2020合肥三模理科数学答案
2020年安徽省合肥市肥东县第三中学高三数学理模拟试题含解析

2020年安徽省合肥市肥东县第三中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设全集U=R,集合A={x|x≥3},B={x|0≤x<5},则集合(?U A)∩B=()B2. 如图所示,正方体的棱长为1, 分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:①平面平面;②当且仅当x=时,四边形MENF的面积最小;③四边形周长,是单调函数;④四棱锥的体积为常函数;以上命题中假命题的序号为()A.①④B.②C.③ D.③④参考答案:C略3. 已知中,条件甲:条件乙:为等边三角形,则甲是乙的()A.充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分又不必要条件参考答案:B4. 执行如图所示的程序框图,输入的n值为4,则S=()A. 6B. 14C. 30D. 2参考答案:B【分析】根据程序框图,进行模拟计算即可.【详解】k=1,S=0, 1<4成立,第一次循环,S=2,k=1+1=2,第二次循环,2<4成立,S=2+22=2+4=6,k=2+1=3,第三次循环,3<4成立,S=6+23=6+8=14,k=3+1=4,第四次循环,4<4不成立,S输出S=14,故选B.【点睛】本题主要考查程序框图的识别和应用,利用程序框图进行模拟计算是解决本题的关键.5. 函数的单调递增区间是()A.(-∞,-2] B.(-∞,1] C.[1,+∞) D.[4,+∞)参考答案:D6. 在△中, , ,则△的面积为().A.3 B. C.6 D.4参考答案:D【知识点】向量的数量积公式;三角形面积公式F3解析:因为,所以,即,则,故选D.【思路点拨】先利用已知条件结合向量的数量积公式得到,再利用三角形面积计算即可。
7. 已知,命题,则( )A.是假命题;B.是假命题;C.是真命题;D.是真命题;参考答案:D8. 在△ABC中,∠C=,AB=2,AC=,则cosB的值为()A.B.C.或 D.或参考答案:D【考点】正弦定理.【分析】根据正弦定理和内角和定理可得答案:【解答】解:由题意:,c=AB=2,b=,由正弦定理=,则有:sinB==.∵0<B<π∴B=或.当B=时,则cosB=当B=时,则cosB=.故选D9. 若“”是“”的充分而不必要条件,则实数a的取值范围是()A.(1,3]B.[1,3]C.(-1,3]D.[-1,3]参考答案:B10. 若函数在给定区间M上,还存在正数t,使得对于任意,且为M上的t级类增函数,则以下命题正确的是A.函数上的1级类增函数B.函数上的1级类增函数C.若函数上的t级类增函数,则实数t的取值范围为D.若函数级类增函数,则实数a的取值范围为2参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知抛物线,过其焦点且斜率为1的直线交抛物线于、两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为 .参考答案:11.12. 给出定义:若(其中为整数),则叫做离实数最近的整数,记作,即. 在此基础上给出下列关于函数的四个命题:①函数的定义域是R ,值域是 [0,];②函数的图像关于直线(k∈Z)对称;③函数是周期函数,最小正周期是1;④ 函数在上是增函数. 则其中真命题是.参考答案:1,2,3略13. 若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是______。
2020年安徽省合肥市c20教育联盟中考数学三模试卷 (解析版)

2020年安徽省合肥市C20教育联盟中考数学三模试卷一、选择题1.下面各数中,比﹣1小的数是()A.1B.0C.﹣2D.2.下列运算中正确的是()A.(π﹣1)0=0B.3﹣2=﹣6C.(﹣a)2=a2D.(a3)2=a5 3.中国信息通信研究院测算,2020﹣2025年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×1084.桌上摆着一个由若干个相同小正方体组成的几何体,其三视图如图所示,则组成此几何体需要的小正方体的个数是()A.5B.6C.7D.85.受新冠肺炎疫情的影响,某电器经销商今年2月份电器的销售额比1月份电器的销售额下降20%,3月份电器的销售额比2月份电器的销售额下降m%,已知1月份电器的销售额为50万元.设3月份电器的销售额为a万元,则()A.a=50(1﹣20%﹣m%)B.a=50(1﹣20%)m%C.a=50﹣20%﹣m%D.a=50(1﹣20%)(1﹣m%)6.函数y=kx﹣k与在同一坐标系中的图象可能是()A.B.C.D.7.某数学兴趣小组为了了解本班学生一周课外阅读的时间,随机调查了5名学生,并将所得数据整理如表:学生12345一周课外阅读时间(小时)7548表中有一个数字被污染后而模糊不清,但曾计算得该组数据的平均数为6,则这组数据的方差为()A.1.5B.2C.3D.68.如图,点E是△ABC内一点,∠AEB=90°,AE平分∠BAC,D是边AB的中点,延长线段DE交边BC于点F,若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.99.若无论x取何值,代数式(x+1﹣3m)(x﹣m)的值恒为非负数,则m的值为()A.0B.C.D.110.如图①,在矩形ABCD中,=k(k为常数),动点P从点B出发,以每秒1个单位长度的速度沿B→A→C运动到点C,同时动点Q从点A出发,以每秒k个单位长度的速度沿A→C→D运动到点D,当一个点停止运动时,另一个点也随之停止,设△APQ 的面积为y,运动时间为t秒,y与t的函数关系图象如图②所示,当t=4时,y的值为()A.B.1C.D.二、填空题11.﹣的立方根为.12.已知x2﹣9y2=3,x+3y=,则x﹣3y=.13.如图,在△ABC中,AB=AC=2,以AB为直径的⊙O,交AC于E点,交BC于D 点.若劣弧DE的长为,则∠BAC=.14.若函数图象上存在点Q(m,n),满足n=m+1,则称点Q为函数图象上的奇异点.如:直线y=2x﹣3上存在唯一的奇异点Q(4,5).若y关于x的二次函数y=x2+(a﹣h+1)x+b+h的图象上存在唯一的奇异点,且当﹣3≤a≤2时,b的最小值为﹣2,则h 的值为.三、解答题(共9小题,满分92分)15.计算÷(x﹣).16.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣4,﹣1),B(﹣2,﹣4),C(﹣1,﹣2).(1)请画出△ABC向右平移5个单位后得到的△A1B1C1;(2)请画出△ABC关于直线y=﹣x对称的△A2B2C2;(3)线段B1B2的长是.17.《计算之书》是意大利中世纪著名数学家斐波那契(公元1175﹣1250年)的经典之作.书中记载了一道非常有趣的“狐跑犬追”问题:在相同的时间里,猎犬每跑9m,狐狸跑6m.若狐狸与猎犬同时起跑时狐狸在猎犬前面50m,问狐狸跑多少距离后被猎犬追上?18.大蜀山是合肥市的著名景点,某数学兴趣小组到大蜀山测量山上电视塔的高度.如图所示,电视塔CD在高270m的山峰BC上,在山脚的A处测得电视塔底部C的仰角为42°,再沿AB方向前进62.5m到达E处,测得电视塔顶部D的仰角为58°,求电视塔CD的高度.(精确到1m.参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.)19.如图,下列各正方形中的四个数之间具有相同的规律.根据此规律,回答下列问题:(1)第5个图中4个数的和为.(2)a=;c=.(3)根据此规律,第n个正方形中,d=2564,则n的值为.20.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点E,⊙O的切线DE交BC于点F,交AB的延长线于点D.(1)若BD=2,DE=4,求⊙O的半径;(2)求证:BF=CF.21.某葡萄种植大镇,果农广宇为了了解甲、乙两个大棚里所种植的“夏黑”葡萄的生长情况.现从两个大棚里分别随机抽取了20串葡萄,对它们的重量(单位:g)进行整理、描述和分析,下面给出了部分信息:(葡萄重量用x表示,共分为五组,A组:400≤x <450,B组:450≤x<500,C组:500≤x<550,D组:550≤x<600,E组:600≤x <650)甲大棚20串葡萄的重量分别为:545,560,414,565,640,560,590,542,425,560,630,580,466,530,487,625,490,513,508,540,乙大棚20串葡萄的重量在C组中的数据是:520,545,530,520,533,522.甲、乙两大棚随机抽取的葡萄的重量数据统计表如图表所示:甲大棚乙大棚平均重量538.5536.6中位数543.5b众数a562方差3840.73032.5根据以上信息,解答下列问题:(1)请直接写出上述统计表中a,b的值:a=,b=;(2)若甲、乙两大棚的葡萄总共有2400串,请估计甲、乙两大棚重量在600克及以上的葡萄共有多少串?(3)本次抽取的共40串葡萄中,重量在600g/串及以上的视为“佳品葡萄”,果农广宇在“佳品葡萄”中任选2串参加镇里举行的葡萄大赛,求这2串葡萄全部来自甲大棚的概率.22.如图,已知抛物线y=x2+bx+c过点A(0,﹣2),B(﹣,0),G(x1,y1),H (x2,y2)是抛物线上任意不同两点.(1)求抛物线的解析式;(2)若直线GH与直线y=2x平行,求y1+y2的最小值.23.如图①,在△ABC中,AC=BC,CD为AB边上的中线,CE∥AB,线段DE交BC 于点G.(1)若CE=CG=1,AB=4,求DE的长;(2)如图②,取△ABC外一点F,连接AF,BF,CF,DF,CF与DE交于点H,若∠ACB=90°,AC=AF,BF⊥CF,DE⊥DF.①求的值;②求证:CH=FH.参考答案一、选择题1.下面各数中,比﹣1小的数是()A.1B.0C.﹣2D.【分析】根据有理数大小比较的法则判断即可.解:∵|﹣1|<|﹣2|,∴﹣1>﹣2,故选:C.2.下列运算中正确的是()A.(π﹣1)0=0B.3﹣2=﹣6C.(﹣a)2=a2D.(a3)2=a5【分析】根据整式的运算法则即可求出答案解:(A)原式=1,故A错误;(B)原式=()2=,故B错误;(D)原式=a6,故D错误;故选:C.3.中国信息通信研究院测算,2020﹣2025年,中国5G商用带动的信息消费规模将超过8万亿元,直接带动经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.解:10.6万亿=106000 0000 0000=1.06×1013.故选:B.4.桌上摆着一个由若干个相同小正方体组成的几何体,其三视图如图所示,则组成此几何体需要的小正方体的个数是()A.5B.6C.7D.8【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解:根据俯视图可知该组合体共3行、2列,结合主视图和左视图知该几何体中小正方体的分布情况如图所示:则组成此几何体需要正方体的个数是7,故选:C.5.受新冠肺炎疫情的影响,某电器经销商今年2月份电器的销售额比1月份电器的销售额下降20%,3月份电器的销售额比2月份电器的销售额下降m%,已知1月份电器的销售额为50万元.设3月份电器的销售额为a万元,则()A.a=50(1﹣20%﹣m%)B.a=50(1﹣20%)m%C.a=50﹣20%﹣m%D.a=50(1﹣20%)(1﹣m%)【分析】根据某电器经销商今年2月份电器的销售额比1月份电器的销售额下降20%,3月份电器的销售额比2月份电器的销售额下降m%,1月份电器的销售额为50万元,可以得到2月份是销售额,从而可以得到a的值,本题得以解决.解:由题意可得,a=50(1﹣20%)(1﹣m%),故选:D.6.函数y=kx﹣k与在同一坐标系中的图象可能是()A.B.C.D.【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx ﹣k的图象经过一、三、四象限,故本选项错误;B、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;C、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误;D、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项正确;故选:D.7.某数学兴趣小组为了了解本班学生一周课外阅读的时间,随机调查了5名学生,并将所得数据整理如表:学生12345一周课外阅读时间(小时)7548表中有一个数字被污染后而模糊不清,但曾计算得该组数据的平均数为6,则这组数据的方差为()A.1.5B.2C.3D.6【分析】先由平均数的公式计算出模糊不清的值,再根据方差的公式计算即可.解:∵这组数据的平均数为6,∴模糊不清的数是:6×5﹣7﹣5﹣4﹣8=6,则这组数据的方差为[(7﹣6)2+(5﹣6)2+(6﹣6)2+(4﹣6)2+(8﹣6)2]=2;故选:B.8.如图,点E是△ABC内一点,∠AEB=90°,AE平分∠BAC,D是边AB的中点,延长线段DE交边BC于点F,若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.9【分析】延长BE交AC于H,证明△HAE≌△BAE,根据全等三角形的性质求出AH,根据三角形中位线定理解答即可.解:延长BE交AC于H,∵AE平分∠BAC,∴∠HAE=∠BAE,在△HAE和△BAE中,,∴△HAE≌△BAE(ASA)∴AH=AB=6,HE=BE,∵HE=BE,AD=DB,∴DF∥AC,∵HE=BE,∴HC=2EF=2,∴AC=AH+HC=8,故选:C.9.若无论x取何值,代数式(x+1﹣3m)(x﹣m)的值恒为非负数,则m的值为()A.0B.C.D.1【分析】先利用多项式乘多项式的法则展开,再根据代数式(x+1﹣3m)(x﹣m)的值为非负数时△≤0以及平方的非负性即可求解.解:(x+1﹣3m)(x﹣m)=x2+(1﹣4m)x+3m2﹣m,∵无论x取何值,代数式(x+1﹣3m)(x﹣m)的值恒为非负数,∴△=(1﹣4m)2﹣4(3m2﹣m)=(1﹣2m)2≤0,又∵(1﹣2m)2≥0,∴1﹣2m=0,∴m=.故选:B.10.如图①,在矩形ABCD中,=k(k为常数),动点P从点B出发,以每秒1个单位长度的速度沿B→A→C运动到点C,同时动点Q从点A出发,以每秒k个单位长度的速度沿A→C→D运动到点D,当一个点停止运动时,另一个点也随之停止,设△APQ 的面积为y,运动时间为t秒,y与t的函数关系图象如图②所示,当t=4时,y的值为()A.B.1C.D.