 50.1246=∆总 13.9 某单原子理想气体经历一准静态过程,压强Tcp =,其中c 为常量.试求此过程中该气体的摩尔热容C m . [答案: C m =(7/2)R ] 解:由理想气体状态方程 RT pV ν= 其中 Tc p =得, 2T cRV ν=dT cRTdV ν2=根据热力学第一定律,A E Q +∆= T R R dT c RT T c T R pdV T C Q m V ∆⎪⎭⎫ ⎝⎛+=+∆=+∆=⎰⎰223223.νννν 则可得,R T Q C m 27=∆=ν13.10 为了测定气体的γ=⎛⎝ ⎫⎭⎪C C p V 可用下列方法:一定量的气体初始温度、压强和体积分别为T 0,p 0和V 0,用通有电流的铂丝对它加热,第一次保持气体体积V 0不变,温度和压强各变为T 1和p 1;第二次保持压力,p 0不变,温度和体积各变为T 2和V 1,设两次加热的电流和时间都相同.试证明γ=--()()p p V V V p 100100解: 过程1为定容过程 V 不变,()01T T C T C Q V V -=∆=νν由理想气体状态方程得, 000RT V p ν= R V p T ν000=101RT V p ν= RV p T ν011=即 ()001V p p RC Q V-=(1) 过程2为定压过程 p 不变,()02T T C T C Q p p -=∆=νν由理想气体状态方程得, RV p T ν102=即 ()001p V V R C Q p -= (2)由(1)(2)式即证得, ()()001001p V V V p p C C Vp --==γ13.11气缸内有单原子理想气体,若绝热压缩使其容积减半,问气体分子的平均速率变为原来速率的几倍?若为双原子理想气体,又为几倍?[答案:1.26;1.15] 解:由理想气体绝热方程 常量=-T V 1γ 得,212111T V T V --=γγ 12112-⎪⎪⎭⎫ ⎝⎛=γV V T T 其中1221V V =1122-=γT T又由 M RTπυ8= 可知, 2112122-==γυυT T1p 单原子理想气体 R 35=γ, 则 26.123112==υυ双原子理想气体 R 57=γ, 则 15.125112==υυ13.12一定量的理想气体经历如图13-43所示的循环,其中AB 、CD 是等压过程,BC 、DA 是绝热过程,A 、B 、C 、D 点的温度分别为T 1、T 2、T 3、T 4.试证明此循环效率为 231T T -=η. 解:等压过程AB 吸热 ()121T T C Q p -=ν等压过程CD 放热 ()432T T C Q p -=ν BC 、DA 是绝热过程 0=Q 124312111T T T T Q Q Q A---=-==η 利用绝热方程 常量=--γγT p 1 得,γγγγ----=312211T p T p 31122T p p T γγ--⎪⎪⎭⎫⎝⎛=γγγγ----=412111T p T p 41121T p p T γγ--⎪⎪⎭⎫⎝⎛=2311211T T p p -=⎪⎪⎭⎫⎝⎛-=-γγη 13.13设有一理想气体为工作物质的热机循环,如图13-44所示,试证明其效率为1)/(1)/(12121---=p p V V γη.解:b a →为等体升温过程,吸热 ()a b m V T T C Q -=.1νa c →为等压压缩过程, 放热()a c m p T T C Q -=.2ν2 1图13-45习题13.14狄赛尔循环()()a b m V a c m p T T C T T C Q Q ---=-=..1211η 利用理想气体状态方程 RT pV ν=, 得()()222111V p V p RV p V p R T T a a b b a b -=-=-νν 循环效率为 ()()1111212122212212---=---=p p V V V p V p V p V p γγη 13.14 有一种柴油机的循环叫做狄赛尔循环,如图13-45所示.其中BC 为绝热压缩过程,DE 为绝热膨胀过程,CD 为等压膨胀过程,EB 为等容冷却过程,试证明此循环的效率为⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛-'-=-11)/(121212V V V V V V γγγη解:CD 为等压膨胀过程, 吸热 ()C D p T T C Q -=ν1EB 为等容冷却过程, 放热 ()B E V T T C Q -=ν2 循环效率 CD BE T T T T Q Q ---=-=γη11112 利用理想气体状态方程 RT pV ν=, 得()B B E E B E V p V p R T T -=-ν1()C C D D C D V p V p RT T -=-ν1()()2'11111V V p p p V V p V p V p V p C B E C C D D B B E E ---=---=γγη 利用绝热方程 常量=γpV , 得γγE E D D V p V p = E D p V V p γ⎪⎭⎫ ⎝⎛='1()()221211V p V p RV p V p R T T a a c c a c -=-=-ννγγB BC C V p V p = B C p VV p γ⎪⎪⎭⎫ ⎝⎛=21 由C D p p =得 γ⎪⎪⎭⎫ ⎝⎛=2'V V p p B E()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=-111111111112'1212'2'122'1V V V V V V V V V V p p p p V V p p p p V B C B EB C B E γγγγγη 13.15 1mol 理想气体在400K-300K 之间完成一卡诺循环,在400K 的等温线上,起始体积为0.001 m 3,最后体积为 0.005 m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量.[答案:A =1.24×103J,Q 2=4.01×103J] 解:J V V RT Q 312111035.5ln⨯==ν 该循环效率为 %254003001112=-=-=T T η 可得 J Q A 311034.1⨯==η由 21Q Q A -=, 得 J A Q Q 3121001.4⨯=-=13.16 1mol 刚性双原子分子理想气体,作如图13-46所示的循环,其中1-2为直线,2-3为绝热线,3-1为等温线,且已知θ=450,T 1=300K,T 2=2T 1,V 3=8 V 1,试求:(1)各分过程中气体做功、吸热及内能增量;(2)此循环的效率. 解:(1)21→由理想气体状态方程可得, 111RT V p =222RT V p = 又由图可知,11V p =, 22V p =121RT V= 11RT V =1222RT V = 122RT V =22V V =()J R T T C E V 5.62323002512=⨯=-=∆ ()J RT V V VdV pdV A V V V v 5.12462121121222121==-===⎰⎰J A E Q 7479=+∆= 吸热32→O Q = A E -=∆ 利用绝热方程 γγpV V p =22, 得 13322223232--===⎰⎰γγγV p V p VdVV p pdV A V V V V γγ3322V p V p = 2323p VV p γ⎪⎪⎭⎫ ⎝⎛= J RT V V V p VV V p A 5.62321578212182128157122122223222=-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-⎪⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--γγγγ13→0=∆E A Q =J V V RT A 51848ln 30031.8ln131-=⨯⨯-=-= J Q 5184-= 放热(2) 循环效率 %7.30747951841112=-=-=Q Q η *13.17 0.1mol 单原子理想气体,由状态A经直线AB 所表示的过程到状态B,如图13-47所示,已知V A =1L , V B =3L ,p A =3atm .(1)试证A 、B 两状态的温度相等;(2)求AB 过程中气体吸收的热量;(3)求在AB 过程中,温度最高的状态C 的体积和压力(提示:写出过程方程T =T (V ));(4)由(3)的结果分析从A 到B 的过程中温度变化的情况,从A 到C 吸热还是放热?证明Q CB =0.能否由此说从C 到B 的每个微小过程都有δQ =0? 解:(1) 由理想气体状态方程, 得 A A A RT V p ν= B B B RT V p ν=又由已知条件可知 B B A A V p V p = 即证: B A T T =(2) ()0=-=∆A B V T T C E νp (atm)图13-47 习题13.17图J pdV A 25310052.410013.11022221⨯=⨯⨯⨯⎪⎭⎫⎝⎛+⨯⨯==-⎰J A Q 210052.4⨯==(3) 由理想气体状态方程 RT pV ν=, 得R pV T ν=又由图可知: 4+-=V p 即 ()V V R T 412+-=ν 由极值条件:0=dVdT, 得 042=+-V即当 L V 2=, atm p 2= 时T 取到极大值(4) 由 (3) 可知, B A →过程中 温度T 满足函数 ()V V RT 412+-=ν C A →过程中温度升高,到达C 点时取得极大值B C →过程中温度降低,到达点时温度又回到A 点时的值C A →过程 ()0>-=∆A C V T T C E ν0>A0>+∆=A E Q 吸热dA dE dQ +=()()dV V V RC dT C dE VV 63421+-=+-==ννν ()dV V pdV dA 4+-==()dV V dQ 104+-= 即证: ()010432=+-=⎰dV V Q LLCB但不能说从C 到B 的每个微小过程都有0=Q δ13.18一台家用冰箱放在气温为300K 的房间内,做—盒-13℃的冰块需从冷冻室中吸出 2.09×105J 的热量.设冰箱为卡诺制冷机,求: (1)做一盒冰块所需之外功;(2)若此冰箱能以2.09×102J·s -1的速率取出热量,求所要求的电功率是多少瓦? (3)做一盒冰块所需之时间. 解:(1)卡诺循环 制冷系数2122T T T A Q e -==abcpVOabcdOp 代入数据得 5.6260300260=-=eJ e Q A 4521022.35.61009.2⨯=⨯==(2) W e P P 2.325.61009.22'=⨯==(3) h s P Q t 28.0101009.21009.2325'2≈=⨯⨯== 13.19 以可逆卡诺循环方式工作的致冷机,在某种环境下它的致冷系数为w =30.在同样的环境下把它用作热机,问其效率为多少?[答案:%2.3=η]解:卡诺循环 制冷系数AQ w 2=得 wA Q =2 卡诺热机循环效率 1Q A=η 且 A Q Q +=21 ()%2.33011111=+=+=+=w A w A η13.20根据热力学第二定律证明: (1)两条绝热线不能相交;(2) 一条等温线和一条绝热线不能相交两次.解:(1)假设两条绝热线可以相交,如图所示ab 为等温线 bc 、ac 为绝热线此循环过程中 A Q =1 即热全部转化为功, 这与热力学第二定律的开尔文表述相矛盾 所以,即证得:两条绝热线不能相交(2) 假设一条等温线和一条绝热线可以两次相交,如图所示ab 为等温线 cd 为绝热线此循环过程中 A Q =1 即热全部转化为功 这与热力学第二定律的开尔文表述相矛盾, 即证13.21一杯质量180g 温度为100 0C 的水置于270C 的空气中,冷却到室温后水的熵变是多少?