380V母线的电压补偿器的原理
三相不平衡调节及无功补偿装置

三相不平衡调节及无功补偿装置□杨嘉文1概述在中、低压配电网系统中,存在着大量的单相,不对称、非线性,冲击性负荷,三相负荷系统是随机变化的,这些负荷会使配电系统产生三相不平衡,三相负荷不平衡会导致供电系统三相电压、电流的不平衡,引起电网负序电压和负序电流,影响供电质量,进而增加线路损耗,降低供电可靠性。
因此电力变压器运行规程规定,Y/Y0变压器的中线电流不能超过额定电流的25%。
由以上可知对负荷不平衡、无功短缺进行补偿对配电网来说有很大的实用价值,它可以降低线损,提高电能质量,增加配电网的可靠性。
由于负荷分配不均,负荷性质也不一致,造成低压供电系统无功不足,负荷不平衡。
尤其是经济水平较为发达的地区表现更为明显。
无功不足、负荷不平衡这两个问题已成为配电系统的两大难题。
针对无功不足的问题,国内解决的办法是:合理配置低压无功补偿电容器,其补偿的原则多数是共补与分补相结合,并采取可控硅投切、接触器运行的技术模式并附加电压质量监测系统,其采取手段多是通过远红外或GPRS通讯系统去实现。
目前这项技术已基本成熟,但它没有考虑到如何去改善配电低压系统三相不平衡的情况,投切不当时,反而增加不平衡的情况。
因此,三相不平衡的问题已成为当前配电系统亟待解决的问题,也是配电系统的技术空白。
2项目的实施的意义低压配电网是电力系统的末端,低压配电网采用三相四线制方式,配电变压器低压侧采用Yn0接线,电网的不平衡会增加线路及变压器的损耗,降低变压器的出力,影响电网的供电质量,甚至会影响电能表的精度,造成计量系统计费损失,由于三相负荷不平衡造成中线电流增大,会降低供电系统的可靠性,影响配电系统的安全运行。
2.1中线电流带来的变压器损耗2.1.1附加铁损Y/Yn0接线的配电变压器采用三铁心柱结构,其一次侧无零序电流,二次侧有零序电流,因此二次侧的零序电流完全是励磁电流,产生的零序磁通不能在铁心中闭合,需通过油箱壁闭合,从而在铁箱等附件中发热产生铁损。
SVG的特点和优势.

SVG的原理、特点及优势1、静止无功补偿技术介绍静止无功补偿技术经历了3代:第1代为机械式投切的无源补偿装置,属于慢速无功补偿装置,在电力系统中应用较早,目前仍在应用;第2代为晶闸管投切的静止无功补偿器(SVC),属无源、快速动态无功补偿装置,出现于20世纪70年代,国外应用普遍,我国目前有一定应用,主要用于配电系统中,输电网中应用很少;第3代为基于电压源换流器的静止同步补偿器(Static Synchronous Compensator,STATCOM),亦称SVG,属快速的动态无功补偿装置,国外从20世纪80年代开始研究,90年代末得到较广泛的应用。
早期的无功补偿装置主要是无源装置,方法是在系统母线上并联或者在线路中串联一定容量的电容器或者电抗器。
这些补偿措施改变了网络参数,特别是改变了波阻抗、电气距离和系统母线上的输入阻抗。
无源装置使用机械开关,它不具备快速性、反复性、连续性的特点,因而不能实现短时纠正电压升高或降落的功能。
20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。
SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。
SVC 作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定。
SVC虽然能对系统无功进行有效的补偿,但是由于换流元件关断不可控,因而容易产生较大的谐波电流,而且其对电网电压波动的调节能力不够理想。
随着大功率全控型电力电子器件GTO、IGBT及IGCT的出现,特别是相控技术、脉宽调制技术(PWM)、四象限变流技术的提出使得电力电子逆变技术得到快速发展,以此为基础的无功补偿技术也得以迅速发展。
静止同步补偿器,作为FACTS家族最重要的成员,在美国、德国、日本、中国相继得到成功应用。
电压型的STATCOM(SVG)直流侧采用直流电容为储能元件,通过逆变器中电力半导体开关的通断将直流侧电压转换成交流侧与电网同频率的输出电压。
380V低压电动机晃电问题的现状及研究