【分析】①当点P在AB上运动时,由题意得:AB=3,则AC=3k,AP=1,AQ=2k,当t=2时,即PB=2,y=×PA×QH=×(3﹣t)×QH=,求出AB=3,BC=4,AC=5;②当x=4时,点P在AD上运动的距离为1,点Q在CD上运动了1秒,即可求解.解:①当点P在AB上运动时,过点Q作QH⊥AB于点H,由题意得:AB=3,则AC=3k,AP=1,AQ=2k,当t=2时,即PB=2,y=×PA×QH=×(3﹣t)×QH=,解得:QH=,则AH=AQ cos∠BAC=2k×=2,故PH=1,则AH=2,而QH=,故tan∠HAQ===tanα,则cosα==,解得:k=,故AB=3,BC=4,AC=5;②当t=4时,点P在AD上运动的距离为1,点Q在CD上运动了1秒,运动的距离QC为,则DQ=3﹣,y=×AP×QD=×1×(3﹣)=,故选:C.二、填空题11.﹣的立方根为﹣.【分析】可以利用立方根的定义来进行计算.解:∵=﹣,∴﹣的立方根为﹣,故答案为:﹣.12.已知x2﹣9y2=3,x+3y=,则x﹣3y=6.【分析】由平方差公式得出x2﹣9y2=(x+3y)(x﹣3y),代入计算即可得出结果.解:因为x2﹣9y2=3,x+3y=,x2﹣9y2=(x+3y)(x﹣3y),所以3=(x﹣3y),所以x﹣3y=6,故答案为:6.13.如图,在△ABC中,AB=AC=2,以AB为直径的⊙O,交AC于E点,交BC于D 点.若劣弧DE的长为,则∠BAC=30°.【分析】连接AB,根据圆周角定理得到AD⊥BC,根据等腰三角形的性质得到∠CAD =∠BAD,连接OE,OD,设∠DOE=α,根据弧长公式得到α=30°,于是得到结论.解:连接AB,∵AB为⊙O的直径,∴AD⊥BC,∵AB=AC=2,∴∠CAD=∠BAD,连接OE,OD,设∠DOE=α,∵劣弧DE的长为,∴=,∴α=30°,∴∠CAD=15°,∴∠BAC=2∠CAD=30°,故答案为:30°.14.若函数图象上存在点Q(m,n),满足n=m+1,则称点Q为函数图象上的奇异点.如:直线y=2x﹣3上存在唯一的奇异点Q(4,5).若y关于x的二次函数y=x2+(a﹣h+1)x+b+h的图象上存在唯一的奇异点,且当﹣3≤a≤2时,b的最小值为﹣2,则h 的值为2或4.【分析】设函数奇异点的坐标为P(x,x+1),代入函数的关系式中得到关于x的一元二次方程,因为有一个奇异点,则△=0,得到b=(a﹣h)2﹣2h+2,把它看成一个二次函数,对称轴a=h,分三种情况讨论:①h<﹣3,列方程,方程无解,没有符合条件的t值;②h>2,列方程,解出h并取舍;③当﹣3≤h≤2,同理得h=2.解:设y关于x的二次函数y=x2+(a﹣h+1)x+b+h的图象上的奇异点为(x,x+1),代入函数y=x2+(a﹣h+1)x+b+h得:x+1=x2+(a﹣h+1)x+b+h,x2+(a﹣h)x+b+h﹣1=0∵存在唯一的一个“奇异点”,∴△=(a﹣h)2﹣4××()=0,b=(a﹣h)2﹣2h+2,这是一个b关于a的二次函数,图象为抛物线,开口向上,对称轴为a=h,对称轴左侧,b随a的增大而减小;对称轴右侧,a随a的增大而增大;①h<﹣3,当﹣3≤a≤2时,在对称轴右侧递增,∴当a=﹣3时,b有最小值为﹣2,即(﹣3﹣h)2﹣2h+2=﹣2,h2+4t+13=0,△=16﹣4×1×13<0,方程无解,②h>2,当﹣3≤a≤2时,在对称轴左侧递减,∴当a=2时,b有最小值为﹣2,即(2﹣h)2﹣2h+2=﹣2,h2﹣6h+8=0,解得,h=4或2(舍去),③当﹣3≤h≤2,当﹣3≤a≤2时,n有最小值为﹣2h+2=﹣2,∴h=2综上所以述:h的值为4或2,故答案为4或2.三、解答题(共9小题,满分92分)15.计算÷(x﹣).【分析】根据分式的减法和除法可以解答本题.解:÷(x﹣)===.16.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣4,﹣1),B(﹣2,﹣4),C(﹣1,﹣2).(1)请画出△ABC向右平移5个单位后得到的△A1B1C1;(2)请画出△ABC关于直线y=﹣x对称的△A2B2C2;(3)线段B1B2的长是.【分析】(1)根据平移的性质即可画出△ABC向右平移5个单位后得到的△A1B1C1;(2)根据对称性即可画出△ABC关于直线y=﹣x对称的△A2B2C2;(3)根据勾股定理即可得线段B1B2的长.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)线段B1B2的长是=.故答案为:.17.《计算之书》是意大利中世纪著名数学家斐波那契(公元1175﹣1250年)的经典之作.书中记载了一道非常有趣的“狐跑犬追”问题:在相同的时间里,猎犬每跑9m,狐狸跑6m.若狐狸与猎犬同时起跑时狐狸在猎犬前面50m,问狐狸跑多少距离后被猎犬追上?【分析】设狐狸跑x米后被猎犬追上,此时猎犬跑了x米,根据猎犬比狐狸多跑了50米,即可得出关于x的一元一次方程,解之即可得出结论.解:设狐狸跑x米后被猎犬追上,此时猎犬跑了x米,依题意,得:x﹣x=50,解得:x=100.答:狐狸跑100米后被猎犬追上.18.大蜀山是合肥市的著名景点,某数学兴趣小组到大蜀山测量山上电视塔的高度.如图所示,电视塔CD在高270m的山峰BC上,在山脚的A处测得电视塔底部C的仰角为42°,再沿AB方向前进62.5m到达E处,测得电视塔顶部D的仰角为58°,求电视塔CD的高度.(精确到1m.参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.)【分析】在Rt△ABC中,由锐角三角函数的定义可求出AB的长,在Rt△BED中,可根据锐三角函数的定义求出BD的长,则可求出CD的长.解:在Rt△ABC中,,∴m,∵AE=62.5m,∴BE=AB﹣AE=300﹣62.5=237.5(m),在Rt△BED中,,∴BD=BE•tan58°≈237.5×1.6=380(m),∴CD=BD﹣BC≈380﹣270=110(m).答:电视塔CD的高度约为110m.19.如图,下列各正方形中的四个数之间具有相同的规律.根据此规律,回答下列问题:(1)第5个图中4个数的和为﹣152.(2)a=(﹣1)n•2n﹣1;c=(﹣1)n•2n+4.(3)根据此规律,第n个正方形中,d=2564,则n的值为10.【分析】(1)观察图形可得第5个图中4个数,相加即可求解;(2)由已知图形得出a=(﹣1)n•2n﹣1,b=2a=(﹣1)n•2n,c=b+4=(﹣1)n•2n+4,即可求解;(3)根据d=a+b+c=5×(﹣1)n•2n﹣1+4=2564求解可得.解:(1)第5个图形中的4个数分别是﹣16,﹣32,﹣28,﹣764个数的和为:﹣16﹣32﹣28﹣76=﹣152.(2)a=(﹣1)n•2n﹣1;b=2a=(﹣1)n•2n,c=b+4=(﹣1)n•2n+4.(3)根据规律知道,若d=2564>0,则n为偶数,当n为偶数时a=2n﹣1,b=2n,c=2n+4,2n﹣1+2n+2n+4=2564,依题意有2n﹣1+2n+2n=2560,解得n=10.故答案为:﹣152;(﹣1)n•2n﹣1;(﹣1)n•2n+4;10.20.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点E,⊙O的切线DE交BC于点F,交AB的延长线于点D.(1)若BD=2,DE=4,求⊙O的半径;(2)求证:BF=CF.【分析】(1)连接OE,如图,利用切线的性质得到∠OEF=90°,设⊙O半径为x,则OB=OE=x,在Rt△DEO中利用勾股定理得到x2+42=(x+2)2,然后解方程即可;(2)连接BE,如图,根据圆周角定理得到∠AEB=90°,∠CEB=90°,再利用切线的判断得到BC为⊙O的切线,则根据切线长定理得到BF=EF,所以∠CBE=∠BEF,然后证明∠C=∠CEF得到CF=EF,从而得到结论.【解答】(1)解:连接OE,如图,∵DE为⊙O的切线,∴∠OEF=90°,设⊙O半径为x,则OB=OE=x,∵BD=2,∴OD=OB+BD=x+2,在Rt△DEO中,∵OE2+DE2=OD2,∴x2+42=(x+2)2,解得x=3,即⊙O半径为3;(2)证明:连接BE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∠CEB=90°,∴∠CBE+∠C=90°,∠CEF+∠FEB=90°,∵∠ABC=90°,∴BC为⊙O的切线,∵DE为⊙O的切线,∴BF=EF,∴∠CBE=∠BEF,∴∠C=∠CEF,∴CF=EF,∴BF=CF.21.某葡萄种植大镇,果农广宇为了了解甲、乙两个大棚里所种植的“夏黑”葡萄的生长情况.现从两个大棚里分别随机抽取了20串葡萄,对它们的重量(单位:g)进行整理、描述和分析,下面给出了部分信息:(葡萄重量用x表示,共分为五组,A组:400≤x <450,B组:450≤x<500,C组:500≤x<550,D组:550≤x<600,E组:600≤x <650)甲大棚20串葡萄的重量分别为:545,560,414,565,640,560,590,542,425,560,630,580,466,530,487,625,490,513,508,540,乙大棚20串葡萄的重量在C组中的数据是:520,545,530,520,533,522.甲、乙两大棚随机抽取的葡萄的重量数据统计表如图表所示:甲大棚乙大棚平均重量538.5536.6中位数543.5b众数a562方差3840.73032.5根据以上信息,解答下列问题:(1)请直接写出上述统计表中a,b的值:a=560,b=531.5;(2)若甲、乙两大棚的葡萄总共有2400串,请估计甲、乙两大棚重量在600克及以上的葡萄共有多少串?(3)本次抽取的共40串葡萄中,重量在600g/串及以上的视为“佳品葡萄”,果农广宇在“佳品葡萄”中任选2串参加镇里举行的葡萄大赛,求这2串葡萄全部来自甲大棚的概率.【分析】(1)由众数好中位数的定义即可得出答案;(2)求出甲乙大棚重量在600克(含600克)以上的葡萄串数,即可得出答案;(3)画出树状图,由概率公式即可得出答案.解:(1)甲大棚的出现次数最多的是560,因此众数是560,即a=560.乙大棚A、B两组串数为20×(10%+20%)=6,中位数是从小到大排列后处在第10、11位两个数的平均数,由C组中的数据是:520,545,530,520,533,522可得,处在第10、11位的两个数的平均数为:,因此b=531.5,故答案为:560,531.5;(2)乙大棚重量在600克(含600克)以上的葡萄有:(1﹣10%﹣20%﹣30%﹣25%)×20=3(串),甲大棚重量在600克(含600克)以上的葡萄有:625g,630g,640g共3串,∴甲,乙两大棚共有重量在600克(含600克)以上的葡萄:2400×=360(串).答:由此可以估计甲,乙两大棚重量在600克及以上的葡萄共有360串;(3)甲大棚在600g及以上的3串葡萄记为a,b,c;乙大棚在600g及以上的3串葡萄记为x,y,z;列树状图如下:共有30种等可能结果,这2串葡萄全部来自甲大棚的结果有6种,∴这2串葡萄全部来自甲大棚的概率为.22.如图,已知抛物线y=x2+bx+c过点A(0,﹣2),B(﹣,0),G(x1,y1),H (x2,y2)是抛物线上任意不同两点.(1)求抛物线的解析式;(2)若直线GH与直线y=2x平行,求y1+y2的最小值.【分析】(1)根据待定系数法求得即可;(2)根据题意设直线GH的解析式为y=2x+m,x2﹣2=2x+m,即(x﹣1)2=m+3,解得x1,x2的值,代入y1+y2中,即可得出,根据二次函数的性质即可求得.解:(1)∵抛物线过点A(0,﹣2),B(,0)∴∴则抛物线解析式为y=x2﹣2;(2)由(1)知,G(x1,),H(x2,),∵GH与直线y=2x平行,∴设直线GH的解析式为y=2x+m,令x2﹣2=2x+m,即(x﹣1)2=m+3,解得,,∴=2+2m+6﹣4=2m+4,∵(x﹣1)2=m+3,∴m=(x﹣1)2﹣3,∴,∴当x=1时,y1+y2取小值﹣2.23.如图①,在△ABC中,AC=BC,CD为AB边上的中线,CE∥AB,线段DE交BC 于点G.(1)若CE=CG=1,AB=4,求DE的长;(2)如图②,取△ABC外一点F,连接AF,BF,CF,DF,CF与DE交于点H,若∠ACB=90°,AC=AF,BF⊥CF,DE⊥DF.①求的值;②求证:CH=FH.【分析】(1)证△CEG∽△BDG,得=,求出BG=2,则BC=3,由勾股定理得CD2=BC2﹣BD2=5,再由勾股定理即可得出答案;(2)①证△DFB≌△DHC(AAS),得DF=DH,证出△HDF是等腰直角三角形,得HF=DH,即可得出答案;②由等腰直角三角形的性质得出AB=AC=a,AD=AB=a,则==,证△DAF∽△FAB,得BF=DF,由△DFB≌△DHC,得出CH=BF,DF=DH,推出CH=DF=DH,即可得出结论.解:(1)∵CE∥AB,∴△CEG∽△BDG,∴=,∵在等腰三角形ABC中,AC=BC,CD为AB边上的中线,∴BD=AB=2,CD⊥AB,∴=,∴BG=2,∴BC=BG+CG=2+1=3,∴CD2=BC2﹣BD2=32﹣22=5,∵CE∥AB,CD⊥AB,∴CD⊥CE,∴∠DCE=90°,∴在Rt△CED中,DE===;(2)①∵DE⊥DF,CD⊥AB,∴∠FDE=∠CDB=90°,∴∠FDB=∠HDC,∵BF⊥CF,∴∠CFB=∠EDF=90°,∴∠CFB+∠DFH=∠EDF+∠DFH,∴∠DFB=∠DHC,∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,CD为AB边上的中线,∴BD=CD,在△DFB和△DHC中,,∴△DFB≌△DHC(AAS),∴DF=DH,∵∠EDF=90°,∴△HDF是等腰直角三角形,∴HF=DH,即的值为;②设AC=BC=a,∵△ABC是等腰直角三角形,CD为AB边上的中线,∴AB=AC=a,AD=AB=a,∴==,∵AC=AF,∴==,∵∠DAF=∠FAB,∴△DAF∽△FAB,∴==,即BF=DF,∵△DFB≌△DHC,∴CH=BF,DF=DH,∴CH=DF=DH,∵HF=DH,∴CH=FH.。
2020年安徽省合肥市高考数学三模试卷1 (含答案解析)

