活度与活度系数计算
活度系数法 状态方程法

活度系数法状态方程法
活度系数法
概述:
在溶液中,溶质的实际浓度与理论浓度存在偏差,这是由于溶质分子间相互作用而引起的。
为了更准确地描述溶液中溶质的浓度,引入了活度系数的概念。
活度系数是一个无量纲量,它与实际浓度之比等于理论浓度之比。
公式:
a = γ × c
其中,a 表示活度,γ 表示活度系数,c 表示实际浓度。
计算方法:
1. 通过实验数据求得实际浓度。
2. 根据物质在不同温度下的活度系数表或者计算公式求得对应温度下
的活度系数。
3. 将实际浓度与对应温度下的活度系数相乘即可得到该物质在该温度下的活度。
优点:
1. 能够更准确地描述溶液中溶质的浓度。
2. 能够考虑到物质之间相互作用对溶液性质的影响。
状态方程法
概述:
状态方程法是一种通过热力学状态方程计算物质在不同条件下性质变化的方法。
热力学状态方程是描述物质热力学性质的数学公式,它能够描述物质在不同温度、压力、摩尔数等条件下的状态。
公式:
PV = nRT
其中,P 表示压强,V 表示体积,n 表示摩尔数,R 表示气体常数,T 表示温度。
计算方法:
1. 根据实验条件求得物质的压强、体积和温度。
2. 根据物质的化学式求得其摩尔数。
3. 根据热力学状态方程计算出物质在该条件下的其他性质,如密度、焓等。
优点:
1. 能够快速准确地计算物质在不同条件下的性质变化。
2. 能够通过热力学状态方程描述物质在不同条件下的状态。
分析化学15

[H ] cKa
4.分析浓度为c mol/L的一元弱碱水溶液体系
(1)当cKb≥20KW,c/Kb﹤400时
[OH ] Kb Kb2 4cKb 2
(2)当c Kb<20KW,c/Kb≥400时 [OH ] cKb KW
(3)当cKb≥20KW,c/Kb≥400时
)
c Ka(HAc)
(2)当c
Ka(NH
4
)≥20Kw,
c<20Ka(H Ac)时
[H ]
cK K a( HAc)
a
(
NH
4
)
c Ka(HAc)
(3)当c
Ka(NH
4
)<
20Kw,
c
≥
20Ka(H
Ac)时
[H ]
K (cK a(HAc)
a
(
NH
4
)
KW
)
c
9.分析浓度为c mol/L的氨基酸水溶液体系
1.离子强度的计算:
I
1 2
n i 1
ci
Z
2 i
2.活度系数的计算:
lg i
0.50Zi2
( 1
I
I
0.30I )
戴维斯经验公式
3.活度的计算: ai ici
例:考虑离子强度的影响,计算由0.025mol·L-1 Na2HPO4 和0.025 mol·L-KH2PO4组成的缓冲溶液的pH值。
[OH [OH
] ]
Ka
该式是计算一元弱酸及其共轭碱或一元弱碱及其共轭酸 缓冲体系pH值的通式,是精确计算式。
活度系数计算

电解质溶液活度计算理论进展【摘要】:由于溶液大多数不是理想溶液,需要用活度来代替浓度。
活度系数又是描述活度与浓度的差异程度,因此活度系数的计算对于反应过程相当的重要。
近几年,随着活度系数理论模型的不断发展,活度系数的计算方法也在不断的提高、创新。
本文在回顾电解质溶液热力学经典理论的基础上,对活度系数计算做了综述。
【关键词】:活度系数活度模型热力学模型活度计算Electrolyte solution activity in recent years, progressin computational theoryAbstract:Solution is not ideal because most of the solution need to replace the concentration of activity. Activity coefficient is described differences in degree of activity and concentration, so the calculation of activity coefficients for the reaction process was very important. In recent years, with the activity coefficient of the continuous development of theoretical models, the calculation of activity coefficients are also constantly improving and innovation. In this paper, recalling the classical theory of thermodynamics of electrolyte solution, based on calculations made on the activity coefficient is reviewed.Keywords: Activity coefficient, Activity Model, Thermodynamic model, Activity calculation1、活度与活度系数绝大多数的反应都有溶液(固溶体、冶金熔体及水溶液)参加,而这些溶液经常都不是理想溶液,在进行定量的热力学计算和分析,溶液中各组分的浓度必须代以活度。
强电解质溶液的活度与活度系数