空气的熵变是多少?总熵变是多少?[答案:-164J/K ,233J/K ,69J/K]解:熵变的定义:⎰=∆T dQS 热量的计算公式: ⎰=mcdT Q112165300373ln 22.4180ln 21-⋅-=⨯⨯-====∆⎰⎰K J T T mc dT T mc T dQ S T T 水 ()122121853007322.4180-⋅=⨯⨯=-===∆⎰K J T T T mc T Q T dQ S 空气 120165185-⋅=-=∆+∆=∆K J S S S 空气水总13.22 1mol 理想气体经一等压过程,温度变为原来的2倍.该气体的定压摩尔热容为C p ,m ,求此过程中熵的增量. [答案: 2ln Δp C S =] 解:2ln 2121p T T p T T p C TdTC TdT C S ===∆⎰⎰13.23 一房间有N 个分子, 某一宏观态时其中半个房间的分子数为n .⑴写出这种分布的熵的表达式S =k ln Ω; ⑵n =0状态与n =N /2状态之间的熵变是多少? ⑶如果N=6⨯1023,计算这个熵差.解:(1)根据玻耳兹曼熵的表达式 W k S ln =, 得()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛--NN n N k eN k n W k S A NN n A 222222ln2ln ln 2(2)熵的变化:k N NN N k N k S S S A AN 2222ln 2ln202=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯--=-=∆ (3) 23106⨯=N 时, 熵差为1232314.421038.1106--⋅=⨯⨯⨯=∆K J S第14章14.1 作简谐运动的质点,速度最大值为3cm/s ,振幅A =2cm ,若速度为正最大值时开始计时.(1)求振动的周期;(2)求加速度的最大值;(3)写出振动的表达式. 解: (1) 由2/m A A T ωπ==v ,可得2/20.02/0.03 4.2m T A s ππ==⨯⨯=v(2) 22222/0.03/0.02 4.510/m m a A A m s ω-====⨯v(3) 由于0t =时,m =+v v ,可知/2ϕπ=-,而10.03/0.021.5ms Aω-===v ,所以有cos()0.02cos(1.5/2)x A t t ωϕπ=+=-14.2 一水平弹簧振子的振幅A =2cm,周期T =0.50s.当t =0时 (1)物体过x =1cm 处且向负方向运动;(2)物体过x =-1cm 处且向正方向运动.分别写出以上两种情况下的振动表达式. 解: (1) 22cos() 2.010cos(4)3x A t t T ππϕπ-=+=⨯+(2) 22.010cos(42/3)x t ππ-=⨯-14.3 设一物体沿x 轴作简谐振动,振幅为12cm ,周期为2.0s ;在t =0时位移为6.0cm ,且向x 轴正方向运动.试求:(1)初相位;(2)t =0.5s 时该物体的位置、速度和加速度;(3)在x =-6.0cm 且向x 轴负方向运动时,物体的速度和加速度以及它从这个位置到达平衡位置所需要的时间. 解: (1) 001cos 23x A πϕϕ==∴=±又∵00>v ,即0sin 0A ωϕ->00sin 03πϕϕ∴<=-(2) 12cos()()0.53x t cm t s ππ=-=时0.5t s x cm ==10.52220.512sin()6312cos()3t s t st cm s a t cm sπππππππ-=-==--=-⋅=--=-⋅v(3) 12cos x ϕ=)习题14.3图2A当6x cm =-时1cos 2ϕ=-∵0sin 2ϕ<∴=v12212sin 65566cm s a x cm t t sπϕωππϕϕωωπ-=-=-⋅=-=∆∆=⋅∆∆===v 14.4 两个谐振子作同频率、同振幅的简谐振动.第一个振子的振动表达式为)c o s (1φω+=t A x ,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点.求:(1)第二个振子的振动表达式和二者的相位差;(2)若t =0时,21Ax -=并向x 负方向运动,画出二者的x-t 曲线及旋转矢量图.解: (1) 用旋转矢量法分析,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰好在正方向端点。
大学物理课后习题答案(北邮第三版)下

大学物理习题及解答习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷20220)33(π4130cos π412a q q a q '=︒εε解得q q 33-='(2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得θπεθtan 4sin 20mg l q =8-3 根据点电荷场强公式204r qE πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解:20π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,S qE 0ε=,所以f=Sq2ε.试问这两种说法对吗?为什么?f到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqEε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为SqE2ε=,另一板受它的作用力SqSqqf222εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l qpϖϖ=,场点到偶极子中心O点的距离为r,矢量rϖ与lϖ的夹角为θ,(见题8-5图),且lr>>.试证P点的场强E在r方向上的分量r E和垂直于r的分量θE 分别为rE=32cosrpπεθ, θE=34sinrpπεθ证: 如题8-5所示,将pϖ分解为与rϖ平行的分量θsinp和垂直于rϖ的分量θsinp.∵lr>>∴场点P在r方向场强分量3π2cosrpErεθ=垂直于r方向,即θ方向场强分量30π4sinrpEεθ=题8-5图题8-6图8-6 长l=15.0cm的直导线AB上均匀地分布着线密度λ=5.0x10-9C·m-1的正电荷.试求:(1)在导线的延长线上与导线B端相距1a=5.0cm处P点的场强;(2)在导线的垂直平分线上与导线中点相距2d=5.0cm 处Q点的场强.解:如题8-6图所示(1)在带电直线上取线元x d,其上电量q d在P点产生场强为2)(dπ41dxaxEP-=λε222)(dπ4dxaxEEllPP-==⎰⎰-ελ]2121[π4lala+--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=lQx E 0d ,即QE ϖ只有y 分量,∵22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d ll x x2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0R E E x ==ϕϕελϕπd cos π4)cos(d d 0R E E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπR E y∴REExπ2ελ==,方向沿x轴正向.8-8 均匀带电的细线弯成正方形,边长为l,总电量为q.(1)求这正方形轴线上离中心为r 处的场强E;(2)证明:在lr>>处,它相当于点电荷q产生的场强E.解: 如8-8图示,正方形一条边上电荷4q在P点产生物强P Eϖd方向如图,大小为()4π4coscosd2221lrEP+-=εθθλ∵22cos221lrl+=θ12coscosθθ-=∴24π4d2222lrllrEP++=ελPEϖd在垂直于平面上的分量βcosddPEE=⊥∴424π4d222222lrrlrlrlE+++=⊥ελ题8-8图由于对称性,P点场强沿OP方向,大小为2)4(π44d42222lrlrlrEEP++=⨯=⊥ελ∵lq4=λ∴2)4(π42222lrlrqrEP++=ε方向沿OP8-9 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q的电场中取半径为R的圆平面.q在该平面轴线上的A 点处,求:通过圆平面的电通量.(x Rarctan=α)解: (1)由高斯定理0d εq S E s⎰=⋅ϖϖ 立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴)(π42200x R Sq +=Φε02εq=[221x R x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r S ααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ,02π4ε∑=qr E当5=r cm 时,0=∑q ,=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r -∴()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2=则rlE S E Sπ2d =⋅⎰ϖϖ对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴r E 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, nE ϖϖ)(21210σσε-= 1σ面外, nE ϖϖ)(21210σσε+-=2σ面外, nE ϖϖ)(21210σσε+=n ϖ:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E ϖ,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=ϖ∴ O 点电场'd 33030OO r E ερ=ϖ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ϖρ-球在O '产生电场002='E ϖ∴ O ' 点电场003ερ='E ϖ'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ(如题8-13(b)图)则03ερrE PO ϖϖ=,03ερr E O P '-='ϖϖ,∴0003'3)(3ερερερd OO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯= ∴ qlE pE M ==max代入数字 4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解:⎰⎰==⋅=2221212021π4π4d d r r r r q q r r q q r F A εεϖϖ)11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R q R q -R q 0π6ε-=∴R qq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sinπ-] R 0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生0034π4πελελ==R R U∴0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强r E 0π2ελ=电子受力大小r e eE F e 0π2ελ==∴ r v mre 20π2=ελ 得1320105.12π2-⨯==e mv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E ϖ与电势U 的关系U E -∇=ϖ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷r qU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ϖϖϖε=∂∂-= 0r ϖ为r 方向单位矢量.