380V低压电动机晃电问题的现状及研究
380V低压电动机晃电是一个无人不知,无人不晓的问题,近年来,晃电在370V低压
电动机中不断蔓延,给企业安全生产和运行机器设备带来极大困扰。
晃电是指频繁变化的电源电压,对380V低压电动机造成的机械停止或性能下降。
380V低压电动机晃电产生的影响主要有四个方面:一是电动机本身损坏,如轴承损坏、原定的工作电压下转子不能旋转,定子绕组烧坏等;二是造成噪声大,振动大,动力输出不足,机器停机;三是发热温度太高,导热性能变差,电磁转换性能变差;四是带宽过窄,
负载调节性能降低,功率因数变化较大。
380V低压电机晃电的研究主要围绕如何减少电动机的工作状态,保护负载不受晃电影响三个方面展开:一是采用晃电补偿器,凭借不同的原理,可以有效补偿晃电对电动机的
影响;二是采用滤波器,通过滤除晃电干扰,使电路工作稳定;三是采用调速器,通过在
电路中添加调节器,可以实现频率调整和振动衰减,有效减少晃电对380V电动机的影响。
综上所述,380V低压电动机晃电产生的影响是非常明显的,为了更好地解决这个问题,可以采取如上三种措施,以减少电动机受到晃电影响的程度,保证电动机的正常运行。
配电线路线损、无功补偿(09)

电流为 IU2200.36(A 7)
Z 599
功率因数为 C O P S 40 或40 0 .5 UI 22 0 .3 068 7 .7 04
COSR3000.5
Z 599
无功功率为
QP(tan1tan2)p(
c
1
o2s1
1
c
1
o2s2
1)
4
(0
1 0.52
1
0.912515.61(2var)
,
2、按提高电压确定补偿容量
QC
U12U X
3、按降低线损确定补偿容量
△P%1ccoo22ss1210% 0
例题1:电工基础33题
先求镇流器的阻抗XL X L 2 f L 2 3 .1 5 4 1 . 0 6 5 5 ( 1 ) 8
总阻抗为
ZR 2X 232 0 5 02 15 8(9 )9
,
三、无功补偿的标准:用户在高峰负荷时的 功率因数应为:高供户和高供装有带调整 电压装置的电力用户功率因数为及以上; 其它100kvA(kw)及以上电力用户和大、 中型电力排灌站功率因数为及以上。
,
四、无功补偿的方法:采用电力电容器或具有容性 负荷的装置进行补偿。主要有:过励磁同步电动 机;调相机;电力电容器。
部放电。
。
4、电容器组运行操作注意事项: 1)断路器的操作顺序:正常情况全变电所停电操作
时,先拉开高压电容器支路的断路器,再拉开其 他各支路的断路器;事故情况下,全站无电后, 必须将高压电容器组的支路断路器先断开。 2)电容器的保护熔断器突然熔断时,在未查明原因 之前,不可更换熔体恢复送电。 3)电容器严禁带电荷合闸,以防止产生过电压;电 容器再次合闸,应在其断电3min后进行。
静止无功补偿器(SVC)仿真研究毕业论文

中国矿业大学本科生毕业设计姓名:张贵稀学号:21056373 学院:应用技术学院专业:电气工程及其自动化设计题目:静止无功补偿器(SVC)仿真研究专题:指导教师:马草原、王崇林职称:讲师、教授2009年6月徐州中国矿业大学毕业设计任务书学院应用学院专业年级电气05-1 学生姓名张贵稀任务下达日期:2009年3月9 日毕业设计日期:2009年3月9日至2009年6月5日毕业设计题目:静止无功补偿器(SVC)仿真研究毕业设计专题题目:毕业设计主要内容和要求:低功率因数是供电系统普遍存在的问题,已成为供电领域迫切需要解决的重要课题之一。
无功补偿是维持电网电压稳定,维护电力系统安全运行的重要手段。
无功补偿技术是当前研究的热点之一。
无功补偿技术主要包括大功率电子器件、无功电流检测方法、无功的补偿控制技术等主要内容。
基于本国国情,在我国较长一段时间内,静止无功补偿器(SVC)仍然占据重要地位,因此,本文选择以静止无功补偿器((SVC)为无功补偿研究对象。
本课题要求:1 熟悉SVC主电路的结构特点;2 分析SVC的工作原理,建立合适的模型;3 熟悉SVC的常规控制策略;4 利用PSCAD建立SVC的仿真模型并利用仿真模型分析SVC对负荷进行无功补偿的过程。
院长签字:指导教师签字:中国矿业大学毕业论文指导教师评阅书指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:指导教师签字:年月日中国矿业大学毕业论文评阅教师评阅书指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:评阅教师签字:年月日中国矿业大学毕业论文评阅教师评阅书指导教师评语(①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):成绩:评阅教师签字:年月日中国矿业大学毕业设计答辩及综合成绩摘要电网功率因数偏低已成为当今供电领域迫切需要解决的重要课题之一。
浅析电网动态补偿器(APF)的研究

