2020届高考物理小题狂练8:功和功率、动能和动能定理(附解析)

合集下载

2020年高考物理二轮复习经典试题: 功 功率 动能定理

2020年高考物理二轮复习经典试题: 功 功率 动能定理

2022年高考物理二轮复习经典试题功 功率 动能定理一、选择题(本题共8小题,每小题8分,共64分,其中第5、6、8小题为多选题.)1.[2022·福建卷]如图所示,表面光滑的固定斜面顶端安装确定滑轮,小物块A 、B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A 、B 处于同一高度并恰好处于静止状态.剪断轻绳后A 下落、B 沿斜面下滑,则从剪断轻绳到物块着地,两物块( )A .速率的变化量不同B .机械能的变化量不同C .重力势能的变化量相同D .重力做功的平均功率相同解析:由题意依据力的平衡有m A g =m B g sin θ,所以m A =m B sin θ.依据机械能守恒定律mgh =12m v 2,得v =2gh ,所以两物块落地速率相等,选项A 错;由于两物块的机械能守恒,所以两物块的机械能变化量都为零,选项B 错误;依据重力做功与重力势能变化的关系,重力势能的变化为ΔE p =-W G =-mgh ,选项C 错误;由于A 、B 两物块都做匀变速运动,所以A 重力的平均功率为P A =m A g ·v2,B 重力的平均功率P B =m B g ·v 2cos(π2-θ),由于m A =m B sin θ,所以P A =P B ,选项D 正确.答案:D2.[2021·虹口质检]质量为2 kg 的物体做直线运动,沿此直线作用于物体的外力与位移的关系如图所示,若物体的初速度为3 m/s ,则其末速度为( )A .5 m/s B.23 m/s C. 5 m/sD.35 m/s解析:依据作用于物体的外力与位移的关系图象与横轴所围面积表示功,物体的外力做功W =4 J +16 J -6 J =14 J .由动能定理,W =12m v 22-12m v 21,解得末速度为v 2=23 m/s ,选项B 正确.答案:B3.[2021·洛阳统考]如图所示,从光滑的1/4圆弧槽的最高点滑下的小滑块,滑出槽口时速度方向为水平方向,槽口与一个半球顶点相切,半球底面水平,若要使小滑块滑出槽口后不沿半球面下滑,已知圆弧轨道的半径为R 1,半球的半径为R 2,则R 1和R 2应满足的关系是( )A. R 1≤R 22B. R 1≥R 22C. R 1≤R 2D. R 1≥R 2解析:依据动能定理有mgR 1=12m v 2,解得v =2gR 1,若要使小滑块滑出槽口后不沿半球面下滑,则有v ≥gR 2(临界状态可由mg =m v 2R 2求得),代入数据解得R 1≥R 22,选项B 正确.答案:B4.[2021·浙江省重点中学协作体4月调研]如图所示为某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进.若质量为m 的小车在平直的水泥路上从静止开头沿直线加速行驶,经过时间t 前进的距离为l ,且速度达到最大值v m .设这一过程中电动机的功率恒为P ,小车所受阻力恒为F ,那么这段时间内( )A .小车做匀加速运动B .小车受到的牵引力渐渐增大C .小车受到的合外力所做的功为PtD .小车受到的牵引力做的功为Fl +12m v 2m解析:行驶过程中功率恒为P ,小车做加速度渐渐减小的加速运动,小车受到的牵引力渐渐减小,选项A 、B 错误;小车受到的合外力所做的功为Pt -Fl ,选项C 错误;由动能定理,W -Fl =12m v 2m ,小车受到的牵引力做的功为W =Fl+12m v 2m,选项D 正确. 答案:D5.(多选)如图所示,倾角为30°、高为L 的固定斜面底端与水平面平滑相连,质量分别为3m 、m 的两个小球A 、B 用一根长为L 的轻绳连接,A 球置于斜面顶端.现由静止释放A 、B 两球,B 球与弧形挡板碰撞过程时间极短,碰撞过程中无机械能损失,且碰后只能沿斜面下滑,两球最终均滑到水平面上.已知重力加速度为g ,不计一切摩擦,则( )A. A 球刚滑至水平面时的速度大小为125gL B. B 球刚滑至水平面时的速度大小为12gL C. 两球在水平面上不行能相撞D. 在A 球沿斜面下滑的过程中,轻绳对B 球先做正功、后不做功 解析:因B 球和弧形挡板碰撞过程无能量损失,并且B 球的运动方向变为沿斜面对下,又A 、B 两球用一轻绳连接,所以A 、B 两球的线速度大小相等(B 球上升过程中,A 球未到达水平面时).当A 球刚到水平面时,B 球在竖直高度为L2处,由能量守恒定律得3mgL -mg L 2=12(3m +m )v 21,解得v 1=125gL ,A 正确;因A 球。