(2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qx i x U E ϖϖϖ2/3220π4+=∂∂-=ε(3)偶极子l q p ϖϖ=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql l l r q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-=30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即∴AB AB AC AC E E d d =∴ 2d d 21===AC ABAB AC E E σσ且 1σ+2σS q A=得,32S q A=σ S q A 321=σ 而7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2)301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εεϖϖ(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:π4π42020=-=R qR qU εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q '(电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21='外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+R qR q εε得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F.试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电qq 43=''∴ 此时小球1与小球2间相互作用力0220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q.∴ 小球1、2间的作用力0294π432322F r qq F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得S q261==σσ S qd U 2032-=-=εσσ S qd U 2054+=-=εσσ所以CB 间电场S q d U E 00422εεσ+== )2d (212d 02S q U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势. 解: 利用有介质时的高斯定理∑⎰=⋅qS D Sϖϖd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内;介质外)(2R r <场强303π4,π4r r Q E r Qr D εϖϖϖ==外 (2)介质外)(2R r >电势r Q E U 0rπ4r d ε=⋅=⎰∞ϖϖ外介质内)(21R r R <<电势rd r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内2020π4)11(π4R Q R rqr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势rd r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε )11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D ϖϖ得11σ=D ,22σ=D而101E D ε=,202E D r εε=d 21UE E ==∴ r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑∴rl Q D π2=(1)电场能量密度22222π82l r Q D w εε== 薄壳中rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R V R R l Q rl r Q W W εε(3)电容:∵C Q W 22=∴)/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力为零,没有加速度.(2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C +=其上电荷123Q Q =∴355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r rQ E εϖϖ=3R r >时 302π4r rQ E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量)111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E εϖϖ=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容)11/(π422102R R Q W C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向?解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B ϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcd μϖϖ ∴ 21B B ρϖ= (2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L ϖ·d l ϖ=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB 产生 01=B ϖCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B ϖ在2L 外侧距离2L 为r 处则02)1.0(220=-+rIr I πμπμ解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理 I(力学、相对论、电磁学)_北京交通大学中国大学mooc课后章节答案期末考试题库2023年

大学物理 I-(力学、相对论、电磁学)_北京交通大学中国大学mooc 课后章节答案期末考试题库2023年1.如图所示,一斜面固定在卡车上,一物块置于该斜面上。
在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动。
此时斜面对物块的摩擦力的冲量的方向[ ]。
【图片】参考答案:沿斜面向上或向下均有可能2.如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的且固定在地面上,物体在从A至C的下滑过程中,下面哪个说法是正确的?[ ]【图片】参考答案:轨道支持力的大小不断增加3.一个质点在某一运动过程中,所受合力的冲量为零,则[ ]。
参考答案:质点的动量的增量为零_质点的动量不一定守恒4.关于质点系内各质点间相互作用的内力做功问题,以下说法中正确的是[ ]。
参考答案:一对内力所做的功之和一般不为零,但不排斥为零的情况5.下列说法中正确的是[ ]。
参考答案:系统内力不改变系统的动量,但内力可以改变系统的动能6.静止在原点处的某质点在几个力作用下沿着曲线【图片】运动。
若其中一个力为【图片】,则质点从O点运动到【图片】点的过程中,力【图片】所做的功为[ ]。
参考答案:12J7.质量为m=0.01kg的质点在xOy平面内运动,其运动方程为【图片】,则在t=0 到t=2s 时间内,合力对其所做的功为[ ]。
参考答案:2J8.如图所示,质量为M半径为R的圆弧形槽D置于光滑水平面上。
开始时质量为m的物体C与弧形槽D均静止,物体 C 由圆弧顶点 a 处下滑到底端 b 处的过程中,分别以地面和槽为参考系,M与m之间一对支持力所做功之和分别为[ ]。
【图片】参考答案:=0;=09.对质点系有以下几种说法:① 质点系总动量的改变与内力无关;② 质点系总动能的改变与内力无关;③ 质点系机械能的改变与保守内力无关;④ 质点系总势能的改变与保守内力无关。
在上述说法中[ ]。
参考答案:①和③是正确的10.质量分别为【图片】和【图片】的两个小球,连接在劲度系数为k的轻弹簧两端,并置于光滑的水平面上,如图所示。
大学物理 交通大学下册答案

11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强。
解:以O 为坐标原点建立xOy 坐标,如图所示。
①对于半无限长导线A ∞在O 点的场强:有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B ∞在O 点的场强: 有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有:2002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R ππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j R λπε=+。
或写成场强:22024O x O y E E E R λπε=+=,方向45。
11-11.一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体中挖去半径为r 的一个小球体,球心为O ',两球心间距离d O O =',如图所示。
求:(1)在球形空腔内,球心O '处的电场强度0E ;(2)在球体内P 点处的电场强度E ,设O '、O 、P 三点在同一直径上,且d OP =。
解:利用补偿法,可将其看成是带有电荷体密度为ρ的大球和带有电荷体密度为ρ-的小球的合成。
(1)以O 为圆心,过O '点作一个半径为d 的高斯面,根据高斯定理有:13043S E d S d ρπε⋅=⋅⎰⇒003d E ρε=,方向从O 指向O '; xyE(2)过P 点以O 为圆心,作一个半径为d 的高斯面。
大学物理(交大3版)答案(21-23章)

n = k +1
v 习题 22
22-1.计算下列客体具有 10MeV 动能时的物质波波长,(1)电子; (2)质子。 解:(1) 电子高速运动,设电子的总能量可写为:= E EK + m0 c 2