2020年安徽省合肥市高考数学三模试卷1一、选择题(本大题共12小题,共36.0分)1.已知复数z=3−i−1+i,则在复平面内,z的对应点位于()A. 第一象限内B. 第二象限内C. 第三象限内D. 第四象限内2.已知R为实数集,集合A={x|x>1},B={x|x⩾2},则(C R B)∩A=()A. (1,2)B. (1,2]C. (−∞,1]D. [2,+∞)3.如图所示,当输入x为2006时,输出的y=()A. 28B. 10C. 4D. 24.设S n是等差数列{a n}的前n项和,已知S7=49,a6=11,则a1等于()A. −1B. 1C. −2D. 25.已知向量a⃗⊥b⃗ ,|b⃗ |=1,则|a⃗|a⃗ |+b⃗ |=()A. √2B. √3C. √5D. √76.已知函数f(x)=sin(ωx+π6)−1最小正周期为2π3,则f(x)的图象的一条对称轴的方程是()A. x=π9B. x=π6C. x=π3D. x=π27.已知α,β为平面,a,b,c为直线,下列说法正确的是()A. 若b//a,a⊂α,则b//αB. 若α⊥β,α∩β=c,b⊥c,则b⊥βC. 若a⊥c,b⊥c,则a//bD. 若a∩b=A,a⊂α,b⊂α,a//β,b//β,则α//β8.若a是从区间[0,10]中任取的一个数,则方程x2−ax+1=0无实数解的概率是()A. 0.1B. 0.2C. 0.3D. 0.49.△ABC的内角A、B、C的对边分别为a、b、c,cosA=sinB=12,b=√3,△ABC的面积为()A. 4B. 32√3 C. 2 D. √310.已知直线l:ax+y−2=0与圆C:(x−1)2+(y−a)2=4相交于A、B两点,M是圆C上一点,使得∠AMB=30∘,则实数a的值为()A. 3±4√2B. 8C. 1D. 4±√1511.两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的316,则这两个圆锥的体积之比为()A. 2:1B. 5:2C. 1:4D. 3:112.已知点A(1,3),B(3,1),C(−1,0),则△ABC的面积等于()A. 3B. 4C. 5D. 6二、填空题(本大题共4小题,共12.0分)13.若抛物线y2=2px的焦点坐标为(1,0),则p=______ .14.若点(1,1)在不等式组{m−nx+y≥02mx−ny−4≤0nx≥3y−3m所表示的平面区域内,则m2+n2的取值范围是______ .15.函数f(x)=x+2x−3的零点为___________.16.已知函数f(x)=2sinx(sinx+cosx),那么f(x)的最大值为________.三、解答题(本大题共7小题,共84.0分)17.己知{a n}是递增的等比数列,a 2+a 3=4,a 1a 4=3.(1)求数列{a n)的通项公式;(2)令b n=na n,求数列{b n)的前n项和S n.18.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生抽样调查了100人,统计结果为:80名南方学生中喜欢吃甜品的有60人,北方学生中不喜欢吃甜品的有10人.(Ⅰ)根据所给样本数据完成下面2×2列联表;附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)的饮食习惯方面有差异”?19. 如图,在四棱锥P −ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =2AB =4,点M 为PD 的中点.(1)若N 为AB 上任意一点,求证:PD ⊥MN ; (2)求三棱锥M −PAB 的体积.20. 已知F 1,F 2是椭圆C :x 2a 2+y2b 2=1的左、右焦点,点M(√2,1)在椭圆C 上,且MF 2⊥F 1F 2.(Ⅰ)求椭圆 C 的方程;(Ⅱ) 与直线y =−x 垂直的直线l 与椭圆C 相交于P ,Q 两点,求OP ⃗⃗⃗⃗⃗ ⋅OQ⃗⃗⃗⃗⃗⃗ 的取值范围.21.已知函数f(x)=ae x+x(a≠0,e是自然对数的底数)..x(Ⅰ)讨论f(x)的单调性;(Ⅱ)若a>2,判断函数F(x)=f(x)−lnx−1在区间(0,+∞)上的零点个数,并说明理由.e222.在平面直角坐标系xOy中,曲线C:为参数,φ∈[0,2π)),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)写出曲线C的普通方程;(2)若点B是射线l:θ=α(ρ≥0,α∈[0,π))与曲线C的公共点,当|OB|=3√3时,求α的值及点B的直角坐标.23.已知函数f(x)=|x−1|.(Ⅰ)解不等式f(x−1)+f(x+3)≥6;).(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(ba-------- 答案与解析 --------1.答案:C解析:【分析】本题考查复数代数形式的乘除运算,是基础题.直接利用复数代数形式的乘除运算化简,求出在复平面内所对应的点的坐标得答案.【解答】解:∵z=3−i−1+i =(3−i)(−1−i)(−1+i)(−1−i)=−2−i,∴在复平面内z的对应点的坐标为(−2,−1),位于第三象限.故选:C.2.答案:A解析:【分析】本题考查交集和补集的混合运算,是基础题.由题意,先求出C R B,再求(C R B)∩A即可.【解答】解:∵集合A={x|x>1},B={x|x⩾2},∴(C R B)∩A={x|x>1}∩{x|x<2}=(1,2).故选A.3.答案:B解析:【分析】本题主要考查了循环结构的程序框图,属于基础题.模拟执行程序框图,依次写出每次循环得到的x的值,当x=−2时不满足条件x≥0,计算并输出y的值为10.【解答】解:模拟执行程序框图,可得x=2006,x=2004满足条件x≥0,x=2002满足条件x≥0,x=2000…满足条件x≥0,x=0满足条件x≥0,x=−2不满足条件x≥0,y=10输出y的值为10.故选B.4.答案:B解析:【分析】本题考查等差数列通项公式和前n项求和公式,是基础题.【解答】由题意知S7=7a1+7×62d=49,a6=a1+5d=11,求得a1=1,d=2.故选B.5.答案:A解析:【分析】利用向量的模的运算法则,通过向量的数量积求解即可.本题考查向量的数量积的应用,是基本知识的考查.【解答】解:向量a⃗⊥b⃗ ,|b⃗ |=1,则|a⃗|a⃗ |+b⃗ |=√(a⃗|a⃗ |)2+2a⃗ ⋅b|a⃗ |+b⃗ 2=√1+1=√2.故选:A.6.答案:A解析:【分析】本题是基础题,考查三角函数的解析式的求法,对称轴方程的求法,考查计算能力.通过函数的周期求出ω,利用正弦函数的对称性,求出对称轴方程,得到选项.【解答】解:因为函数f(x)=sin(ωx+π6)−1最小正周期为2π3,T=2πω=2π3,∴ω=3,所以3x+π6=kπ+π2,k∈Z,解得x=kπ3+π9,k∈Z,当k=0时,x=π9,是一条对称轴方程.故选A.7.答案:D解析:解:由α,β为平面,a,b,c为直线,知:在A中,若b//a,a⊂α,则b//α或b⊂α,故A错误;在B中,若α⊥β,α∩β=c,b⊥c,则b与β相交、平行或b⊂β,故B错误;在C中,若a⊥c,b⊥c,则a与b相交、平行或异面,故C错误;在D中,若a∩b=A,a⊂α,b⊂α,a//β,b//β,则由面面平行的判定定理得α//β,故D正确.故选:D.在A中,b//α或b⊂α;在B中,b与β相交、平行或b⊂β;在C中,a与b相交、平行或异面;在D中,由面面平行的判定定理得α//β.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间能力,考查化归与转化思想、数形结合思想,是中档题.8.答案:B解析:【分析】本题考查长度型几何概型,属于基础题.【解答】解:方程x2−ax+1=0无实数解则Δ=a2−4<0⇒−2<a<2,若a是从区间[0,10]中任取的一个数,则方程x2−ax+1=0无实数解的概率P=210=15=0.2.故选B.9.答案:B解析:解:cosA=sinB=12,可得A=60°,B=30.那么:C=90°∵b=√3,则c=2√3,a=3△ABC的面积S=12ba=3√32故选:B.根据cosA=sinB=12,求解A,B,结合正余弦定理即可求解本题考查了三角形的内角和定理和计算能力.属于基础题.10.答案:D解析:【分析】本题考查直线与圆的位置关系,属于中档题.由已知得到C到AB的距离为√3,通过点到直线的距离公式,得到a的方程,解得a的值.【解答】解:因为∠AMB=30∘,所以,所以三角形ABC为等边三角形,所以C到AB的距离为√3,即√a2+1=√3,解得a=4±√15.故答案为4±√15.11.答案:D解析:【分析】本题考查了圆锥的体积计算,球与内接旋转体的关系,属于基础题.设球半径为r,则根据圆锥底面与球面积的关系得出圆锥的底面半径,根据勾股定理求出球心到圆锥底面的距离,得到两圆锥的高度.【解答】解:设球的半径为R,圆锥底面的半径为r,则πr2=316×4πR2=3πR24,∴r=√32R.∴球心到圆锥底面的距离为√R2−r2=R2.∴圆锥的高分别为R2和3R2.∴两个圆锥的体积比为3R2:R2=3:1.故选D.12.答案:C解析:【分析】本题考查三角形的面积,解答本题的关键是利用将△ABC的面积转化.先找出△ABC的位置,△ABC的面积转化为三角形ACE与梯形AEDB的面积减去三角形CDB的面积可得出答案.【解答】解:如图,△ABC的面积转化为三角形ACE与梯形AEDB的面积减去三角形CDB的面积,则S△ABC=S△CAE+S AEDB−S△CDB=12×3×2+12(1+3)×2−12×4×1=5.故选C.13.答案:2解析:解:∵抛物线y2=2px的焦点坐标为(1,0),∴p2=1,∴p=2,故答案为:2.由抛物线的性质可知,知p2=1,可知p的值.本题考查抛物线的简单性质,属于基础题.14.答案:[910,61]解析:解:根据题意,点(1,1)适合不等式组{m−nx+y≥02mx−ny−4≤0 nx≥3y−3m,将坐标代入,得关于m、n的不等式组:{m−n+1≥0 2m−n−4≤0 n≥3−3m在mon坐标系中,作出符合上不等式组表示的平面区域,如下图m2+n2表示点P(m,n)到原点的距离的平方,根据图形得当P点与点B(5,6)重合时,这个平方和最大,即(m2+n2)max=52+62=61而P到直线AC的距离平方的最小值,即(m2+n2)min=(√12+32)2=910因此,m2+n2的取值范围是[910,61]将点(1,1)的坐标代入不等式组{m−nx+y≥02mx−ny−4≤0nx≥3y−3m,就可以得到一个关于m、n的不等式组,再在平面直角坐标系中作出符合这个不等式组的区域图形,将m2+n2的取值范围问题转化为区域内的点到原点距离平方的取值范围问题,最终可得答案.平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.答案:1和2解析:【分析】本题主要考查函数的零点与方程根的关系,属于基础题.令f(x)=0,得x+2x−3=0,解得即可.【解答】解:令f(x)=x+2x−3=0,得x=1或x=2,所以函数f(x)=x+2x−3的零点为1和2.故答案为1和2.16.答案:1+√2解析: 【分析】本题考查函数的最值,三角函数的定义域和值域,两角和与差的三角函数公式,二倍角公式及应用.由题可得f(x)=1+√2sin (2x −π4),进而得出f(x)的最大值. 【解答】解:f(x)=2sinx(sinx +cosx)=2sin 2x +2sinxcosx =1−cos2x +sin2x =1+√2(√22sin2x −√22cos2x)=1+√2(sin2xcosπ4−cos2xsin π4) =1+√2sin (2x −π4). ∴1−√2≤f (x )≤1+√2. 即f(x)的最大值为1+√2. 故答案为1+√2.17.答案:解:(1)设等比数列{a n }的公比为q ,因为a 2+a 3=4,a 1a 4=3,, 所以{a 1q +a 1q 2=4,a 1⋅a 1q 3=3解得{a 1=9,q =13,或{a 1=13,q =3. 因为{a n }是递增的等比数列, 所以a 1=13,q =3.所以数列{a n}的通项公式为a n=3n−2.(2)由(1)知.b n=n×3n−2.则S n=1×3−1+2×30+3×31+⋯+n×3n−2,①在①式两边同时乘以3得,3S n=1×30+2×31+3×32+⋯+n×3n−1②①−②得−2S n=3−1+30+31+⋯+3n−2−n×3n−1,即−2Sn =13(1−3n)1−3−n×3n−1,所以S n=14(2n−1)×3n−1+112.解析:本题考查等比数列的通项公式及等差数列的前n项和公式,考查了学生的计算能力,培养了学生的综合能力.(1)设出等比数列的首项和公比,由已知列式求解首项和公比,则其通项公式可求;(2)把(1)中求得的a n代入b n=na n,得到数列{b n}的通项公式,再采用错位相减法即可求出.18.答案:解:(Ⅰ)K2=100×(60×10−20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.解析:(Ⅰ)根据统计结果为:80名南方学生中喜欢吃甜品的有60人,北方学生中不喜欢吃甜品的有10人,由此可得列联表;(Ⅱ)计算出K2,结合临界值表可得.本题考查了独立性检验,属中档题.19.答案:(1)证明:∵PA⊥平面ABCD,∴PA⊥AB.又∵AB⊥AD且PA∩AD=A,∴AB⊥平面PAD,∴AB⊥PD.又∵PA=AD,M为PD的中点,∴AM⊥PD,又AM∩AB=A,∴PD⊥平面ABM,又MN⊂面ABM,∴PD⊥MN.(2)解:由(1)知AB ⊥平面PAD ,.解析:本题考查直线与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.(1)先证明线面垂直,然后根据性质可得线线垂直; (2)根据等体积法,转化顶点,进而求出体积.20.答案:解:(I)∵点M(√2,1)在椭圆C 上,且MF 2⊥F 1F 2.∴2a 2+1b 2=1,c =√2,又a 2−b 2=2, ∴a 2=4,b 2=2, ∴椭圆方程为:x 24+y 22=1.(II)设直线l 的方程为:y =x +m ,代入椭圆方程得:3x 2+4mx +2m 2−8=0, △=16m 2−12(2m 2−8)=−8m 2+96>0, ∴−2√3<m <2√3,设P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=−4m 3,x 1x 2=2m 2−83,∴y 1y 2=(x 1+m)(x 2+m)=x 1x 2+m(x 1+x 2)+m 2, ∴OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=4m 2−163−4m 23+m 2=m 2−163. ∵−2√3<m <2√3, ∴−163≤m 2−163<203.即OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ 的取值范围是[−163,203).解析:(I)由题意可知c =√2,把M 点坐标代入椭圆方程得出a ,b 的值即可求出椭圆的方程; (II)设直线l 的方程为:y =x +m ,根据直线与椭圆有两个交点求出m 的范围,根据根与系数的关系得出OP ⃗⃗⃗⃗⃗ ⋅OQ⃗⃗⃗⃗⃗⃗ 关于m 的函数式,从而得出结论. 