浅析电网动态补偿器(APF)的研究【摘要】随着电力电子装置在电网中的应用,我们对电能变换的控制能力日益增强。
同时非线性负载所产生的无功和谐波污染给电网带来了严重危害,因此研究电网动态补偿(APF)对电网的安全绿色运行具有重要意义。
本文主要阐述了基于FPGA集中控制的动态补偿装置,它结合了静止无功补偿器的优点,在抑制电网谐波的同时也进行无功补偿。
【关键词】有源滤波;FPGA集中控制器;谐波采集;无功补偿1 引言电力电子装置在工业生产中的应用越来越广泛,使得电网中电流畸变和无功问题越来越显著。
电流谐波不仅影响电能质量,而且会对电气设备的安全运行造成威胁;针对谐波的治理问题在一些常规的电力用户如:冶金、钢铁、煤矿等企业中采用无源滤波器组进行治理,但始终达不到预期的效果。
由于无源滤波器是静态补偿,不能主动采集谐波信号,是被动治理,只能补偿固定次谐波,这样就造成功率因数不达标从而造成电力设备发热损坏和生产当中的安全事故。
有源滤波器(APF)是通过检测补偿对象的电压和电流的指令信号,此信号经电流发生电路放大得出补偿电流,然后将该电流及时注入电网从而消除谐波。
有源滤波器还会发出基波电流减少负载的无功功率,提高功率因数。
与无源滤波器组相比较,APF具有高度可控和快速响应特性,能动态跟踪补偿各次谐波及所需的无功功率。
因此,研究动态补偿(APF)的应用具有重要的实际意义。
2 动态补偿器(APF)的原理有源滤波器的滤波原理是通过外部互感器CT实时采集电流信号送至信号调理电路,通过内部检测电路分离出谐波部分,经IGBT功率变换器产生与系统的谐波大小相等相位相反的补偿电流,实现滤除谐波的功能。
动态补偿器(APF)与电网的硬件连接图如图2.1所示:图2.1 硬件连接图动态补偿器的内部原理图如图2.2所示:图2.2 动态补偿器的内部原理图隔离开关合闸后,动态补偿器首先通过预充电电阻对直流母线电容器充电,这一过程持续几秒钟,是防止上电后对直流母线电容的瞬间冲击。
电压补偿原理

电压补偿原理
电压补偿是指在电力系统中,为了保持电压稳定,减小电压波动和提高电压质
量而进行的一系列措施。
在电力系统中,电压补偿是非常重要的,它能够有效地提高电网的稳定性和可靠性,保证电力设备的安全运行。
电压补偿的原理主要包括静态电压补偿和动态电压补偿两种方式。
静态电压补偿是通过在电网中增加无功功率来调节电压,主要包括无功功率补
偿装置和静止无功功率补偿装置。
无功功率补偿装置是通过串联电容器或并联电感器来实现无功功率的补偿,从而提高电网的功率因数,稳定电压。
静止无功功率补偿装置则是通过静止无功功率补偿器来实现对电网电压的调节,提高电网的稳定性。
动态电压补偿是通过控制电压源的输出电压来实现对电网电压的调节,主要包
括STATCOM(Static Synchronous Compensator)和SVC(Static Var Compensator)两种装置。
STATCOM是一种采用可控晶闸管器件来实现对电网电压的调节的装置,它能够快速响应电网的电压变化,提高电网的稳定性。
SVC则是通过控制电容器
和电感器的接入和退出来实现对电网电压的调节,它能够有效地抑制电网的电压波动,提高电网的电压质量。
电压补偿的原理是通过控制无功功率的流动和电压源的输出电压来实现对电网
电压的调节,从而保证电网的电压稳定,减小电压波动,提高电压质量。
在电力系统中,电压补偿是非常重要的,它能够有效地提高电网的稳定性和可靠性,保证电力设备的安全运行。
因此,电压补偿技术的研究和应用对于提高电网的稳定性和可靠性,保证电力设备的安全运行具有重要意义。
低压电网的无功补偿