2 4 = E 2 c 2 p 2 + m0 c 可得
用相对论公式,
p=
1 1 1 2 4 2 4 2 ( EK + m0 c 2 ) 2 − = E 2 − m0 c = m0 c EK + 2m0 c 2 EK c c c
E 1.6 × 10−13 = = 1.78 × 10− 30 kg c 2 (3 × 108 ) 2
P=
m=
21-6. 100 W 钨丝灯在 1800K 温度下工作。假定可视其为黑体,试计算每秒钟内,在
5000 A 到 5001 A 波长间隔内发射多少个光子?
解:设钨丝灯的发射面积为 S ,由斯特藩-玻耳兹曼定律可得辐射总功率 P = σT ⋅ S
N =
P∆λ 2π cλ −4 S ∆λ = = 5.7 ×1013 hc e e λ kT − 1
21-7.波长为 1 A 的 X 光在石墨上发生康普顿散射,如在 θ = (1)散射光的波长 λ ' ; (2)反冲电子的运动方向和动能。 解:(1)
π
2
处观察散射光。试求:
θ Δλ = λ′ − λ0 = 2 λc sin 2 ( ) 2
= λ
h = p
h = 2mE
6.63 ×10−34 = 9.1×10−15 m −27 −19 6 2 ×1.67 ×10 ×10 ×10 ×1.6 ×10
−2
A )的光子的能量、动量和质量。
最新大学物理(北邮大)答案习题9

大学物理(北邮大)答案习题9习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcdμ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ 外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB产生 01=BBC 产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
北京交通大学物理慕课单元作业答案

北京交通大学物理慕课单元作业答案1、1.高速公路上沿直线高速行驶的轿车为避免事故紧急刹车:因为轿车紧急刹车,速度变化很快,所以加速度很大.[判断题] *对(正确答案)错2、司机驾车时必须系安全带,这是为了防止向前加速时惯性带来的危害[判断题] *对错(正确答案)答案解析:防止刹车时惯性带来的危害3、下列情形中,矿泉水瓶中水的质量会发生变化的是()[单选题] *A. 打开瓶盖,喝掉几口(正确答案)B. 将这瓶水放入冰箱,水温度变低C. 水结成冰,体积变大D. 宇航员将这瓶水带到太空4、人潜水的深度不能太大,这是因为大气压随着水的深度的增加而增大[判断题] *对错(正确答案)答案解析:液体压强随着水的深度的增加而增大5、原子核分裂或聚合,可以释放出巨大的能量,这种能叫做化学能[判断题] *对错(正确答案)答案解析:核能不是化学能6、关于声现象中,下列说法正确的是()[单选题]A.“闻其声而知其人”主要是根据声音的音调来判断的B.用大小不同的力先后敲击同一音叉,音叉发声的音色会不同C.公共场合要“轻声说话”指的是减小声音的响度(正确答案)D.超声波可以在真空中传播7、65.卢瑟福用α粒子(带正电)轰击金箔实验为现代原子理论打下了基础,如图线条中,可能是α粒子在该实验中的运动轨迹,能说明原子核带正电且质量较大的是()[单选题] *A. aB. bC. cD.d(正确答案)8、著名风景区百花山,远远望去云雾缭绕。
关于雾的形成,下列说法正确的是()[单选题]A. 雾是从山中冒出来的烟B. 雾是水蒸气凝华形成的小水珠C. 雾是从山中蒸发出来的水蒸气D. 雾是水蒸气液化形成的小水珠(正确答案)9、2.银行有存储贵重物品的业务,需要记录“手纹”、“眼纹”、“声纹”等,以便用自己独有的特征才能取走东西,防止盗领,这里的“声纹”主要记录的是人说话的([单选题] *A.音调B.响度C.音色(正确答案)D.三者都有10、关于光现象,下列说法正确的是()[单选题]A. 光在水中的传播速度是3×108m/sB.矫正近视眼应佩戴凸透镜C. 光的色散现象说明白光是由多种色光组成的(正确答案)D. 镜面反射遵守光的反射定律,漫反射不遵守光的反射定律11、水的温度没有达到沸点时,水是不能变为水蒸气的[判断题] *对错(正确答案)答案解析:水在任何温度下都可以蒸发变成水蒸气12、17.影视剧中,为了防止演员受伤,砸向演员的道具石头一般是用泡沫塑料制成的。
北京交通大学大学物理试卷模拟及答案

北京交通大学 大学物理Ⅰ(B )知识水平测试题模 拟 试 题 本试题共6页一、 选择题 (单项选择、每小题3分)1 (0519)对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零.(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.(D) 若物体作匀速率运动,其总加速度必为零. (E) 若物体的加速度a 为恒矢量,它一定作匀变速率运动.2(0039)如图所示,假设物体沿着竖直面上圆弧形 轨道下滑,轨道是光滑的,在从A 至C 的下滑过程中,下 面哪个说法是正确的?(A) 它的加速度大小不变,方向永远指向圆心.(B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心. (D) 它的合外力大小不变.(E) 轨道支持力的大小不断增加.3 (0138)一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为 6.0 kg ·m 2. 如果将双臂收回则系统的转动惯量变为2.0 kg ·m 2.此时系统的转动动能与原来的转动动能之比E k / E k 0为(A) 2. (B) 3.(C) 2. (D) 3.4 (4351)宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t(C) 2)/(1c tc v -⋅∆ (D) 2)/(1c t c v -⋅⋅∆5 (4169)在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c .(C) (2/5) c . (D) (1/5) c .A R6 (4723)质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的(A) 4倍. (B) 5倍. (C) 6倍. (D) 8倍.7(1001)一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零.(C) 处处不为零. (D) 无法判定 .8 (1019)在点电荷+q 的电场中,若取图中P 点 处为电势零点 , 则M 点的电势为(A) a q 04επ. (B) aq 08επ.(C) a q 04επ-. (D) aq 08επ-.9(1137)一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它下方放置一电量为q 的点电荷,如图所示,则(A) 只有当q > 0时,金属球才下移. (B) 只有当q < 0时,金属球才下移. (C) 无论q 是正是负金属球都下移. (D) 无论q 是正是负金属球都不动. 10(1226)两个完全相同的电容器C 1和C 2,串联后与电源连接.现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小. (B) C 1上的电荷大于C 2上的电荷.(C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大.11(2553)在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A) R 140πμ. (B) R 120πμ. (C) 0. (D) R 140μ.12(2658)若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出.(C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出.13 (2451) 一铜条置于均匀磁场中,铜条中电子流的方向 如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速.14(2505)一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω 绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t这根铜棒两端之间的感应电动势是: (A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω. (E) B L 221ω. 15(2420)在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B 的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在AB 导线中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于AB 导线中的电动势. 16 (2183) 在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明: (A) 闭合曲线L 上K E 处处相等.(B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线.(D) 在感应电场中不能像对静电场那样引入电势的概念.二、 填空题1 (本题3分)(0261)一质点从静止出发沿半径R =1.0 m 的圆周运动,其角加速度随时间t 的变化规律是β =12t 2 -6t (SI),则质点的角速度ω =________________________; 切向加速度 a t =________________________.2(本题3分)(0871)质点在几个力作用下,沿曲线 j y i x r 23+= (SI) 运动,若其中一力为i x F 2= (SI) ,则该力在质点由P 1 (0,1)到P 2 (1,0)运动B × × ×的过程中所做的功为___________________.3(本题3分)(0540)一质点的角动量为k t t j t i t L)812()12(6232-++-= , 则质点在t = 1 s 时所受力矩=M _________________________________.4(本题4分)(0134)如图所示,长为L 、质量为m 的匀质细杆,可绕通过杆的端点O 并与杆垂直的水平固定轴转动.杆的另一端连接一质量为m 的小球.杆从水平位置由静止开始自由下摆,忽略轴处的摩擦,当杆转至与竖直方向成θ 角时,小球与杆的角速度ω=_______________.对O 轴的力矩M = . 