本题考查了椭圆的性质,直线与椭圆的位置关系,属于中档题.21.答案:解:(Ⅰ)f(x)=ae x +x x=ae x x+1,f′(x)=a ⋅ e x x−e xx 2=a(x−1)e xx 2,①当a >0时,若x <0,f′(x)<0,f(x)在区间(−∞,0)上单调递减, 若0<x <1,f′(x)<0,f(x)在区间(0,1)上单调递减, 若x >1时,f′(x)>0,f(x)在区间(1,+∞)上单调递增,故当a>0时,函数f(x)的单调递减区间为(−∞,0),(0,1),单调递增区间为(1,+∞),②当a<0时,若x<0,f′(x)>0,f(x)在区间(−∞,0)上单调递增,若0<x<1,f′(x)>0,f(x)在区间(0,1)上单调递增,若x>1时,f′(x)<0,f(x)在区间(1,+∞)上单调递减,故当a<0时,函数f(x)的单调递增区间为(−∞,0),(0,1),单调递减区间为(1,+∞).(Ⅱ)由题意可知,则F′(x)=a(x−1)e xx2−1x=1x2[a(x−1)e x−x],当0<x≤1时,F′(x)<0,F(x)单调递减,F(x)≥F(1)=ae>0,当x>1时,F′(x)=a(x−1)x2[e x−xa(x−1)],令G(x)=e x−xa(x−1),则G′(x)=e x+1a(x−1)2>0,又G(2)=e2−2a>0,当x趋向于1时,G(x)趋向于负无穷.故G(x)存在唯一的零点x0∈(1,2),即F(x)有唯一的极值点且为极小值点x0∈(1,2),又,且G(x0)=e x0−x0a(x0−1)=0,即e x0=x0a(x0−1),故,令,x∈(1,2),因为φ′(x)=−1(x−1)2−1x<0,故φ(x)是(1,2)上的减函数,所以F(x0)>φ(2)=1−ln2>0,所以F(x)>0,综上所述,函数F(x)在区间(0,+∞)上无零点.解析:本题考查利用导数研究函数的单调性与零点问题.(Ⅰ)求出导数,分类讨论a的正负求解即可;(Ⅱ)研究F(x)的单调性及极值求解即可.22.答案:解:(1)∵曲线C:为参数,φ∈[0,2π)),∴(x −3)2+y 2=(3cosφ)2+(3sinφ)2=9, ∴曲线C 的普通方程为(x −3)2+y 2=9, 即x 2+y 2−6x =0.(2)由(1)知曲线C 的方程为(x −3)2+y 2=9,是圆,令圆心为C , |OB|=ρB =2|CB|cosθ=2×3cosθ=6cosθ, 若|OB|=3√3,则6cosθ=3√3,解得cosθ=√32,∴θ=π6,即α=π6,∴点B 的横坐标是3√3cosα=3√3cos π6=92, 点B 的纵坐标是3√3sinα=3√3sin π6=3√32, ∴点B 的直角坐标为(92,3√32).解析:本题考查曲线的普通方程的求法,考查点的直角坐标的求法,考查参数方程、直角坐标方程的互化等基础知识,属于简单题.(1)曲线C 的参数方程消去参数,能求出曲线C 的普通方程.(2)由|OB|=ρB =2|CB|cosθ=2×3cosθ=6cosθ,若|OB|=3√3,则cosθ=√32,从而θ=π6,由此能求出α的值及点B 的直角坐标.23.答案:解:(Ⅰ)由题意知原不等式可化为|x −2|+|x +2|≥6,当x ≥2时,2x ≥6,解得x ≥3; 当−2<x <2时,4≥6,无解; 当x ≤−2时,−2x ≥6,解得x ≤−3, 所以不等式的解集是(−∞,−3]∪[3,+∞). (Ⅱ)证明:要证f(ab)>|a|f(ba ), 只要证|ab −1|>|b −a|, 只需证(ab −1)2>(b −a)2, 因为|a|<1,|b|<1,所以(ab −1)2−(b −a)2=a 2b 2−a 2−b 2+1=(a2−1)(b2−1)>0,从而原不等式成立.解析:【分析】本题考查含绝对值的不等式的解法、不等式的证明,考查考生的运算求解能力以及推理论证能力.(Ⅰ)利用零点分区间讨论法求解;(Ⅱ)利用分析法证明不等式.。
2020年安徽省合肥市高考数学三模试卷(理科)

2020年安徽省合肥市高考数学三模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知R是实数集,集合A={﹣1,0,1},B={x|2x﹣1≥0},则A∩(∁R B)=()A.B.C.{1}D.{﹣1,0}2.(3分)已知i是实数集,复数z满足z+z•i=3+i,则复数z的共轭复数为()A.1+2i B.1﹣2i C.2+i D.2﹣i3.(3分)执行如图所示的程序框图,若输入x=﹣1,则输出的y=()A.B.C.D.4.(3分)已知S n是等差数列{a n}的前n项和,若a1+a2+a3=4,S6=10,则a3=()A.B.C.D.5.(3分)某企业的一种商品的产量与单位成本数据如表:产量x(万件)1416182022单位成本y(元/件)12107a3若根据表中提供的数据,求出y关于x的线性回归方程为,则a的值等于()A.4.5B.5C.5.5D.66.(3分)若直线y=k(x+1)与不等式组表示的平面区域有公共点,则实数k 的取值范围是()A.(﹣∞,1]B.[0,2]C.[﹣2,1]D.(﹣2,2]7.(3分)为了得到函数y=sin x的图象,只需将函数的图象()A.横坐标伸长为原来的两倍,纵坐标不变,再向右平移个单位B.横坐标伸长为原来的两倍,纵坐标不变,再向左平移个单位C.横坐标缩短为原来的,纵坐标不变,再向右平移个单位D.横坐标缩短为原来的,纵坐标不变,再向左平移个单位8.(3分)若a,b是从集合{﹣1,1,2,3,4}中随机选取的两个不同元素,则使得函数f(x)=x5a+x b是奇函数的概率为()A.B.C.D.9.(3分)已知直线与圆交于点M,N,点P在圆C上,且,则实数a的值等于()A.2或10B.4或8C.D.10.(3分)已知F是抛物线C:y2=2px(p>0)的焦点,抛物线C上动点A,B满足,若A,B的准线上的射影分别为M,N且△MFN的面积为5,则|AB|=()A.B.C.D.11.(3分)若存在两个正实数x,y使得等式x(1+lnx)=xlny﹣ay成立(其中lnx,lny 是以e为底的对数),则实数a的取值范围是()A.B.C.D.12.(3分)如图,边长为1的菱形ABCD中,∠DAB=60°,沿BD将△ABD翻折,得到三棱锥A﹣BCD,则当三棱锥A﹣BCD体积最大时,异面直线AD与BC所成的角的余弦值为()A.B.C.D.二、填空题.把答案填在答题卡的相应位置.13.(3分)已知,,若,则k=.14.(3分)在的展开式中,x4的系数为.15.(3分)已知函数,若对任意实数x,恒有f(a1)≤f (x)≤f(a2),则cos(a1﹣a2)=.16.(3分)如图是数学家GerminalDandelin用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O1,球O2的半径分别为3和1,球心距离|O1O2|=8,截面分别与球O1,球O2切于点E,F,(E,F是截口椭圆的焦点),则此椭圆的离心率等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}满足a1=1,a n=2a n﹣1+2n﹣1(n≥2),数列{b n}满足b n=a n+2n+3.(Ⅰ)求证数列{b n}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.18.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人.在这些居民中,经常阅读的城镇居民100人,农村居民24人.(Ⅰ)填写下面列联表,并判断是否有97.5%的把握认为,经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10024不经常阅读合计200(Ⅱ)从该地区居民城镇的居民中,随机抽取4位居民参加一次阅读交流活动,记这4位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:,其中n=a+b+c+dP(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.82819.已知:在四棱锥P﹣ABCD中,AD∥BC,,G是PB的中点,△PAD 是等边三角形,平面PAD⊥平面ABCD.(Ⅰ)求证:CD⊥平面GAC;(Ⅱ)求二面角P﹣AG﹣C的余弦值.20.已知直线l经过椭圆的右焦点(1,0),交椭圆C于点A,B,点F为椭圆C的左焦点,△ABF的周长为8..(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线m与直线l的倾斜角互补,且交椭圆C于点M、N,|MN|2=4|AB|,求证:直线m与直线l的交点P在定直线上.21.已知函数f(x)=x2﹣axlnx+a+1(e为自然对数的底数)(Ⅰ)试讨论函数f(x)的导函数y=f'(x)的极值;(Ⅱ)若∀x∈[1,e](e为自然对数的底数),f(x)>0恒成立,求实数a的取值范围.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C的参数方程为(α为参数,α∈[0,π]).在以直角坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线E的方程为ρ2(1+3sin2θ)=4.(1)求曲线C的普通方程和曲线E的直角坐标方程;(2)若直线l:x=t分别交曲线C、曲线E于点A,B,求△AOB的面积的最大值.[选修4-5:不等式选讲]23.设f(x)=3|x﹣1|+|x+1|的最小值为k.(1)求实数k的值;(2)设m,n∈R,m≠0,m2+4n2=k,求证:+≥.2020年安徽省合肥市高考数学三模试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知R是实数集,集合A={﹣1,0,1},B={x|2x﹣1≥0},则A∩(∁R B)=()A.B.C.{1}D.{﹣1,0}【解答】解:因为,所以∁R B={x|x<}.又A={﹣1,0,1},所以A∩(∁R B)={﹣1,0}.故选:D.2.(3分)已知i是实数集,复数z满足z+z•i=3+i,则复数z的共轭复数为()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:z+z•i=3+i可化为z====2﹣i∴z的共轭复数为=2+i,故选:C.3.(3分)执行如图所示的程序框图,若输入x=﹣1,则输出的y=()A.B.C.D.【解答】解:输入x=﹣1,,不成立,;,成立,跳出循环,输出.故选:D.4.(3分)已知S n是等差数列{a n}的前n项和,若a1+a2+a3=4,S6=10,则a3=()A.B.C.D.【解答】解:设等差数列{a n}的公差为d.∵a1+a2+a3=4,S6=10,∴3a1+3d=4,6a1+d=10,联立解得:a1=,d=∴.故选:A.5.(3分)某企业的一种商品的产量与单位成本数据如表:产量x(万件)1416182022单位成本y(元/件)12107a3若根据表中提供的数据,求出y关于x的线性回归方程为,则a的值等于()A.4.5B.5C.5.5D.6【解答】解:由标准数据,计算=×(14+16+18+20+22)=18,=×(12+10+7+a+3)=;由点(,)在线性回归方程=﹣1.15x+28.1上,∴=﹣1.15×18+28.1,则32+a=7.4×5,解得a=5.故选:B.6.(3分)若直线y=k(x+1)与不等式组表示的平面区域有公共点,则实数k 的取值范围是()A.(﹣∞,1]B.[0,2]C.[﹣2,1]D.(﹣2,2]【解答】解:画出不等式组表示的平面区域,如下图所示直线y=k(x+1)过定点A(﹣1,0),直线y=k(x+1)经过不等式组表示的平面区域有公共点则k>0,k AC==2,∴k∈[0,2].故选:B.7.(3分)为了得到函数y=sin x的图象,只需将函数的图象()A.横坐标伸长为原来的两倍,纵坐标不变,再向右平移个单位B.横坐标伸长为原来的两倍,纵坐标不变,再向左平移个单位C.横坐标缩短为原来的,纵坐标不变,再向右平移个单位D.横坐标缩短为原来的,纵坐标不变,再向左平移个单位【解答】解:将函数的图象横坐标伸长为原来的两倍,纵坐标不变,可得y=sin(x+)的图象;再把它的图象再向右平移个单位,可得y=sin x的图象,故选:A.8.(3分)若a,b是从集合{﹣1,1,2,3,4}中随机选取的两个不同元素,则使得函数f(x)=x5a+x b是奇函数的概率为()A.B.C.D.【解答】解:从集合{﹣1,1,2,3,4}中随机选取的两个不同元素共有种,要使得函数f(x)=x5a+x b是奇函数,必须a,b都为奇数共有=6 种,则函数f(x)=x5a+x b是奇函数的概率为P==.故选:B.9.(3分)已知直线与圆交于点M,N,点P在圆C上,且,则实数a的值等于()A.2或10B.4或8C.D.【解答】解:由可得.在△MCN中,CM=CN=2,,可得点到直线MN,即直线的距离为.所以,解得a=4或8.故选:B.10.(3分)已知F是抛物线C:y2=2px(p>0)的焦点,抛物线C上动点A,B满足,若A,B的准线上的射影分别为M,N且△MFN的面积为5,则|AB|=()A.B.C.D.【解答】解:过点A作x轴的垂线,垂足为C,交NB的延长线于点D.设A(,y1),B(,y2),则MN=y1﹣y2.∵S△MFN=5,∴,即(y1﹣y2)p=10,①∵,∴,即,∴y1=﹣4y2,②∵AF=AM=,,∴,③联立①②③解得y1=4,y2=﹣1,p=2.∴|AB|=.故选:D.11.(3分)若存在两个正实数x,y使得等式x(1+lnx)=xlny﹣ay成立(其中lnx,lny 是以e为底的对数),则实数a的取值范围是()A.B.C.D.【解答】解:x(1+lnx)=xlny﹣ay可化为a=,令,则t>0,f(t)=﹣t﹣tlnt,∵f′(t)=﹣2﹣lnt,∴函数f(t)在区间上单调递增,在区间上单调递减.即==则a∈.故选:C.12.(3分)如图,边长为1的菱形ABCD中,∠DAB=60°,沿BD将△ABD翻折,得到三棱锥A﹣BCD,则当三棱锥A﹣BCD体积最大时,异面直线AD与BC所成的角的余弦值为()A.B.C.D.【解答】解:△ABD、△CBD为边长为1的等边三角形,将△ABD沿BD翻折形成三棱锥A﹣BCD如图:点A在底面BDC的投影在∠DCB的平分线CE上,则三棱锥A﹣BCD的高为△AEC 过A点的高;所以当平面ABD⊥平面BCD时,三棱锥A﹣BCD的高最大,体积也最大,此时AE⊥平面BCD;求异面直线AD与BC所成的角的余弦值:平移BC到DC′位置,|cos∠ADC′|即为所求,AD=DC=1,AE=,EC′=,AC′=|cos∠ADC′|=||=,所以异面直线AD与BC所成的角的余弦值为,故选:B.