低压电网的无功补偿摘要:近年来,电力负荷增长迅速,造成电力供应紧张的现象,部分省市甚至出现拉闸限电,这对供电公司来讲,尽可能提高输配电设备的能力显得尤为重要;电力用户对电能的质量要求不断提高;减少电费开支、降低生产成本始终是电力用户一个目标。
这些都对提高功率因数提出了迫切的要求。
功率因素是反映电源输出的视在功率有效利用程度的一个基本概念,是用电设备的一个重要指标。
提高用户的功率因数,对于提高电力运行的经济效益和节约电能都具有重要意义。
由于目前我国在配网中普遍采用的变电所低压母线集中补偿和配电变压器低压侧集中补偿等方式,不能补偿低压电网中大量的无功损耗。
本文针对低压网的特点,从工程实际出发,提出了低压线路无功补偿方式及灵敏度分析法与无功分量直接分析法两种计算方法,以确定补偿电容的最佳安装位置和容量,并讨论了实际应用中电容器的在线动态控制。
计算表明,在低压线上投入无功补偿后,大大降低了线损,经济效益显著,可以推广采用。
电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率,导致电网中出现大量的无功电流。
无功电流产生无功功率,给电网带来额外负担且影响供电质量。
因此采用无功补偿,提高功率因数、节约电能、减少运行费用、提高电能质量是很有效的措施。
本文对无功补偿的种类、特点、作用以及实际应用中所产生的经济效益等进行了论述。
关键词: 低电压;无功补偿;节电技术;功率因数;经济效益论文类型:调研报告1 绪论1.1 电力客户功率因数的现状在数值上,功率因数就是有功功率和视在功率的比值,既cosΦ=P/S。
要提高功率因数,就必须尽可能地减少无功功率在使用过程中的消耗。
功率因素提高后,可以减少输送电流,减少设备的成本,提高设备资源的利用率,减少资源的浪费。
而功率因数降低,会使线路的电压损失增加,结果负载端的电压下降,严重影响电动机、空调及其它用电设备的正常运行。
特别是在用电高峰季节,功率因数太低,会出现大面积的电压偏低,对工业生产带来很大损失,并严重影响居民的正常生活。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压补偿装置是补偿无功的,380V母线上装设的属于低压补偿设备,就地进
行补偿.可以提高功率因数,提高供电能力,降低损耗,主要还可以改善电压质量等等.
在380V负荷母线上装设电压自动补偿装置,等于是在低压母线上并联电容器,以供低压电动机需要的大量感性无功,从而维持母线电压.等于就是根据母线电压的情况或无功负荷情况来自动投切电容器组进行无功补偿以维持电压稳定.
假设380V母线上装设电压补偿装置,当母线上感性负荷过大,电压降低,此时装置根据电压降低可自动投入电容器组,进行补偿,电容器组发出的无功提供给电动机等无功负荷,无功缺额减小,电压升高,恢复正常.如果无功负荷过大,电压仍未恢复,则继续投入电容器组,提供更多的无功补偿,最终使电压升高恢复.当无功负荷少时,电压高,便可反方向动作退出电容器组.
至于自动升级补偿,我个人理解是相对固定的补偿装置来说的.因为有些场合的无功负荷是常年不变或者说是相对固定的,那么其补偿电容器也是以一定的容量固定并联在需要补偿的地点.而厂用380V母线上的电动机启停是不固定的,也就是说需要补偿的容量也是不固定的,采用常规的并联电容器不能满足变化的补偿需要.所以可以多组电容器组,根据母线电压的变化,自动决定投入组数,即可以自动分级补偿,始终与无功负荷相匹配的补偿,从而维持母线电压.
除自动逐级投退电容器来实现分级补偿外,也可采用变压器补偿,不过用的不多,二个完全相同的初级绕组和一串接在低压配电网的相线回路的次级绕组;交流接触器的触点与初级绕组连接。
采用每相由一补偿变压器来完成调压的过程,当电压低于最低允许电压时,可自动升级补偿电压;当电压高于最高允许电压时,可自动降级补偿电压;当电压在允许的范围之内时,不升也不降。
达到自动在额定电压左右作适量补偿的目的。
自动补偿装置一般就是并联电容器来提高功率因数和维持电压.电容吸收容性无功发出感性无功补偿电动机对感性无功的需要从而维持母线电压的原理不用说,主要是如何实现自动补偿.其实现在的无功自动补偿设备都具有很高的智能化,可以自动算出电压是否越限,是否需要投切电容器组进行补偿,或投入几组,都是自动的.由于电容器都是分组投入,所以无功补偿电压调节也都是有级调整,而不会象AVR调电压那样无级调节.智能模块相当于装置的大脑,那么执行机构,就是一些投切电容器组的开关了,早期是用接触器,后来有了专门投电容器的接触器和可控硅就是两个反向可控硅并联来实现.目前还有复合一体开关,就是智能元件和投切执行元件一体化了.当然五花八门的元件,补偿原理还是最基本的.
下面是一个大概的原理图.
此主题相关图片如下:
无功电压补偿,对于电厂接触的较少,我们也仅仅是离厂区最远的燃料铁路负荷装设有,所以了解的很肤浅.还请配网及用户的师傅们多多指点.。