角加速度β=_______________.5(本题3分)(0236)质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________.6(本题2分)(4362)静止时边长为 50 cm 的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 2.4×108 m ·s -1运动时,在地面上测得它的体积是____________.7(本题3分)(1499)点电荷q 1、q 2、q 3和q 4在真空中的分布如图所示.S 为闭合曲面,则通过该闭合曲面的 电场强度通量⎰⋅S S E d =____________,式中的E 是点电荷 在闭合曲面上任一点产生的场强的矢量和.8(本题3分)(1511)一空气平行板电容器,电容为C ,两极板间距离为d .充电后,两极板间相互作用力为F .则两极板间的电势差为_______,极板上的电荷为 .m0 俯视图q 1q 39(本题3分)(2586).如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B中,且B 与导线所在平面垂直.则该载流导线bc 所受的 磁力大小为_________________.10(本题3分)(2598)氢原子中,电子绕原子核沿半径为r 的圆周运动,它等效于一个圆形电流.(设电子质量为m e ,电子电荷的绝对值为e ) . 其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩(角动量)大小L 之比=Lp m ________________. 如果外加一个磁感应强度为B 的磁场,其磁感应线与轨道平面平行,那么这个圆电流所受的磁力矩的大小M =__________________.11(本题3分)(2186)一平行板电容器,两板间为空气,极板是半径为r 的圆导体片,在充电时极板间电场强度的变化率为tE d d ,若略去边缘效应,则两极板间位移电流密度为________________;位移电流为_________________________.计算题(每题8分、共16分)1 (1540) 一圆柱形电容器,内圆柱的半径为R 1,外圆柱的半径为R 2,长为L [L >>(R 2 – R 1)],两圆柱之间充满相对介电常量为εr 的各向同性均匀电介质.(1) 求该电容器的电容; (应有必要过程)(2) 若内外圆柱单位长度上带电荷(即电荷线密度)分别为λ和-λ,求电容器储存的能量.2 (2167)一无限长直导线通有电流t e I I -=0. 一矩形导体线圈与长直导线共面放置, 其长边与导线平行, 如图所示. 试求:(1) 导线与线圈的互感系数M . (应有必要过程)(2) 矩形线圈中的感应电动势的大小与方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新教材下册习题解答(教师用) 第12章12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后,长度之比是多少)?解:活塞两侧气体的始末状态满足各自的理想气体状态方程左侧: T pV T V p 111= 得, T pT V p V 111=右侧:T pV T V p 222= 得, T pT Vp V 222=122121T p T p V V = 即隔板两侧的长度之比 122121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2atm ,密度32kg/m 1024.1-⨯=ρ.求该气体的摩尔质量.解:nkT p = (1)nm =ρ (2)A mN M = (3) 由以上三式联立得:12352232028.010022.610013.1100.12731038.11024.1----⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量.解:()V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ()()RT MM MVV p 2122-=- (2)(1)、(2)式联立得: ()()()Vp p RT M M V p Vp p RTM M M 212121221--=⎪⎪⎭⎫ ⎝⎛--=12.4在实验室中能够获得的最佳真空相当于大约10-14atm (即约为10-10mmHg 的压强),试问在室温(300K )下在这样的“真空”中每立方厘米内有多少个分子? 解: 由nkT p = 得,35311235141045.21045.21038.130010013.110----⨯=⨯=⨯⨯⨯⨯==cm m kT p n 12.5已知一气球的容积V =8.7m 3,充以温度t 1=150C 的氢气,当温度升高到370C 时,维持其气压p 及体积不变,气球中部分氢气逸出,而使其重量减轻了0.052kg ,由这些数据求氢气在00C,压力p 下的密度. 解:V p 1t m V p 2t ()V V -2 p 2t m ∆3V p 3t m 由221t V t V = (1)mmV V V ∆=-22 (2)331t V t V = (3) 3V m=ρ (4) 由以上四式联立得: 3231122109.815.2737.815.288052.02215.310--⋅⨯=⨯⨯⨯=∆-=m kg Vt t m t t t ρ 12.6真空容器中有一氢分子束射向面积2cm 0.2=S 的平板,与平板做弹性碰撞.设分子束中分子的速度13s m 100.1-⋅⨯=v ,方向与平板成60º夹角,每秒内有23100.1⨯=N 个氢分子射向平板.求氢分子束作用于平板的压强. [2.9×103Pa] 解: AN M m =Pa SNm S F p 323433230109.210022.6100.223100.110210260sin 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===--v12.7 下列系统各有多少个自由度:⑴在一平面上滑动的粒子;⑵可以在一平面上滑动并可围绕垂直于该平面的轴转动的硬币;⑶一弯成三角形的金属棒在空间自由运动. 解:(1) 2 (2) 3 (3) 612.8 容器内贮有氧气,其压强Pa 101.013atm 15⨯==p ,温度t =270C,求: (1)单位体积内的分子数;(2)分子的质量m ;(3)氧气的密度ρ;(4)分子的方均根速率;(5)分子的平均平动能;(6)在此温度下,4g 氧的内能. 解:(1) 由 nkT p = 得,3252351045.215.3001038.110013.1--⨯=⨯⨯⨯==m kT p n (2) kg N M m A 262331031.510022.61032--⨯=⨯⨯== (3) 3262530.11031.51045.2--⋅=⨯⨯⨯==m kg nm ρ(4) 12321084.4103215.30031.833--⋅⨯=⨯⨯⨯==s m M RTv (5) J kT k 21231021.615.3001038.12323--⨯=⨯⨯⨯==ε (6) J RT M m 21079.715.30031.82532425⨯=⨯⨯⨯==ε12.9 1mol 氢气,在温度270C 时,求⑴具有若干平动动能;⑵具有若干转动动能;⑶温度每升高10C 时增加的总动能是多少? 解: (1) J RT 311074.315.30031.82323⨯=⨯⨯==ε (2) J RT 321049.215.30031.822⨯=⨯==ε(3) J R 8.2025==∆ε12.10 试求1mol 氢气分别在0℃和500℃时的内能.解: J RT 3111067.515.27331.82525⨯=⨯⨯==ε J RT 4221061.115.77331.82525⨯=⨯⨯==ε12.11 (1)求在相同的T 、p 条件下,各为单位质量的 H 2气与He 气的内能之比.(2)求在相同的T 、p 条件下,单位体积的H 2气与He 气的内能之比. 解:(1) RT E H 25102132⨯⨯=- RT E eH 2310413⨯⨯=-3102=eH H E E (2) 由nkT p =, 相同的T 、p 条件,可知: e H H n n =2 kT n E H H 2522= kT n E e e H H 23=352=eH H E E 12.12 设山顶与地面的温度均为273K,空气的摩尔质量为0.0289kg ·mol -1.测得山顶的压强是地面压强的3/4,求山顶相对地面的高度为多少? 解:依题意有,340=p p 由气压公式有:m p p g RT h 301030.234ln 81.90289.027331.8ln ⨯=⨯⨯==μ 12.13 求速率大小在p v 与1.01p v 之间的气体分子数占总分子数的百分率. 解:速率间隔在p p 1.01v ~v ,即p v v 01.0=∆1==p W v v 01.0=∆=∆pW v v在p p v v 01.1~间隔的分子数占总分子数的百分数为()%83.0422=∆=∆=∆-W e W W W f N N W π12.14 求00C 的氢气分子和氧气分子的平均速率、方均根速率和最概然速率. 解: 氢气分子相对应的各种速率为1331071.110215.27331.860.160.1--⋅⨯=⨯⨯⨯==s m M RT v 13321084.110215.27331.873.173.1--⋅⨯=⨯⨯⨯==s m M RT v 1331050.110215.27331.841.141.1--⋅⨯=⨯⨯⨯==s m M RT p v 由于三种速率均与分子的摩尔质量平方根成反比4122=o H M M 所以氧气分子的三种速率为氢气分子相应速率的四分之一 121026.4-⋅⨯=s m o v 1221061.4-⋅⨯=s m o v ()121076.3-⋅⨯=s m opv12.15 如图12-31所示.两条曲线分别表示氧气和氢气在同样温度下的速率分布曲线.试问哪条曲线对应氧(氢)气的分布曲线? 氧气和氢气的最概然速率各是多少? 方均根速率各是多少? 解: 由 MRT p 2=v 可知,温度相同时,p v 与M 成反比又由图可知,12p p v v > 因此 可得,21M M > 所以, (1)为氧气的速率分布曲线 (2)为氢气的速率分布曲线()()()()2222H M O M O H p p =v v ()12500-⋅=s m O p v()()()()122222000232500-⋅===s m O H M O M H p p v v由 MRT32=v MRT p 2=v 得, p v v 232= ()12261250023-⋅=⨯=s m O v))(v f 图12-31 习题12.14图()1222450200023-⋅=⨯=s m H v12.16 设质量为m 的N 个分子的速率分布曲线如图12-32所示.(1)由N 和0v 求a 值.(2)在速率2/0v 到30v /2间隔内的分子数;(3)分子的平均平动能. 解:(1)在区间内0~0v ()v v v 0aNf = 在区间内002~v v ()a Nf =v 在区间内02~0v ,分子总数为N()0202002023200000v v v v v v v v v v v v v v a a a ad d a N =+⎪⎪⎭⎫ ⎝⎛=+=⎰⎰ 032v Na =(2)()N a a a ad d a N 12787202322023200000000==+⎪⎪⎭⎫ ⎝⎛=+=∆⎰⎰v v v v v v v v v v v v v v v v 0 (3) ()v v v v v d f ⎰=02022202020022022363191461211121210v v v v v v v v v v v v v m m ad Nd a Nm m =⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+==⎰⎰ε 12.17 设N 个粒子系统的速度分布函数为⎩⎨⎧>>>=)0),0(d d 00v v v v v (为常量K K N v⑴画出分布函数图;⑵用N 和v 0定出常数K ;⑶用v 0表示出平均速率和方均根速率. 