二、填空题.把答案填在答题卡的相应位置.13.(3分)已知,,若,则k=8.【解答】解:+2=(9,2+2k),3﹣=(﹣1,6﹣k);∵(+2)∥(3﹣),∴9(6﹣k)﹣(﹣1)(2+2k)=0,解得k=8.故答案为:8.14.(3分)在的展开式中,x4的系数为﹣.【解答】解:通项公式T k+1=(x3)8﹣k(﹣)k=(﹣)k x24﹣4k,由题意可知24﹣4k=4,解得k=5则x4的系数为(﹣)5=﹣,故答案为:﹣.15.(3分)已知函数,若对任意实数x,恒有f(a1)≤f (x)≤f(a2),则cos(a1﹣a2)=﹣.【解答】解:∵=2cos[+(x﹣)]cos(x﹣)+sin x=cos2x+sin x=﹣2sin2x+sin x+1,∵sin x∈[﹣1,1],∴f(x)∈(﹣2,),对任意实数x,恒有f(a1)≤f(x)≤f(a2),则f(a1)=﹣2,f(a2)=,即sin a1=﹣1,sin a2=,cos a1=0,∴cos(a1﹣a2)=cos a1cos a2+sin a1sin a2=0+=﹣.16.(3分)如图是数学家GerminalDandelin用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O1,球O2的半径分别为3和1,球心距离|O1O2|=8,截面分别与球O1,球O2切于点E,F,(E,F是截口椭圆的焦点),则此椭圆的离心率等于.【解答】解:如图,圆锥面与其内切球O1、O2分别相切与B,A,连接O1B,O2A,则O1B⊥AB,O2A⊥AB,过O1作O1D⊥O2A于D,连接O1F,O2E,EF交O1O2于点C.设圆锥母线与轴的夹角为α,截面与轴的夹角为β.在Rt△O1O2D中,DO2=3﹣1=2,O1D==2.∴cosα===.∵O1O2=8,CO2=8﹣O1C,∵△EO2C∽△FO1C,∴=,解得O1C=2.∴CF===.即cosβ==.则椭圆的离心率e===.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}满足a1=1,a n=2a n﹣1+2n﹣1(n≥2),数列{b n}满足b n=a n+2n+3.(Ⅰ)求证数列{b n}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.【解答】解:(Ⅰ)证明:当n=1时,a1=1,故b1=6.当n≥2时,a n=2a n﹣1+2n﹣1,则b n=a n+2n+3=2(a n﹣1+2n﹣1+2n+3=2[a n﹣1+2(n﹣1)+3],∴b n=2b n﹣1,∴数列列{b n}是等比数列,首项为6,公比为2.(Ⅱ)由(Ⅰ)得b n=3×2n,∴a n=b n﹣2n﹣3=3×2n﹣2n﹣3,∴S n=3×(2+22+……+2n)﹣[5+7+……+(2n+3)]=3×﹣=3×2n+1﹣n2﹣4n﹣6.18.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人.在这些居民中,经常阅读的城镇居民100人,农村居民24人.(Ⅰ)填写下面列联表,并判断是否有97.5%的把握认为,经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10024不经常阅读合计200(Ⅱ)从该地区居民城镇的居民中,随机抽取4位居民参加一次阅读交流活动,记这4位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:,其中n=a+b+c+dP(K2≥k0)0.100.050.0250.0100.0050.001 k0 2.706 3.841 5.024 6.6357.87910.828【解答】解:(Ⅰ)由题意得:城镇居民农村居民合计经常阅读100 24 124不经常阅读50 26 76合计150 50 200则K2==≈5.546>5.024,所以,有97.5%的把握认为经常阅读与居民居住地有关.(Ⅱ)根据样本估计,从该地区城镇居民中随机抽取1人,抽到经常阅读的人的概率是,且x~B(4,),P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,所以X的分布列为:X0 1 2 3 4P∴E(X)==.19.已知:在四棱锥P﹣ABCD中,AD∥BC,,G是PB的中点,△PAD 是等边三角形,平面PAD⊥平面ABCD.(Ⅰ)求证:CD⊥平面GAC;(Ⅱ)求二面角P﹣AG﹣C的余弦值.【解答】(Ⅰ)证明:取AD的中点为O,连结OP,OC,OB,设OB交AC于H,连结GH.∵AD∥BC,,∴四边形ABCO与四边形OBCD均为菱形∴OB⊥AC,OB∥CD,则CD⊥AC,∵△PAD为等边三角形,O为AD的中点,∴PO⊥AD,∵平面PAD⊥平面ABCD且平面PAD∩平面ABCD=AD.PO⊂平面PAD且PO⊥AD,∴PO⊥平面ABCD,∵CD⊂平面ABCD,∴PO⊥CD,∵H,G分别为OB,PB的中点,∴GH∥PO,∴GH⊥CD.又∵GH∩AC=H,AC,GH⊂平面GAC,∴CD⊥平面GAC;(Ⅱ)解:取BC的中点为E,以O为空间坐标原点,分别以,,的方向为x 轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系O﹣xyz.设AD=4,则P(0,0,2),A(0,﹣2,0),C(,1,0),D(0,2,0),G(,,).=(0,2,2),=(,,).设平面PAG的一法向量=(x,y,z).由,得,即.令z=1,则=(1,,1).由(Ⅰ)可知,平面AGC的一个法向量.∴二面角P﹣AG﹣C的平面角θ的余弦值cosθ=.20.已知直线l经过椭圆的右焦点(1,0),交椭圆C于点A,B,点F为椭圆C的左焦点,△ABF的周长为8..(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线m与直线l的倾斜角互补,且交椭圆C于点M、N,|MN|2=4|AB|,求证:直线m与直线l的交点P在定直线上.【解答】解:(Ⅰ)由已知,得,∴,∴b2=3,∴椭圆C的标准方程.(Ⅱ)若直线l的斜率不存在,则直线m的斜率也不存在,这与直线m与直线l相交于点P矛盾,所以直线l的斜率存在.令l:y=k(x﹣1),(k≠0),m:y=﹣k(x+t),A(x1,y1),B(x2,y2),M(x M,y M),N(x N,y N).将直线m的方程代入椭圆方程得:(3+4k2)x2+8k2tx+4(k2t2﹣3)=0,∴x M+x N =﹣,x M x N =,|MN|2=(1+k2).同理|AB|==.由|MN|2=4|AB|得t=0,此时,△=64k4t2﹣16(3+4k2)(k2t2﹣3)>0,∴直线m:y=﹣kx,∴,即点P的定直线x =上.21.已知函数f(x)=x2﹣axlnx+a+1(e为自然对数的底数)(Ⅰ)试讨论函数f(x)的导函数y=f'(x)的极值;(Ⅱ)若∀x∈[1,e](e为自然对数的底数),f(x)>0恒成立,求实数a的取值范围.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞).g(x)=f'(x)=2x﹣alnx﹣a,g'(x)=2﹣当a≤0时,g'(x)>0,函数y=g(x)在(0,+∞)单调递增,函数y=g(x)没有极值.当a>0时,由g'(x)=0,得x =,函数y=g(x)在(0,)上单调递减,在(,+∞)上单调递增.函数y=g(x )的极小值为,没有极大值.(Ⅱ)对∀x∈[1,e],f(x)>0恒成立,即对∀x∈[1,e],x2﹣axlnx+a+1>0,∴对∀x∈[1,e],x﹣alnx +>0.令h(x)=x﹣alnx +,则h'(x)=1﹣=.①当a+1≤1,即a≤0时,对∀x∈[1,e],h'(x)≥0,∴h(x)在[1,e]上单调递增,∴h(x)min=h(1)=1﹣0+>0,解得a>﹣2,∴﹣2<a≤0满足题意.②当a+1≥qe时,即a≥qe﹣1,对∀x∈[1,e],h'(x)≤0,∴h(x)在[1,e]上单调第21页(共23页)递减,h(x)min=h(e)=e﹣a +>0,解得a <∴e﹣1满足题意.③当1<a+1<e,即0<a<e﹣1时,对于x∈[1,a+1],h'(x)<0;对于x∈[a+1,e],h'(x)>0.∴h(x)在[1,a+1]上单调递减,在[a+1,e]上单调递增,∴.即1+﹣ln(a+1)>0设H(a)=1+﹣ln(a+1),由于H(a)在(0,e﹣1)单调递减,∴H(a)>1﹣>0,即h(x)min=aH(a)>0,∴0<a<e﹣1满足题意.综上①②③可得,a 的取值范围为:.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C 的参数方程为(α为参数,α∈[0,π]).在以直角坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线E的方程为ρ2(1+3sin2θ)=4.(1)求曲线C的普通方程和曲线E的直角坐标方程;(2)若直线l:x=t分别交曲线C、曲线E于点A,B,求△AOB的面积的最大值.【解答】解:(1)由(α为参数,α∈[0,π]).消去参数α,可得曲线C的普通方程为x2+y2=4(y≥0).由ρ2(1+3sin2θ)=4,可得ρ2+3(ρsinθ)2=4,则x2+y2+3y2=4,则曲线E 的直角坐标方程为;(2)设A(2cosα,2sinα),α∈[0,π],其中t=2cosα,则B(2cosα,±sinα).要使得△AOB面积的最大,则B(2cosα,﹣sinα).∴==.第22页(共23页)∵2α∈[0,2π],∴sin2α∈[﹣1,1].当,即时,△AOB 的面积取最大值.[选修4-5:不等式选讲]23.设f(x)=3|x﹣1|+|x+1|的最小值为k.(1)求实数k的值;(2)设m,n∈R,m≠0,m2+4n2=k ,求证:+≥.【解答】解:(1)f(x)=3|x﹣1|+|x+1=,当x=1时,f(x)取得最小值,即k=f(1)=2;(2)证明:依题意,m2+4n2=2,则m2+4(n2+1)=6.所以==,当且仅当,即m2=2,n2=0时,等号成立.所以.第23页(共23页)。
2019-2020学年合肥市高考第三次教学质量检测数学模拟试题(理)有答案

合肥市高三第三次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2i1iz =+(i 为虚数单位),则z = A.3 B.2 C.3 D.22.已知集合{}220A x R x x =∈-≥,{}2210B x R x x =∈--=,则()C R A B =IA.∅B.12⎧⎫-⎨⎬⎩⎭C.{}1D.1 12⎧⎫-⎨⎬⎩⎭,3.已知椭圆2222:1y x E a b+=(0a b >>)经过点A()5 0,,()0 3B ,,则椭圆E 的离心率为 A.23B.5C.49 D.594.已知111 2 3 23α⎧⎫∈-⎨⎬⎩⎭,,,,,若()f x x α=为奇函数,且在()0 +∞,上单调递增,则实数α的值是 A.-1,3B.13,3C.-1,13,3D.13,12,35.若l m ,为两条不同的直线,α为平面,且l α⊥,则“//m α”是“m l ⊥”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.已知()()*12nx n N -∈展开式中3x 的系数为80-,则展开式中所有项的二项式系数之和为A.64B.32C.1D.1-7.已知非零实数a b ,满足a a b b >,则下列不等式一定成立的是A.33a b >B.22a b >C.11a b < D.1122log log a b < 8.运行如图所示的程序框图,若输出的s 值为10-,则判断框内的条件应该是A.3?k <B.4?k <C.5?k <D.6?k <9.若正项等比数列{}n a 满足()2*12n n n a a n N +=∈,则65a a -的值是A.2B.162-C.2D.16210.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有A.24B.48C.96D.12011.我国古代《九章算术》将上下两面为平行矩形的六面体称为刍童.如图所示为一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A.125B.40C.16123+D.16125+ 12.已知函数()22f x x x a =---有零点12x x ,,函数()2(1)2g x x a x =-+-有零点34x x ,,且3142x x x x <<<,则实数a 的取值范围是A.924⎛⎫-- ⎪⎝⎭,B.9 04⎛⎫- ⎪⎝⎭, C.(-2,0)D.()1 +∞,第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题—第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡相应的位置.(13)若实数x y ,满足条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =-的最大值为.(14)已知()23 0OA =u u r ,,()0 2OB =uu u r ,,AC t AB t R =∈u u u r u u u r,,当OC uuu r 最小时,t =. (15)在ABC ∆中,内角A B C ,,所对的边分别为a b c ,,.若45A =o ,2sin sin 2sin b B c C a A -=,且ABC ∆的面积等于3,则b =.(16)设等差数列{}n a 的公差为d ,前n 项的和为n S ,若数列{}n S n +也是公差为d 的等差数列,则=n a .三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)已知函数()13sin cos cos 223f x x x x π⎛⎫=-- ⎪⎝⎭.(Ⅰ)求函数()f x 图象的对称轴方程; (Ⅱ)将函数()f x 图象向右平移4π个单位,所得图象对应的函数为()g x .当0 2x π⎡⎤∈⎢⎥⎣⎦,时,求函数()g x 的值域.(18)(本小题满分12分)2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(Ⅰ)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动.(ⅰ)问男、女学生各选取了多少人?(ⅱ)若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为X ,写出X 的分布列,并求()E X .