5.3 强电解质溶液的活度和活度系数5.3.1 电解质溶液的活度和活度系数对于非理想溶液,其溶质的化学位可表示为:m a RT ln +=*μμ,m a m γ=m a — 活度(有效浓度) *μ—标准状态时的化学位,即1a m =时的化学位。
m — 溶质的质量摩尔浓度 γ — 活度系数对于强电解质溶液,由于电解质在溶剂中解离为离子,故m a m γ=关系不适用于溶质的整体,但对离子本身仍然适用,即:+++γ=m a ,---γ=m a 设某电解质 -+ννA M 在溶液中电离:--++ννν+ν→-+z z A M A M这时:+*+++=a RT ln μμ, -*--+=a RT ln μμ 而:--++*+=+=μνμνμμa RT ln又: *--*++*μν+μν=μ 故: -+ν-ν+⋅=a a a因为溶液是电中性的,各种离子的γ、m 无法通过实验测定,而引出“平均离子活度”的概念。
令: -+ν+ν=ν定义:平均离子活度 ()νν-ν+±-+⋅=1a a a 平均离子活度系数 ()νν-ν+±-+γ⋅γ=γ1平均离子浓度 ()νν-ν+±-+⋅=1mm m又: m m ++ν=,m m --ν= 得: ① ±±±γ=m a② ()νν-ν+ν±-+ν⋅νγ=ma表格1 298K 时一些1-1价型电解质溶液中TlCl 饱和溶液的±γ5.3.2 离子强度由下表可知,当21m m +<0.021kgmol -⋅时,TlCl 的±γ只与(21m m +)有关而与外加电解质的种类无关。
1921年,路易斯(Lewis )等人在研究了大量不同离子价型电解质对活度系数的影响之后,总结出一个经验规律:在稀溶液中,电解质离子的平均活度系数±γ与溶液中总的离子浓度和电荷有关,而与离子的种类无关。
总的离子浓度和电荷对±γ的影响可用公式描述:I z z A -+±-=γlg ——德拜-休克尔(Debye-H ückel )极限公式A 是一个只与温度和溶剂性质有关的常数,对于25℃的水溶液,A=0.509kg/mol ;+z 和-z 分别为正负离子的价数;I 为离子强度,它被定义为∑=ii i z m I 221i m 和i z 分别为离子i 的质量摩尔浓度和价数。
活度与活度系数

液相需对拉乌尔定律修正:pi pi0 aˆi pio xi ri
f i oL:纯i时液相的逸度
f
V i
:与纯i液体平衡的物质作为气相时
的逸度
r即由i 上aˆxiiPP式iio 可PPi,io知,应:是用根对道据拉尔实乌顿测尔分汽定压液律定平的律衡校r数i正据x,pi Pyii有o
(
r xi yi P , Pio 可由所处T查出)可求出 i
若用汽液平衡常数表示这一类体系的汽液
r 平衡,由平衡常数定义,可得 Ki
由
pio
,
ri
p及K
pyi xi Pio
i
可求出
i ,(由
yi xi
ri pio p
, )
若用相对挥发度表示这类体系 的汽液平衡:
vi pyi xi
v j py j x j
若是理液, ri 1
(汽相为理想气体)
pio
p
o j
综上可知,非理想体系汽液平衡计算的
一压力下的纯组分作为标态)
以有效浓度(活度)代替实际浓度,可用来计算真 实溶液与理想溶液的区别以及那些目前尚无法去计算 的一切量。
对理想溶液(气相不是 i.g )
fˆi
xi
fi
xi
f
o i
Lewis-Randall
故
aˆi
fˆi fio
xi
f
o i
fio
xi
即理想溶液中组分i的活度等于 xi
溶液。
注意:
以上讨论的是与溶液呈平衡的 气相不是理想气体的情况。还存 在气相是理想气体的混合物,而 液相为非理想溶液的体系,在低 压下大部分体系属于这一类,故 具有特别的重要性。
活度与活度系数.ppt