解:(1)KO )(v Nf 0图12-32习题12.15图0v v (2) 00v v v K Kd N ==⎰ 0v NK =(3) 211000000v v v v v v vv v ===⎰⎰d d NNv00254.032383v v v v ===ππ 12.18 试从麦克斯韦速率分布律出发推写出如下分布律:(a )以最概然速率mkTp 2=v 作为分子速率单位的分子速率p x v v =的分布律;(b )分子动能221v m k =ε的分布律.并求出最概然动能kp ε,它是否就等于221p m v ? 解:麦克斯韦速率分布律 ()2223224v v v kTm e kT m f -⎥⎦⎤⎢⎣⎡=ππ(a ) m kT p 2=v px v v= ()2224x e x kTm x f -=π (b)221v m k =ε()k kTk ke kT mf επεε-⎪⎭⎫ ⎝⎛=23124()0112423=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-kT e kT m d f k kT k k kεπεεε得, 01=⎪⎭⎫⎝⎛-kT k ε 221p kp m kT v ==ε12.19 设容器内盛两种不同单原子气体,原子质量分别为m 1和m 2的此混合气体处于平衡状态时内能相等,均为U ,求这两种气体平均速率1v 和2v 的比值以及混合气体的压力.设容器体积为V .解: RT M m U 231'= RT M m U 232''= 得,2''1'M m M m =21'''M M mm = 118m kT π=v 228m kTπ=v 则 1221m m =v v RT pV ν= RTUM m M m M m 3421'2''1'==+=ν 得, VU V RT RT U p 3434==12.20 求在标准状态下一秒内分子的平均自由程和平均碰撞次数.已知氢分子的有效直径为2.0×10-10 m.解:3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n ()m nd 72521021009.21069.2100.22121--⨯=⨯⨯⨯==ππλ1331070.110215.27331.888--⋅⨯=⨯⨯⨯==s m m RT ππv 19731013.81009.21070.1--⨯=⨯⨯==s z λv12.21 在足够大的容器中,某理想气体的分子可视为d=4.0×10-10 m 的小球,热运动的 平均速率为2100.5⨯=v m/s,分子数密度为n =3.0×1025 /m 3.试求:(1) 分子平均自由程和平均碰撞频率;(2) 气体中某分子在某时刻位于P 点,若经过与其他分子N 次碰撞后,它与P 点的距离近似可表为λN R =,那么此分子约经多少小时与P 点相距10米?(设分子未与容器壁碰撞) 解: (1)()m nd 8252102107.4100.3100.42121--⨯=⨯⨯⨯==ππλ110821006.1107.4100.5--⨯=⨯⨯==s z λv(2) λN R =h R R z N t 1182107.4100.5110018222=⨯⨯⨯⨯==⎪⎭⎫ ⎝⎛==-λυυλλ 12.22 设电子管内温度为300K ,如果要管内分子的平均自由程大于10cm 时,则应将它抽到多大压力?(分子有效直径约为3.0⨯10-8cm ) 解:nd 221πλ=若使cm 10>λ()3192102105.21.0100.32121--⨯=⨯⨯==m d n πλπ 需使 319105.2-⨯<m nPa nkT p 1.03001038.1105.22319=⨯⨯⨯⨯==- 即需使 Pa p 1.0<12.23 计算⑴在标准状态下,一个氮分子在1s 内与其他分子的平均碰撞次数;⑵容积为4L 的容器,贮有标准状况下的氮气,求1s 内氮分子间的总碰撞次数.(氮分子的有效直径为3.76⨯10-8cm )解: (1) λυ=z 3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n()m nd 8252102109.51069.21076.32121--⨯=⨯⨯⨯==ππλ1231054.4102815.27331.888--⋅⨯=⨯⨯⨯==s m M RT ππυ 1982107.7109.51054.4--⨯=⨯⨯=s z (2) mol V V mol 179.04.224===ν AN N ν=132923103.8107.710022.6179.0-⨯=⨯⨯⨯⨯===s z N z N z A ν12.24 实验测知00C 时氧的粘滞系数s)g/(cm 1092.14⋅⨯=-η,试用它来求标准状态下氧分子的平均自由程和分子有效直径.解:λυρη31=M RT πυ8= nm =ρ 其中 kT p n =, A N M m = 得:RTpM =ρ所以m MRT p RTMpMRT8355105.91032815.27331.810013.111092.1381383---⨯=⨯⨯⨯⨯⨯⨯⨯===ππηπηλpd kT nd 22221ππλ==m p kT d 108523100.3105.910013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.25 今测得氮气在00C 时的导热系数为237103.W m K 11⨯⋅⋅---,计算氮分子的有效直径.已知氮的分子量为28. 解:⎪⎭⎫⎝⎛=M C VM λυρκ31 R C VM 25= RT pM nm ==ρ m RMT p R MRT M pM RT73531069.131.8815.273102810013.11107.235681565283---⨯=⨯⨯⨯⨯⨯⨯⨯⨯===ππκπκλpd kT nd 22221ππλ==m p kT d 107523102.21069.110013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.26 在270C 时,2mol 氮气的体积为0.1L ,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气a =0.828atm ⋅L 2⋅mol -2, b =3.05⨯10-2L ⋅mol . 解:RT pV ν=Pa VRTp 731099.4101.015.30031.82⨯=⨯⨯⨯==-ν ()RT b V V a p ννν=-⎪⎭⎫ ⎝⎛+22p 2p 0V 02V V()()PaV a b V RT p 72532221044.91.010013.1828.04101005.321.015.30031.82⨯=⨯⨯⨯-⨯⨯⨯-⨯⨯=--=--ννν 第13章13.1 (1)理想气体经过下述三种途径由初态I (2p 0,V 0)变到终态Ⅱ(p 0,2V 0).试计算沿以下每一路径外界对气体所作的功:(a )先从V 0到2V 0等压膨胀然后等体积降压;(b )等温膨胀;(c )先以V 0等体积降压到p 0后再等压膨胀.(2)对1mol 的范氏气体重复以上三个过程的计算? [答案:(1)(a)2p 0V 0,(b) 2p 0V 0ln2,(c)p 0V 0;(2) (a)2p 0V 0, (b)00002002ln ))(( V a b V b V b V V ap ----+,(c)p 0V 0] 解:(1)(a) ()00000222200V p V V p pdV A V V =-==⎰ (b) 200222ln 2ln 00V p RT dV VRTpdV A V V V V ====⎰⎰(c) ()00000220V p V V p pdV A V V =-==⎰(2) 范德瓦尔斯方程: ()RT b V V a p mol mol=-⎪⎪⎭⎫ ⎝⎛+2 (a) 00220V p pdV A V V ==⎰(b)()000020000222222ln 22ln 000V ab V b V b V V a p V a V a RT dV V a b V RTpdV A bV b V V V V V ----⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛--==--⎰⎰(c) 0020V p pdV A V V ==⎰13.2 由如图13-40所示.一系统由状态a 沿acb 到达状态b ,吸热量80Cal ,而系统做功126J.⑴经adb 过程系统做功42J ,问有多少热量传入系统?⑵当系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84J ,试问系统是吸热还是放热?热量是多少? 解:1Cal=4.2J(1) A E Q +∆= J Q 3362.480=⨯=J A Q E 210126336=-=-=∆ 所以经adb 过程传入系统的热量 J A E Q 252422101=+=+∆= (2) J A 84-=029484210<-=--=+∆=J A E Q 所以系统是放热,热量是294J13.3 如图13-41所示.单原子理想气体从状态a 经过程abcd 到状态d ,已知p a =p d =1atm ,p b =p c =2atm ,V a =1L ,V b =1.5L ,V c =3L ,V a =4L .⑴试计算气体在abcd 过程中内能的变化、功和热量;⑵如果气体从状态d 保持压力不变到状态a (图中虚线),求以上三项的结果;⑶若过程沿曲线从a 到c 状态,已知该过程吸热257Cal ,求该过程中气体所做的功. 解:(1) b a →()a b m V T T C E -=∆.νa a a RT V p ν= RV p T a a a ν=b b b RT V p ν= RV p T bb b ν=()a a b b a a b b V p V p R V p R V p R E -=⎪⎭⎫ ⎝⎛-=∆2323ννν()J 231004.31010132515.1223⨯=⨯⨯-⨯⨯=- ()J pdV A b aV V 231076.010*******.02121⨯=⨯⨯⨯+⨯==-⎰J A E Q 21080.3⨯=+∆= 同理: c b →()()J V p V p E b b c c 231056.4101013255.12322323⨯=⨯⨯⨯-⨯⨯=-=∆-图13-41 习题13.3图pp 12J pdV A cbV V 231004.3105.11013252⨯=⨯⨯⨯==-⎰J A E Q 21060.7⨯=+∆=d c →()()J V p V p E c c d d 231004.31010132532412323⨯-=⨯⨯⨯-⨯⨯=-=∆- ()J pdV A d cV V 231052.1101013252121⨯=⨯⨯+⨯==-⎰J A E Q 21052.1⨯-=+∆=J E 21056.4⨯=∆总 J A 21032.5⨯=总 J Q 21088.9⨯=总(2) ()()J V p V p E d d a a 231056.410101325412323⨯-=⨯⨯-⨯=-=∆- J pdV A adV V 231004.3103101325⨯-=⨯⨯-==-⎰J A E Q 21060.7⨯-=+∆=(3) c a →()J E 221060.71056.404.3⨯=⨯+=∆J E Q A 221019.31060.72.4257⨯=⨯-⨯=∆-=13.4 如图13-42所示.