附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.(19)(本小题满分12分)如图,在多面体ABCDE 中,平面ABD ⊥平面ABC ,AB AC ⊥,AE BD ⊥,DE P 12AC ,AD=BD=1.(Ⅰ)求AB 的长;(Ⅱ)已知24AC ≤≤,求点E 到平面BCD 的距离的最大值.(20)(本小题满分12分)已知抛物线2:2C y px =(0p >)的焦点为F ,以抛物线上一动点M 为圆心的圆经过点F.若圆M 的面积最小值为π.EDCBA(Ⅰ)求p 的值;(Ⅱ)当点M 的横坐标为1且位于第一象限时,过M 作抛物线的两条弦MA MB ,,且满足AMF BMF ∠=∠.若直线AB 恰好与圆M 相切,求直线AB 的方程.(21)(本小题满分12分)已知函数()212x f x e x ax =--有两个极值点12x x ,(e 为自然对数的底数). (Ⅰ)求实数a 的取值范围; (Ⅱ)求证:()()122f x f x +>.请考生在第(22)、(23)题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. (22)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为11x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),圆C 的方程为()()22215x y -+-=.以原点O 为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求直线l 及圆C 的极坐标方程;(Ⅱ)若直线l 与圆C 交于AB ,两点,求cos AOB ∠的值.(23)(本小题满分10分)选修4-5:不等式选讲已知函数()13f x x x =-+-. (Ⅰ)解不等式()1f x x ≤+;(Ⅱ)设函数()f x 的最小值为c ,实数a b ,满足0a >,0b >,a b c +=,求证:22111a b a b +≥++.合肥市高三第三次教学质量检测数学试题 (理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分.(13)4 (14)34(15)3 (16)1na=-或1524na n=-三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)(Ⅰ)()11cos cos22cos2234f x x x x x xπ⎛⎫=--=-⎪⎝⎭1sin226xπ⎛⎫=-⎪⎝⎭.令262x k k Zπππ-=+∈,,解得32kxππ=+.∴函数()f x图象的对称轴方程为32kx k Zππ=+∈,. …………………………5分(Ⅱ)易知()12sin223g x xπ⎛⎫=-⎪⎝⎭.∵02xπ⎡⎤∈⎢⎥⎣⎦,,∴222333xπππ⎡⎤-∈-⎢⎥⎣⎦,,∴2sin213xπ⎡⎛⎫-∈-⎢⎪⎝⎭⎣⎦,∴()121sin2232g x xπ⎡⎛⎫=-∈-⎢⎪⎝⎭⎣⎦,即当02xπ⎡⎤∈⎢⎥⎣⎦,时,函数()g x的值域为12⎡-⎢⎣⎦. …………………………12分(18)(本小题满分12分)(Ⅰ)因为()22120602020207.5 6.63580408040K⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为,收看开幕式与性别有关. ………………………5分(Ⅱ)(ⅰ)根据分层抽样方法得,男生31294⨯=人,女生11234⨯=人,所以选取的12人中,男生有9人,女生有3人. ………………………8分(ⅱ)由题意可知,X的可能取值有0,1,2,3.()()302193933312128410801220220C C C CP X P XC C======,,()()1203939333121227123220220C C C C P X P X C C ======,, ∴X 的分布列是:X 0 1 23 P84220108220 272201220∴()84108271301232202202202204E X =⨯+⨯+⨯+⨯=. ……………………12分(19)(本小题满分12分)(Ⅰ)∵平面ABD ⊥平面ABC ,且交线为AB ,而AC⊥AB,∴AC⊥平面ABD. 又∵DE∥AC,∴DE⊥平面ABD ,从而DE⊥BD .注意到BD⊥AE,且DE∩AE=E,∴BD⊥平面ADE ,于是,BD⊥AD . 而AD=BD=1,∴2AB =. ………………………5分(Ⅱ)∵AD=BD,取AB 的中点为O ,∴DO⊥AB . 又∵平面ABD ⊥平面ABC ,∴DO⊥平面ABC.过O 作直线OY∥AC,以点O 为坐标原点,直线OB ,OY ,OD分别为x y z ,,轴,建立空间直角坐标系O xyz -,如图所示.记2AC a =,则12a ≤≤,22 0 0 0 0A B ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,, 22 2 00 0 C a D ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,20E a ⎛⎫- ⎪ ⎪⎝⎭,,,()2 2 0BC a =-,,u u u r ,22 0 BD ⎛⎫=- ⎪ ⎪⎝⎭,,u u u r . 令平面BCD 的一个法向量为()n x y z =,,r.由00BC n BD n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r 得220220x ay x z ⎧-+=⎪⎨-+=⎪⎩.令2x =,得12 2n a ⎛⎫= ⎪⎝⎭,,r . 又∵()0 0DE a =-,,u u u r ,∴点E 到平面BCD 的距离2||14DE n d n a⋅==+u u u r rr . ∵12a ≤≤,∴当2a =时,d 取得最大值,max 217=144d =+.………………………12分(20)(本小题满分12分)(Ⅰ)由抛物线的性质知,当圆心M 位于抛物线的顶点时,圆M 的面积最小,此时圆的半径为2p OF =,∴24P ππ=,解得2p =. ……………………4分(Ⅱ)依题意得,点M 的坐标为(1,2),圆M 的半径为2.由F (1,0)知,MF x ⊥轴.由AMF BMF ∠=∠知,弦MA ,MB 所在直线的倾斜角互补,∴0MA MB k k +=. 设MA k k =(0k ≠),则直线MA 的方程为()12y k x =-+,∴()121x y k=-+, 代入抛物线的方程得,()21421y y k ⎛⎫=-+ ⎪⎝⎭,∴24840y y k k -+-=,∴4422A A y y k k+==-,. 将k 换成k -,得42B y k=--, ∴22441444A B A B AB A B A B A B y y y y k x x y y y y --=====--+--.设直线AB 的方程为y x m =-+,即0x y m +-=. 由直线AB 与圆M2=,解得3m =±经检验3m =+3m =+.∴所求直线AB的方程为3y x =-+-. ……………………12分(21)(本小题满分12分)(Ⅰ)∵()212x f x e x ax =--,∴()x f x e x a '=--. 设()x g x e x a =--,则()1x g x e '=-. 令()10x g x e '=-=,解得0x =.∴当() 0x ∈-∞,时,()0g x '<;当()0x ∈+∞,时,()0g x '>. ∴()()min 01g x g a ==-.当1a ≤时,()()0g x f x '=≥,∴函数()f x 单调递增,没有极值点;当1a >时,()010g a =-<,且当x →-∞时,()g x →+∞;当x →+∞时,()g x →+∞. ∴当1a >时,()()x g x f x e x a '==--有两个零点12x x ,. 不妨设12x x <,则120x x <<.∴当函数()f x 有两个极值点时,a 的取值范围为()1 +∞,. …………………5分 (Ⅱ)由(Ⅰ)知,12x x ,为()0g x =的两个实数根,120x x <<,()g x 在() 0-∞,上单调递减. 下面先证120x x <-<,只需证()()210g x g x -<=.∵()2220x g x e x a =--=,得22x a e x =-,∴()2222222x x x g x e x a e e x ---=+-=-+.设()2x x h x e e x -=-+,0x >,则()120x xh x e e'=--+<,∴()h x 在()0 +∞,上单调递减, ∴()()00h x h <=,∴()()220h x g x =-<,∴120x x <-<. ∵函数()f x 在()1 0x ,上也单调递减,∴()()12f x f x >-. ∴要证()()122f x f x +>,只需证()()222f x f x -+>,即证222220x x e e x -+-->.设函数()()220x x k x e e x x -=+--∈+∞,,,则()2x x k x e e x -'=--. 设()()2x x x k x e e x ϕ-'==--,则()20x x x e e ϕ-'=+->, ∴()x ϕ在()0+∞,上单调递增,∴()()00x ϕϕ>=,即()0k x '>. ∴()k x 在()0+∞,上单调递增,∴()()00k x k >=. ∴当()0x ∈+∞,时,220x x e e x -+-->,则222220x x e e x -+-->,∴()()222f x f x -+>,∴()()122f x f x +>. ………………………12分(22)(本小题满分10分)选修4-4:坐标系与参数方程(Ⅰ)由直线l的参数方程11x y ⎧=-⎪⎪⎨⎪=⎪⎩得,其普通方程为2y x =+, ∴直线l 的极坐标方程为sin cos 2ρθρθ=+. 又∵圆C 的方程为()()22215x y -+-=, 将cos sin x y ρθρθ=⎧⎨=⎩代入并化简得4cos 2sin ρθθ=+,∴圆C 的极坐标方程为4cos 2sin ρθθ=+. ……………………5分 (Ⅱ)将直线l :sin cos 2ρθρθ=+,与圆C :4cos 2sin ρθθ=+联立,得()()4cos 2sin sin cos 2θθθθ+-=, 整理得2sin cos 3cos θθθ=,∴tan 32πθθ==,或.不妨记点A 对应的极角为2π,点B 对应的极角为θ,且tan =3θ.于是,cos cos sin 2AOB πθθ⎛⎫∠=-== ⎪⎝⎭. ……………………10分(23)(本小题满分10分)选修4-5:不等式选讲(Ⅰ)()1f x x ≤+,即131x x x -+-≤+. (1)当1x <时,不等式可化为4211x x x -≤+≥,. 又∵1x <,∴x ∈∅;(2)当13x ≤≤时,不等式可化为211x x ≤+≥,. 又∵13x ≤≤,∴13x ≤≤.(3)当3x >时,不等式可化为2415x x x -≤+≤,. 又∵3x >,∴35x <≤.综上所得,13x ≤≤,或35x <≤,即15x ≤≤.∴原不等式的解集为[]1 5,. …………………5分 (Ⅱ)由绝对值不等式性质得,()()13132x x x x -+-≥-+-=, ∴2c =,即2a b +=.令11a m b n +=+=,,则11m n >>,,114a m b n m n =-=-+=,,, ()()2222211114441112m n a b m n a b m n m n mn m n --+=+=+++-=≥=+++⎛⎫ ⎪⎝⎭, 原不等式得证. …………………10分。
安徽省合肥市2019-2020学年中考数学三模试卷含解析

安徽省合肥市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()A.4 B.8 C. 2 D.-22.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-3.2018的相反数是()A.12018B.2018 C.-2018 D.12018-4.估计41的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A.1.8×105B.1.8×104C.0.18×106D.18×1046.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米7.下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x28.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.159.对于反比例函数2yx=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小10.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )A .小明不是胜就是输,所以小明胜的概率为12B .小明胜的概率是13,所以输的概率是23 C .两人出相同手势的概率为12D .小明胜的概率和小亮胜的概率一样11.许昌市2017年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为( ) A .1915.15×108 B .19.155×1010 C .1.9155×1011D .1.9155×101212.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C .3D .3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.A .如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条. B .用计算器计算:7•tan63°27′≈_____(精确到0.01).14.对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y =max{x+3,﹣x+1},则该函数的最小值是_____.15.如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为_____.16.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是_____. 17.