若用汽液平衡常数表示这一类体系的汽液
r 平衡,由平衡常数定义,可得 Ki
由
pio
,
ri
p及K
pyi xi Pio
i
可求出
i ,(由
yi xi
ri pio p
, )
若用相对挥发度表示这类体系 的汽液平衡:
vi pyi xi
v j py j x j
若是理液, ri 1
(汽相为理想气体)
pio poj
i
fˆiV
f
V i
Pi Pi o
f i oL:纯i时液相的逸度
f
V i
:与纯i液体呈平衡的物质作为气相时
的逸度
r即由i 上aˆxiiPP式iio 可PPi,io知,应:是用根对道据拉尔实乌顿测尔分汽定压液律定平的律衡校r数i正据x,pi Pyii有o
(
r xi yi P , Pio 可由所处T查出)可求出 i
一压力下的纯组分作为标态)
以有效浓度(活度)代替实际浓度,可用来计算真 实溶液与理想溶液的区别以及那些目前尚无法去计算 的一切量。
对理想溶液(气相不是 i.g )
fˆi xi fi xi fio
Lewis-Randall
故
aˆi
fˆi fio
xi
f
o i
fio
xi
即理想溶液中组分i的活度等于 xi
则得ui 即 ui (l
(l) ui
) ui (
(g
g)
)= u
ui0 (g)
0 i
(液)
RT ln pi0 po
RT ln xi
RT
ln
xi
其中,u
0 i
电解质溶液的活度和活度系数

•
G T,P = Wf, max
33
G T,P = Wf, max
•
若非膨胀功 Wf 仅电功一种,即对于可
逆电池反应:
G T,P = W电,max = -nEF
即: m a m
mi ai i m
对于强电解质:m+= + m,m= m
13
例:
(1)HCl 溶液,浓度 m,则:
m = (m++ m ) 1/
=(mm)1/2 = m = (+ )1/2
a = (m / m )· =(m /m)
对1-1型电解质: ai= a+ · a
9
2. 平均活度 a、平均活度系数
电解质溶液中正、负离子总是同时存在; 热力学方法只能得到电解质的化学势和活度; 得不到单种离子的化学势和活度。 所以我们采用正、负离子的平均活度 a 来表 示电解质溶液中离子的活度。
10
定义离子平均活度:
的“离子氛”,而该离子
同时又为别的中心离子的
“离子氛”的一员。
“离子氛”模型可以把溶液中非常复杂的大量离子之 间的相互库仑作用能等效地归结为中心离子与“离 子氛”之间的作用 大大简化了所研究体系。
28
三、电解质溶液的活度系数
1. 离子 j 的活度系数 j
2 log j A Z j I
或表达成:
i = i (T ) + RT ln ai
比较上两式: i (T) =+ + (T) + (T) —— 假想标准态化学势 ai= a+ + a —— 离子活度之幂乘积
§4强电解质的活度和活度系数