一定质量的氧气在状态A 时,V 1=3L ,p 1=8.2×105Pa ,在状态B时V 2=4.5L ,p 2=6×105Pa .分别计算气体在下列过程吸收的热量,完成的功和内能的改变:⑴经ACB 过程,⑵经ADB 过程. 解:(1) ACB 过程C A → ()()35103102.862525-⨯⨯⨯-⨯=-=∆A A C C V p V p EJ 31065.1⨯-=J A 0=J Q 31065.1⨯-=B C → ()()J V p V p E C C B B 3531025.21061035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 335122109.01035.4106⨯=⨯-⨯⨯=-=- J Q 31015.3⨯=图13-42 习题13,4图J E 3106.0⨯=∆总 J A 3109.0⨯=总 J Q 3105.1⨯=总(2) ADB 过程D A →()()J V p V p E A A D D 35310075.3102.81035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 3351211023.11035.4102.8⨯=⨯-⨯⨯=-=- J Q 310305.4⨯=B D → ()()J V p V p E D D B B 33510475.2105.4102.862525⨯-=⨯⨯⨯-⨯=-=∆-J A 0=J Q 310475.2⨯-=J E 3106.0⨯=∆总 J A 31023.1⨯=总 J Q 31083.1⨯=总13.5压强为p =1.01×103Pa,体积为0.0082 m 3的氮气,从初始温度300K 加热到400K. (1)如加热时分别体积不变需要多少热量?(2) 如加热时分别压强不变需要多少热量? [答案: Q V =683J; Q p =957J]解:(1) RT pV ν= RTpV=ν ()J R RT pV T C E m V 6901003000082.01001.125300400255.=⨯⨯⨯⨯=-=∆=∆νJE Q V 690=∆=(2)J T R RTpVT C Q m p p 9661003000082.01001.1271255.=⨯⨯⨯⨯=∆⎪⎭⎫⎝⎛+=∆=ν 13.6 将500J 的热量传给标准状态下2 mol 氢气.(1)若体积不变,问此热量变为什么?氢气的温度变为多少?(2)若温度不变,问此热量变为什么?氢气的压强及体积各变为多少?(3)若压强不变, 问此热量变为什么? 氢气的温度及体积各变为多少?[答案: (1) T=285K; (2)Pa 1007.942⨯=p ,V 2=0.05m 3,(3)T =281.6K; V 2=0.046 m 3] 解:(1) 全部转化为内能 T C Q m V V ∆=.ν K R C Q T m V 12252500.=⨯==∆ν K T 15.2851215.2732=+=(2) 全部转化为对外界做功 12lnV V RT Q T ν= 12V e V RTQ T ν= 3310448.0104.222m V =⨯⨯=-3205.0m V =2211V p V p = Pa V V p p 4521121007.905.00448.010013.1⨯=⨯⨯==(3) 一部分用于对外做功,一部分用于内能增加 T C Q m p p ∆=.νK R C Q T mp p6.8272500.=⨯==∆ν K T 75.2816.815.2732=+=2211T V T V = 32112046.075.28115.2730448.0m T T V V =⨯==13.7 一定量的理想气体在某一过程中压强按2Vcp =的规律变化,c 是常量.求气体从V 1增加到 V 2所做的功.该理想气体的温度是升高还是降低? [答案: 2121);11(T T V V c A >-= ]解:⎪⎪⎭⎫ ⎝⎛-===⎰⎰212112121V V c dV V cpdV W V V V V 由理想气体状态方程 RT pdV ν= 得,RTV V c ν=2RT V cν= 可知1221V V T T = 因为 12V V > , 所以 21T T > 即气体的温度降低13.8 1mol 氢,在压强为1.0×105Pa,温度为20o C 时体积为0V .今使它分别经如下两个过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80o C,然后令它等温膨胀使体积变为原来的2倍;(2)先等温膨胀至原体积的2倍,然后保持体积不变加热至80o C .试分别计算以上两种过程中吸收的热量、气体做的功和内能的增量,并作出p-V 图.[答案: Q 2=2933J,A =1687J,∆U =1246J]解:(1) 定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ 等温过程 J E 0=∆ ()J RT V V RT Q A T 16.20342ln 8015.27331.82ln ln12=⨯+⨯==== J Q 66.3280=总 J A 16.2034=总 J E 50.1246=∆总 (2) 等温过程J E 0=∆J RT Q A T 56.16882ln 15.29331.82ln =⨯⨯===定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ J Q 06.2935=总 J A 56.1688=总 J E 50.1246=∆总 13.9 某单原子理想气体经历一准静态过程,压强Tcp =,其中c 为常量.试求此过程中该气体的摩尔热容C m . [答案: C m =(7/2)R ] 解:由理想气体状态方程 RT pV ν= 其中 Tc p =得, 2T cRV ν=dT cRTdV ν2=根据热力学第一定律,A E Q +∆= T R R dT c RT T c T R pdV T C Q m V ∆⎪⎭⎫ ⎝⎛+=+∆=+∆=⎰⎰223223.νννν 则可得,R T Q C m 27=∆=ν13.10 为了测定气体的γ=⎛⎝ ⎫⎭⎪C C p V 可用下列方法:一定量的气体初始温度、压强和体积分别为T 0,p 0和V 0,用通有电流的铂丝对它加热,第一次保持气体体积V 0不变,温度和压强各变为T 1和p 1;第二次保持压力,p 0不变,温度和体积各变为T 2和V 1,设两次加热的电流和时间都相同.试证明γ=--()()p p V V V p 100100解: 过程1为定容过程 V 不变,()01T T C T C Q V V -=∆=νν由理想气体状态方程得, 000RT V p ν= R V p T ν000=101RT V p ν= RV p T ν011=即 ()001V p p RC Q V-=(1) 过程2为定压过程 p 不变,()02T T C T C Q p p -=∆=νν由理想气体状态方程得, RV p T ν102=即 ()001p V V R C Q p -= (2)由(1)(2)式即证得, ()()001001p V V V p p C C Vp --==γ13.11气缸内有单原子理想气体,若绝热压缩使其容积减半,问气体分子的平均速率变为原来速率的几倍?若为双原子理想气体,又为几倍?[答案:1.26;1.15] 解:由理想气体绝热方程 常量=-T V 1γ 得,212111T V T V --=γγ 12112-⎪⎪⎭⎫ ⎝⎛=γV V T T 其中1221V V =1122-=γT T又由 M RTπυ8= 可知, 2112122-==γυυT T1p 单原子理想气体 R 35=γ, 则 26.123112==υυ双原子理想气体 R 57=γ, 则 15.125112==υυ13.12一定量的理想气体经历如图13-43所示的循环,其中AB 、CD 是等压过程,BC 、DA 是绝热过程,A 、B 、C 、D 点的温度分别为T 1、T 2、T 3、T 4.试证明此循环效率为 231T T -=η. 解:等压过程AB 吸热 ()121T T C Q p -=ν等压过程CD 放热 ()432T T C Q p -=ν BC 、DA 是绝热过程 0=Q 124312111T T T T Q Q Q A---=-==η 利用绝热方程 常量=--γγT p 1 得,γγγγ----=312211T p T p 31122T p p T γγ--⎪⎪⎭⎫⎝⎛=γγγγ----=412111T p T p 41121T p p T γγ--⎪⎪⎭⎫⎝⎛=2311211T T p p -=⎪⎪⎭⎫⎝⎛-=-γγη 13.13设有一理想气体为工作物质的热机循环,如图13-44所示,试证明其效率为1)/(1)/(12121---=p p V V γη.解:b a →为等体升温过程,吸热 ()a b m V T T C Q -=.1νa c →为等压压缩过程, 放热()a c m p T T C Q -=.2ν2 1图13-45习题13.14狄赛尔循环()()a b m V a c m p T T C T T C Q Q ---=-=..1211η 利用理想气体状态方程 RT pV ν=, 得()()222111V p V p RV p V p R T T a a b b a b -=-=-νν 循环效率为 ()()1111212122212212---=---=p p V V V p V p V p V p γγη 13.14 有一种柴油机的循环叫做狄赛尔循环,如图13-45所示.其中BC 为绝热压缩过程,DE 为绝热膨胀过程,CD 为等压膨胀过程,EB 为等容冷却过程,试证明此循环的效率为⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛-'-=-11)/(121212V V V V V V γγγη 解:CD 为等压膨胀过程, 吸热 ()C D p T T C Q -=ν1EB 为等容冷却过程, 放热 ()B E V T T C Q -=ν2 循环效率 CD BE T T T T Q Q ---=-=γη11112 利用理想气体状态方程 RT pV ν=, 得()B B E E B E V p V p R T T -=-ν1()C C D D C D V p V p RT T -=-ν1()()2'11111V V p p p V V p V p V p V p C B E C C D D B B E E ---=---=γγη 利用绝热方程 常量=γpV , 得γγE E D D V p V p = E D p V V p γ⎪⎭⎫ ⎝⎛='1()()221211V p V p RV p V p R T T a a c c a c -=-=-ννγγB BC C V p V p = B C p VV p γ⎪⎪⎭⎫ ⎝⎛=21 由C D p p =得 γ⎪⎪⎭⎫ ⎝⎛=2'V V p p B E()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=-111111111112'1212'2'122'1V V V V V V V V V V p p p p V V p p p p V B C B EB C B E γγγγγη 13.15 1mol 理想气体在400K-300K 之间完成一卡诺循环,在400K 的等温线上,起始体积为0.001 m 3,最后体积为 0.005 m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量.