如果分式42x x -+的值为0,那么x 的值为___________. 18.如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=ax 2﹣2ax+c (a≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N ,在x 轴上找一点K ,使CK+KN 最小,并求出点K 的坐标;(3)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ .当△CQE 的面积最大时,求点Q 的坐标;(4)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.20.(6分)计算:033.14 3.1412cos45π⎫-+÷-⎪⎪⎝⎭o )()12009211-++-.21.(6分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.22.(8分)已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点. (1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.23.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A 、B 、C ,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.24.(10分)如图,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =,求O e 的半径.25.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程. 26.(12分)求抛物线y=x 2+x ﹣2与x 轴的交点坐标. 27.(12分)已知函数y=3x(x >0)的图象与一次函数y=ax ﹣2(a≠0)的图象交于点A (3,n ). (1)求实数a 的值;(2)设一次函数y=ax ﹣2(a≠0)的图象与y 轴交于点B ,若点C 在y 轴上,且S △ABC =2S △AOB ,求点C 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】解:由题意得:226x +=,∴24x =,∴x=±1.故选C . 2.B 【解析】 【分析】首先设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为1.2x 元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程, 【详解】设学校购买文学类图书平均每本书的价格是x 元,可得:12000120001001.2x x=+ 故选B . 【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程. 3.C 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得. 【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018, 故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键. 4.C 【解析】<<,∴67<<.6和7之间.5.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】180000=1.8×105,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.7.A【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2•x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意.故选A.8.B试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.9.C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y 随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化10.D【解析】【分析】利用概率公式,一一判断即可解决问题.【详解】A、错误.小明还有可能是平;B、错误、小明胜的概率是13,所以输的概率是也是13;C、错误.两人出相同手势的概率为13;D 、正确.小明胜的概率和小亮胜的概率一样,概率都是13; 故选D . 【点睛】本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比. 11.C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】用科学记数法表示1915.5亿应为1.9155×1011, 故选C . 【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 12.D 【解析】 【详解】解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt △AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3, 故选D. 【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.20 5.1 【解析】 【分析】A 、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B 、利用计算器计算可得. 【详解】A 、根据题意,此正多边形的边数为360°÷45°=8, 则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.14.2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,15.【解析】【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,【详解】解:连接OB,OA′,AA′,∵AA′关于直线MN对称,∴»¼''AN A N∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=即PA+PB 的最小值【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键. 16.1a ≥-且2a ≠ 【解析】分式方程去分母得:2(2x-a )=x-2, 去括号移项合并得:3x=2a-2, 解得:223a x -=, ∵分式方程的解为非负数, ∴2203a -≥且 22203a --≠, 解得:a≥1 且a≠4 . 17.4 【解析】 【详解】 ∵402x x -=+, ∴x-4=0,x+2≠0, 解得:x=4, 故答案为4. 18.64° 【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD 和CE 是△ABC 的两条角平分线,∴∠1=12∠ABC ,∠2=12∠ACB ,∴∠1+∠2=12(∠ABC+∠ACB )=64°.故答案为64°. 点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣2142x x ++;(1)点K 的坐标为(817,0);(2)点P 的坐标为:(1)或(1,1)或(,2)或(1,2). 【解析】试题分析:(1)把A 、C 两点坐标代入抛物线解析式可求得a 、c 的值,可求得抛物线解析;(1)可求得点C 关于x 轴的对称点C′的坐标,连接C′N 交x 轴于点K ,再求得直线C′K 的解析式,可求得K 点坐标;(2)过点E 作EG ⊥x 轴于点G ,设Q (m ,0),可表示出AB 、BQ ,再证明△BQE ≌△BAC ,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.试题解析:(1)∵抛物线经过点C(0,4),A(4,0),∴416840ca a=⎧⎨-+=⎩,解得124ac⎧=-⎪⎨⎪=⎩,∴抛物线解析式为y=﹣12x1+x+4;(1)由(1)可求得抛物线顶点为N(1,92),如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得924k bb⎧+=⎪⎨⎪=-⎩,解得1724kb⎧=⎪⎨⎪=-⎩,∴直线C′N的解析式为y=172x-4 ,令y=0,解得x=817,∴点K的坐标为(817,0);(2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,由﹣12x1+x+4=0,得x1=﹣1,x1=4,∴点B 的坐标为(﹣1,0),AB=6,BQ=m+1,又∵QE ∥AC ,∴△BQE ≌△BAC , ∴EG BQ CO BA = ,即246EG m += ,解得EG=243m + ; ∴S △CQE =S △CBQ ﹣S △EBQ =12(CO-EG )·BQ=12(m+1)(4-243m +) =2128-333m m ++ =-13(m-1)1+2 . 又∵﹣1≤m≤4,∴当m=1时,S △CQE 有最大值2,此时Q (1,0);(4)存在.在△ODF 中,(ⅰ)若DO=DF ,∵A (4,0),D (1,0),∴AD=OD=DF=1.又在Rt △AOC 中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F 的坐标为(1,1).由﹣12x 1+x+4=1,得x 1=1+5 ,x 1=1﹣5. 此时,点P 的坐标为:P 1(1+5,1)或P 1(1﹣5,1);(ⅱ)若FO=FD ,过点F 作FM ⊥x 轴于点M .由等腰三角形的性质得:OM=12OD=1, ∴AM=2. ∴在等腰直角△AMF 中,MF=AM=2.∴F (1,2).由﹣12x 1+x+4=2,得x 13x 1=13. 此时,点P 的坐标为:P 2(32)或P 4(13,2);(ⅲ)若OD=OF ,∵OA=OC=4,且∠AOC=90°.∴.∴点O 到AC 的距离为.而OF=OD=1<矛盾.∴在AC 上不存在点使得OF=OD=1.此时,不存在这样的直线l ,使得△ODF 是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为:(1)或(11)或(,2)或(1,2).点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.20.π【解析】【分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【详解】原式()3.14 3.141π=--+÷ ()212-⨯+-13.14 3.14121π=-+--11π=-π=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.21. (1)25;(2)35. 【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6, 设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)△PDE 为等腰直角三角形,则PE=PD ,点P (m ,-12m 2+2m+6), 函数的对称轴为:x=2,则点E 的横坐标为:4-m ,则PE=|2m-4|,即-12m 2+2m+6+m-6=|2m-4|, 解得:m=4或-2或1717-2和17)故点P的坐标为:(4,6)或(5-17,317-5).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.23.13.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.试题解析:解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为39=13.点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.24.4【解析】【分析】已知△ABC是等腰三角形,根据等腰三角形的性质,作AH BC⊥于点H,则直线AH为BC的中垂线,直线AH过O点,在Rt△OBH中,用半径表示出OH的长,即可用勾股定理求得半径的长.【详解】作AH BC⊥于点H,则直线AH为BC的中垂线,直线AH过O点,2OH OA AH r=-=-,3BH=222OH BH OB+=,即()(2222r r -+=,4r =.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.25.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.26.(1,0)、(﹣2,0)【解析】试题分析:抛物线与x 轴交点的纵坐标等于零,由此解答即可.试题解析:解:令0y =,即220x x +-=.解得:11x =,22x =-.∴该抛物线与x 轴的交点坐标为(-2,0),(1,0).27.(1)a=1;(2)C (0,﹣4)或(0,0).【解析】【分析】(1)把 A (3,n )代入y=3x(x >0)求得 n 的值,即可得A 点坐标, 再把A 点坐标代入一次函数 y=ax ﹣2 可得 a 的值;(2)先求出一次函数 y=ax ﹣2(a≠0)的图象与 y 轴交点 B 的坐标,再分两种情况(①当C 点在y 轴的正半轴上或原点时;②当C 点在y 轴的负半轴上时)求点C 的坐标即可.【详解】(1)∵函数y=3x(x>0)的图象过(3,n),∴3n=3,n=1,∴A(3,1)∵一次函数y=ax﹣2(a≠0)的图象过点A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函数y=ax﹣2(a≠0)的图象与y 轴交于点B,∴B(0,﹣2),①当C点在y轴的正半轴上或原点时,设C(0,m),∵S△ABC=2S△AOB,∴12×(m+2)×3=2×12×3,解得:m=0,②当C点在y 轴的负半轴上时,设(0,h),∵S△ABC=2S△AOB,∴12×(﹣2﹣h)×3=2×12×3,解得:h=﹣4,∴C(0,﹣4)或(0,0).【点睛】本题主要考查了一次函数与反比例函数交点问题,解决第(2)问时要注意分类讨论,不要漏解.。
2020合肥三模数学(理)高三三联简易答案

- ;
)=6
/6
) 4
3槡&
.! 3槡&
/! !