§7.4 强电解质的活度和活度系数1.溶液中离子的活度和活度系数由于阴阳离子间存在较强的静电吸引,与非电解质溶液相比,电解质溶液更容易偏离理想溶液的行为。
从理论上应如何描述电解质溶液的行为呢?原则上讲,以活度代替浓度将化学势表示为ln B B B RT a μμ=+同样适用于电解质溶液,但由于电解质的电离,使得其情况比非电解质溶液更复杂。
在电解质稀溶液中,强电解质完全电离成阴阳离子,它们的化学势可分别表示为: ln RT a μμ+++=+; ln RT a μμ---=+其中阳离子活度α+=γ+m +/m ,阴离子活度α-=γ-m -/m ,γ+、γ-和m +、m -分别是阳离子和阴离子的活度系数和质量物质的量浓度。
由于强电解质溶液由阴阳离子共同组成,其溶液总的化学势应该是各离子化学势的加和。
对任一强电解质M A v v +-:M A M A z z v v v v +-+-+-−−→+有: ()ln ln v vv v v v RT a a RT aμμμμμμ+-++--++--+-=+=++=+ (7.12)比较可知v v μμμ++--=+v v a a a +-+-=⋅ (7.13)由于单一离子的溶液不存在,故无法测定单一离子的活度及活度系数,实验测量的只能是阴阳离子共同的对外表现,为此需引入离子的平均活度a ±、平均活度系数γ±和平均质量物质的量浓度m ±,令ν++ν-=ν,根据式(7.13)定义定义a ±为defv vv a a a +-±+-===⋅ (7.14)令a ± = γ± m ±/m ,将其代入(7.14)式可得()()v v v v v vm m m γγγ+-+-±±+-+-⋅=⋅⋅⋅ 所以v v vγγγ+-±+-=⋅ (7.15)v v v m m m +-±+-=⋅ (7.16)可见,离子平均活度、平均活度系数和平均质量物质的量浓度都是几何平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
萃取精馏部分脱除,而相对挥发度小于1的组分(即比1,3-丁
二烯易溶于 DMF的组分)在第二萃取精馏部分中脱除。在原 料中只有那些与1,3-丁二烯的沸点相差较大的杂质,才能在 普通精馏部分脱除。
This chapter begins the analysis of mixture phase equilibrium calculations using Aspen Plus®:
专题2:活度计算
This chapter begins the analysis of mixture phase equilibrium calculations using Aspen Plus®
问题
(1)年产1,3-丁二烯:5.0万吨/年 (2)原料来源:由乙烯裂解送来的C4混合烃
(3)年操作时间:7800小时
The Property Analysis method Advantages:it can easily be used to generate tables and graphs of P-xy, T-xy, and Gibbs energy of mixing as a function of composition. Disadvantages:it can only be used for binary mixtures, and that it can only be used for calculations at a fixed temperature or pressure.
(4)本装置能在设计能力为50%的负荷下运行。 (5)全流程采用萃取精馏、精馏两段流程,其中包括了 丁二烯回收、溶剂精制等部
序号 1 2 3
组分名称 丁烷 1-丁烯 2-顺丁烯
含量(%) 1.389 40.654 5.816
相对分子量 58.12 56.10 56.11
4 5
6
2-反丁烯 1,3-丁二烯
乙烯基乙炔
4.597 46.85
0.32
56.11 54.088
5炔
甲基乙炔 3-甲基-1-丁烯 1,2-丁二烯
0.06
0.1 0.02 0.19
40.06
54.09 70.14 54.09
生产原理: C4馏分中各组分沸点接近,相对挥发度差值小。因此,工
业上很难用普通精馏的方法将之分离开来,而需要采用一般
2. Simulation mode
3.REGRESSION
• deals with the different (inverse) problem of having experimental VLE data and determining the activity coefficient model parameters that best fit those data
1. Property Analysis
2. Simulation mode
3. Regressing available experimental VLE data to obtain values of parameters in activity coefficient models
1. Property Analysis
精馏与特殊精馏相结合的方法才能经济合理地将它们分离开, 本工艺采用萃取精馏的方法,即当在C4原料中加入一定量 极性溶剂即萃取剂(萃取剂不与任何一个组分形成共沸物) 后,各组分的相对挥发度差值增大,以达到将目的组成分离
出来的目的。
生产工序原则上溶剂DMF中与1,3-丁二烯相比,相对挥发度 大于1的组分(即比1,3-丁二烯难溶于DMF的组分)在第一