[答案:A =1.24×103J,Q 2=4.01×103J] 解:J V V RT Q 312111035.5ln⨯==ν 该循环效率为 %254003001112=-=-=T T η 可得 J Q A 311034.1⨯==η由 21Q Q A -=, 得 J A Q Q 3121001.4⨯=-=13.16 1mol 刚性双原子分子理想气体,作如图13-46所示的循环,其中1-2为直线,2-3为绝热线,3-1为等温线,且已知θ=450,T 1=300K,T 2=2T 1,V 3=8 V 1,试求:(1)各分过程中气体做功、吸热及内能增量;(2)此循环的效率. 解:(1)21→由理想气体状态方程可得, 111RT V p =222RT V p = 又由图可知,11V p =, 22V p =121RT V= 11RT V =1222RT V = 122RT V =22V V =()J R T T C E V 5.62323002512=⨯=-=∆ ()J RT V V VdV pdV A V V V v 5.12462121121222121==-===⎰⎰J A E Q 7479=+∆= 吸热32→O Q = A E -=∆ 利用绝热方程 γγpV V p =22, 得 13322223232--===⎰⎰γγγV p V p VdVV p pdV A V V V V γγ3322V p V p = 2323p VV p γ⎪⎪⎭⎫ ⎝⎛= J RT V V V p VV V p A 5.62321578212182128157122122223222=-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-⎪⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--γγγγ13→0=∆E A Q =J V V RT A 51848ln 30031.8ln131-=⨯⨯-=-= J Q 5184-= 放热(2) 循环效率 %7.30747951841112=-=-=Q Q η *13.17 0.1mol 单原子理想气体,由状态A经直线AB 所表示的过程到状态B,如图13-47所示,已知V A =1L , V B =3L ,p A =3atm .(1)试证A 、B 两状态的温度相等;(2)求AB 过程中气体吸收的热量;(3)求在AB 过程中,温度最高的状态C 的体积和压力(提示:写出过程方程T =T (V ));(4)由(3)的结果分析从A 到B 的过程中温度变化的情况,从A 到C 吸热还是放热?证明Q CB =0.能否由此说从C 到B 的每个微小过程都有δQ =0? 解:(1) 由理想气体状态方程, 得 A A A RT V p ν= B B B RT V p ν=又由已知条件可知 B B A A V p V p = 即证: B A T T =(2) ()0=-=∆A B V T T C E νp (atm)图13-47 习题13.17图J pdV A 25310052.410013.11022221⨯=⨯⨯⨯⎪⎭⎫⎝⎛+⨯⨯==-⎰J A Q 210052.4⨯==(3) 由理想气体状态方程 RT pV ν=, 得R pV T ν=又由图可知: 4+-=V p 即 ()V V R T 412+-=ν 由极值条件:0=dVdT, 得 042=+-V即当 L V 2=, atm p 2= 时T 取到极大值(4) 由 (3) 可知, B A →过程中 温度T 满足函数 ()V V RT 412+-=ν C A →过程中温度升高,到达C 点时取得极大值B C →过程中温度降低,到达点时温度又回到A 点时的值C A →过程 ()0>-=∆A C V T T C E ν0>A0>+∆=A E Q 吸热dA dE dQ +=()()dV V V RC dT C dE VV 63421+-=+-==ννν ()dV V pdV dA 4+-==()dV V dQ 104+-= 即证: ()010432=+-=⎰dV V Q L LCB但不能说从C 到B 的每个微小过程都有0=Q δ13.18一台家用冰箱放在气温为300K 的房间内,做—盒-13℃的冰块需从冷冻室中吸出 2.09×105J 的热量.设冰箱为卡诺制冷机,求: (1)做一盒冰块所需之外功;(2)若此冰箱能以2.09×102J·s -1的速率取出热量,求所要求的电功率是多少瓦? (3)做一盒冰块所需之时间. 解:(1)卡诺循环 制冷系数2122T T T A Q e -==abcpVOabcdOp 代入数据得 5.6260300260=-=eJ e Q A 4521022.35.61009.2⨯=⨯==(2) W e P P 2.325.61009.22'=⨯==(3) h s P Q t 28.0101009.21009.2325'2≈=⨯⨯== 13.19 以可逆卡诺循环方式工作的致冷机,在某种环境下它的致冷系数为w =30.在同样的环境下把它用作热机,问其效率为多少?[答案:%2.3=η]解:卡诺循环 制冷系数AQ w 2=得 wA Q =2 卡诺热机循环效率 1Q A=η 且 A Q Q +=21 ()%2.33011111=+=+=+=w A w A η13.20根据热力学第二定律证明: (1)两条绝热线不能相交;(2) 一条等温线和一条绝热线不能相交两次.解:(1)假设两条绝热线可以相交,如图所示ab 为等温线 bc 、ac 为绝热线此循环过程中 A Q =1 即热全部转化为功, 这与热力学第二定律的开尔文表述相矛盾 所以,即证得:两条绝热线不能相交(2) 假设一条等温线和一条绝热线可以两次相交,如图所示ab 为等温线 cd 为绝热线此循环过程中 A Q =1 即热全部转化为功 这与热力学第二定律的开尔文表述相矛盾, 即证13.21一杯质量180g 温度为100 0C 的水置于270C 的空气中,冷却到室温后水的熵变是多少?空气的熵变是多少?总熵变是多少?[答案:-164J/K ,233J/K ,69J/K]解:熵变的定义:⎰=∆T dQS 热量的计算公式: ⎰=mcdT Q112165300373ln 22.4180ln 21-⋅-=⨯⨯-====∆⎰⎰K J T T mc dT T mc T dQ S T T 水 ()122121853007322.4180-⋅=⨯⨯=-===∆⎰K J T T T mc T Q T dQ S 空气 120165185-⋅=-=∆+∆=∆K J S S S 空气水总13.22 1mol 理想气体经一等压过程,温度变为原来的2倍.该气体的定压摩尔热容为C p ,m ,求此过程中熵的增量. [答案: 2ln Δp C S =] 解:2ln 2121p T T p T T p C TdTC TdT C S ===∆⎰⎰13.23 一房间有N 个分子, 某一宏观态时其中半个房间的分子数为n .⑴写出这种分布的熵的表达式S =k ln Ω; ⑵n =0状态与n =N /2状态之间的熵变是多少? ⑶如果N=6⨯1023,计算这个熵差.解:(1)根据玻耳兹曼熵的表达式 W k S ln =, 得()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛--NN n N k eN k n W k S A NN n A 222222ln2ln ln 2(2)熵的变化:k N NN N k N k S S S A AN 2222ln 2ln202=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯--=-=∆ (3) 23106⨯=N 时, 熵差为1232314.421038.1106--⋅=⨯⨯⨯=∆K J S第14章14.1 作简谐运动的质点,速度最大值为3cm/s ,振幅A =2cm ,若速度为正最大值时开始计时.(1)求振动的周期;(2)求加速度的最大值;(3)写出振动的表达式. 解: (1) 由2/m A A T ωπ==v ,可得2/20.02/0.03 4.2m T A s ππ==⨯⨯=v(2) 22222/0.03/0.02 4.510/m m a A A m s ω-====⨯v(3) 由于0t =时,m =+v v ,可知/2ϕπ=-,而10.03/0.02 1.5ms Aω-===v ,所以有cos()0.02cos(1.5/2)x A t t ωϕπ=+=-14.2 一水平弹簧振子的振幅A =2cm,周期T =0.50s.当t =0时 (1)物体过x =1cm 处且向负方向运动;(2)物体过x =-1cm 处且向正方向运动.分别写出以上两种情况下的振动表达式. 解: (1) 22cos() 2.010cos(4)3x A t t T ππϕπ-=+=⨯+(2) 22.010cos(42/3)x t ππ-=⨯-14.3 设一物体沿x 轴作简谐振动,振幅为12cm ,周期为2.0s ;在t =0时位移为6.0cm ,且向x 轴正方向运动.试求:(1)初相位;(2)t =0.5s 时该物体的位置、速度和加速度;(3)在x =-6.0cm 且向x 轴负方向运动时,物体的速度和加速度以及它从这个位置到达平衡位置所需要的时间. 解: (1) 001cos 23x A πϕϕ==∴=±又∵00>v ,即0sin 0A ωϕ->00sin 03πϕϕ∴<=-(2) 12cos()()0.53x t cm t s ππ=-=时0.5t s x cm ==10.52220.512sin()6312cos()3t s t st cm s a t cm sπππππππ-=-==--=-⋅=--=-⋅v(3) 12cos x ϕ=)习题14.3图2Ao当6x cm =-时1cos2ϕ=-∵30sin ϕ<∴=v12212sin 6365566cm s a x cm t t sπϕπωππϕϕωωπ-=-=-⋅=-=∆∆=⋅∆∆===v 14.4 两个谐振子作同频率、同振幅的简谐振动.第一个振子的振动表达式为)cos(1φω+=t A x ,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点.求:(1)第二个振子的振动表达式和二者的相位差;(2)若t =0时,21Ax -=并向x 负方向运动,画出二者的x-t 曲线及旋转矢量图.解: (1) 用旋转矢量法分析,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰好在正方向端点。