9:
3# 3!
) 4
3槡&
/#
) 8
3槡&
/!
4
) 3槡& ! /# /!
! <<<<<<<<<<<<<<<<< $ ;
) .# 3槡& ) .! 3槡& $ .# 3槡& .! 3槡&
78 /# /! 43! .# 5! .! 5! 43! .# .! 5! .# 3.! 3+
) <<<<<<<<<<<<<<<<<<<<<<<<<
% ;
+ *4# 4)8)8!)
3# 5) 8# 5) 8!)
3# 5) 8)8#)
4)! 5)3! )
<<<<<<<<<<<
& ;
+ *4! 4)8# 5) 8!) 3)8)8#) 3# 5) 8# 5) 8#) 4#) <<<<<<<<<<<<<< , ;
z{"U=6 $-4! 槡) $,4,#4,-4槡& "-4!>: ,8|},-8 .~,#8 /~,$8 0~ Eefk-lmi $""槡& #"槡& " -槡& "" !
合肥市重点初中2020年三模试卷-数学及参考答案

34.8
35.2
35
40.3
39.7
40
A、B 两点间的距离(单位:米)
90.1
90.3
(1)AB 的平均距离是
米。
(2)根据表格提供的数据,求出发射塔的高度。
20.如图,平行四边形 ABCD 的对角线 AC,BD 交于点 O,CE 平分∠BCD 交 AB 于点 E,交 BD 于点 F,且∠ABC=60°,AB=2BC,连接 OE. (1)证明:EO⊥AC; (2)求 BD:BF 的值.
= Ꜩ Ꜩ Ꜩ Ꜩ 22019
;.
解法一:先从面积入手找规律
解法二:将 y 轴向右平移一个单位,过点 A。
五、(本大题共 2 小题,每小题 10 分,满分 20 分)
19.(10 分)(1)AB 的平均距离是 90.2 米
------1 分
(2)根据表格提供的数据,求出发射塔的高度。
解:连接 CD 并延长交 EP 于点 G,
解:(1)设该校的图书借阅总量从 2017 年至 2019 年的年平均增长率为 x, ------1 分
由题意得 5000(1+ x)2=7200
------3 分
解得 x1=0.2,x2= - 2.2,(不合题意,舍去) 答:该校的图书借阅总量从 2017 年至 2019 年的年平均增长率为 20%。------6 分
15.化简求值:(
a2 a
3
+
3
9
a
)÷
a3 2a
,且-3≤
a
≤3,请选择合适的值代入求解。
九年级数学 第 2 页 共 6 页
16.如图,网格纸上正方形小格的边长为 1.图中△ABC 绕着一个点旋转得到△A′B′C′ (1)请作出它们的旋转中心 O (尺规作图,保留作图痕迹); (2)求出旋转时点 B 经过的路线长度; (3)在网格内,以 O 为位似中心,画出△ABC 的位似图形△A"B"C",使得△A"B"C"与△ABC 的位似比为 2:1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥市2020届高三第三次教学质量检测数学试题(理科)
参考答案及评分标准
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
D
A
C
D
C
B
C
B
D
A
C
A
、填空题:本大题共4小题, 每小题5分,共20分.
13.480 14.-960 15.4 16.
①②④⑤
、解答题:本大题共6小题, 满分70分.
17.(本小题满分12分)
解:
(1)
f x cos x sin
x .3cos x
1 sin
2 x
3
1 cos
2 x i 2
丘
sin 2 x
2
2
3
2
由1 sin 2 x —
1得,f x 的值域是—1 , 3 1.…… ......................... 5分
3
2
2
⑵ T 0 x ,•——2 x —
2
3
3
3
3
由正弦函数的图像可知,fx —在区间0, 上恰有两个实数解,必须2 2
- 3
2 3
解得5
4
. .......................................... 12分
6
3
18.(本小题满分12分)
解:(1) •••四边形AACG 是菱形,• AC AG ,
又••• AC .3AG ,••• ACC , =600 , • ACC 是等边三角形. •••点M 为线段AC 的中点,• GM AC . 又T AC // AG , • GM AC 1. •••在等边 ABC 中,BM AC , 由 AC // AG 可得,BM AG . 又 T BM I C 1M M , • AC 1 平面 BMC 1 ,
••• A 1C 1 平面ABG ,•平面BMG 丄平面ABG ................................................ 5分 (2) T BM AC ,平面ABCL 平面AACG ,且交线为AC •- BM 平面ACC 1A 1 , •直线MB , MC , MG 两两垂直. 以点M 为坐标原点,分别以MB , MC , MG 所在直线为坐 标轴建立空间直角坐标系,如图,
则 B 3 , 0, 0 , G 0, 0, 3 , A 0, uuuir uuu - -
•- AC 1 0, 2 0 , BG 3 , 0, 3 , 2, 3 uuuu
CC 1 ,C 0, 1, 0 , 1, 3 .
0, 设平面ABG 的一个法向量为n
uuuur r A C 1 n …uuun r
x , y, z
1,得n
BG n 0
19.(本小题满分12分)
解:(1)由频率分布直方图可得,空气质量指数在(90, 110]的天数为2天,所以估计空气质量指数在 (90, 100]的天数为1天,故在这30天中空气质量等级属于优或良的天数为28无 ................3分 (2)①在这30天
中, …P X 0
?
C 30
• X 的分布列为⑵ 由⑴知,当a 2时,fx e x e x 2x 在R 上
单调递增,
• g
x f ln x x 1
x 2ln x 在 0, 当n Z 且n 2时, n 1 2l n n 1
n
.••n Z 且 .n 2 时,
1 2
2
n In n n 1
n
1 1 1 1 1 L 1 i
2 i l n i 1
3 2
4 n 1 上单调递增. 1 n 2
1 2ln1 0 ,即卩 2ln n , 1 n 1 1 n 1 n 1 1 1113 n
2 n 212分
n 1 2 n n 1 2n n 1
备孚即点C 到平面ABC 的距离为孚
12分
1 29,
1 2
2 -
29 5
②甲不宜进行户外体育运动的概率为—,乙不宜进行户外体育运动的概率为—,
10
EX 0 -92 145
48 145
2
2
1 9』 …P C 3
C 2 10 10
3 7
10 10
10 567 50000
12分
20.(本小题满分12分) 解:(1) f x e x e 当a
x 2 时,f x e a , a 1 2
4 2 ,a a 2 4 a
a 2 4
,In
U In 2 2
2时,由f x
在R 上单调递增;
a . a 2 4 ln .
2
时,f x 0 ,
••• f
x
在'『「P 和
时,f
0.
上单调递增,
在 lndJ^2,ln12
2 2
上单调递减.
…d
乙不宜进行户外体育运动,且甲适宜进行户外体育运动的天数共6天,
92
145
_ 1 _ 1
C 6 C 24 48
C 6 P X 1 6 £ , P X 2
6. C 30
145
C 30
解:设点 P X o , y , A X i , y i , B x 2, y 2 . (1) T 直线|经过坐标原点,x 2 x 1, y 2 y 1 .
2
..X0
2
2
2
X0
— y 。
1 ,…y 。
1
4
4
2
同理得
2
y
1
1乞.
4
设直线OB 与直线PA 交于点M ,则点M 为线段PA 的中点,且M
•直线PA 的方程为y 比 皀 x 竺,整理得y 2 4y 2 2
将y
.竺口 代入动点Q 的轨迹方程得,x ; 4y ; x 2 4y 2
2
将 x2 y ; 1 代入(^),整理得 4x 2 4X 2X x | 0.
4
2 2
T 16X 2 16X 2 0,•直线PA 与动点Q 的轨迹相切.
当y o 时,直线PA 的方程为x 1,•直线PA 与动点Q 的轨
迹相切.
2
2
cos 3 si n 3,即
•四边形ABCD 面积的最大值为7.
k pA k pB
y 1 y 0 y 1 y
°
2
2
X 0 X 1 X 0 X 1 X 0
X
1
•直线PA 与直线PB 的斜率之积为定值. 2
2 2 2
X
X
X
X
1亠
1 1
0 1
4
4
4 4 1
2
2
2
2
X
X
X
X
4
1
1
5分
2 2
⑵T luu OA uur OB uui OP r 0 ,• uuu uur
• OP
2O
设Q
-x 0 2x x , y ,贝9
y 0 2y .
2
由生
2 y °
1, 得x 2
4y 2 1, 4
•动点Q 的轨迹方程为x 2 4y 2 1 .
当y 2 0时,
■
2 2
2
“
刘 2 . y 1 , y 1
, • k pA 匹 y 0
4 4 X 1 X 0 1 X 1
X o 4 % y o
X 2 4y 2
综上可知,直线PA 与动点Q 的轨迹相切.
12分
22.(本小题满分10分)
(1) 曲线E 的直角坐标方程为x+1 直线m 的极坐标方程为 ( (2) 设点A , C 的极坐标分别为 2
2
y R). 1
, 2
, 由2+2 • A C I I ■
S
AB CD
得,2+2
cos 3
2 . cos 2
3.同理得 BD 2.si
■7s in 2 3 cos 2
3 sin 2
cos
0 , • !
2 2cos
1 2
2〔AC | |BD
2A /CO sin 2 3 .
s 2
3
X 2X 2
4y 2
4X 2X 4 1 y ;
0( ^).
当且仅当
3
或—时,等号成立,
4
4
(1) f x 2x 2 x, 3x, 3,
根据函数图象得, m 2.
⑵由(1)知,a •- a2 b 1
x
的最小值为-2,
2 ,
2 12 12 12 2 2
a 1
b 1 1
c 2 1 a b c 1 9,
• a2b 1 2 当
且仅当a •- a2 b2
1
2b
2
2 3 ,
c 2, a b c
4c 2 0.
即a 1 , b 2, c 1时等号成立,
......................................... 10分
1 -。