高中物理第八章机械能守恒定律第3节动能和动能定理训练含解析

高中物理第八章机械能守恒定律第3节动能和动能定理训练含解析

第3节动能和动能定理1。

(多选)对于动能的理解,下列说法中正确的是()A.动能是普遍存在的机械能的一种基本形式,凡是运动的物体都具有动能B.动能总是正值,但对于不同的参考系,同一物体的动能大小是不同的C.一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化D.动能不变的物体,一定处于平衡状态2.下列关于运动物体的合外力做功和动能、速度变化的关系,正确的是()A.物体做变速运动,合外力一定不为零,动能一定变化B.若合外力对物体做功为零,则合外力一定为零C.物体的合外力做功,它的速度大小一定发生变化D.物体的动能不变,所受的合外力必定为零3。

如图所示,在2018世界杯足球比赛时,某方获得一次罚点球机会,该方一名运动员将质量为m的足球以速度v0猛地踢出,结果足球以速度v撞在球门高h的门梁上而被弹出.现用g 表示当地的重力加速度,则此足球在空中飞往门梁的过程中克服空气阻力所做的功应等于()A.mgh+错误!mv2-错误!mv错误!B. 错误!mv2-错误!mv错误!-mghC。

错误!mv错误!-错误!mv2-mghD.mgh+12mv错误!-错误!mv24.质量为m的金属块,当初速度为v0时,在水平面上滑行的最大距离为s,如果将金属块质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为() A.s B.2sC.4s D.8s5.一物体以初速度v0竖直向上抛出,落回原地速度为错误!,设物体在运动过程中所受的阻力大小保持不变,则重力与阻力大小之比为()A.3︰1 B.4︰3C.5︰3 D.3︰5关键能力综合练进阶训练第二层一、单选题1.下列关于动能的说法正确的是()A.两个物体中,速度大的动能也大B.某物体的速度加倍,它的动能也加倍C.做匀速圆周运动的物体动能保持不变D.某物体的动能保持不变,则速度一定不变2.从地面竖直向上抛出一个小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k与时间t的关系图像是()3.一质量为1 kg的滑块以6 m/s的初速度在光滑的水平面上向左滑行.从某一时刻起在滑块上施加一个向右的水平力,经过一段时间后,滑块的速度方向变成向右,大小仍为6 m/s。

2020高考物理 功、功率与动能定理 Word版含答案

2020高考物理  功、功率与动能定理 Word版含答案

专题二动量与能量第5讲功、功率与动能定理一、明晰功和功率的根本规律二、抓住机车启动问题解决关键1.机车输出功率:P=F v ,其中F为机车牵引力.2.机车启动匀加速过程的最|||大速度v1(此时机车输出的功率最|||大)和全程的最|||大速度v m(此时F牵=F阻)求解方法:(1)求v1:由F牵-F阻=ma ,P=F牵v1可求v1=PF阻+ma.(2)求v m:由P=F阻v m ,可求v m=PF阻.三、理解动能及动能定理的根本应用高频考点1功和功率的计算1.求功的途径(1)用定义式(W=Fl cos α)求恒力功;(2)用动能定理W =12m v 22-12m v 21求功;(3)用F -l 图象所围的面积求功;(4)用平均力求功(力与位移呈线性关系 ,如弹簧的弹力); (5)利用W =Pt 求功. 2.求功率的途径(1)平均功率:P =W t ,P =F v -cos α.(2)瞬时功率:P =F v cos α.1-1. (2021·全国卷Ⅱ)如图 ,一光滑大圆环固定在桌面上 ,环面位于竖直平面内 ,在大圆环上套着一个小环.小环由大圆环的最|||高点从静止开始下滑 ,在小环下滑的过程中 ,大圆环对它的作用力( )A .一直不做功B .一直做正功C .始终指向大圆环圆心D .始终背离大圆环圆心解析:此题考查圆周运动、功.小环在固定的光滑大圆环上滑动 ,做圆周运动 ,其速度沿大圆环切线方向 ,大圆环对小环的弹力(即作用力)垂直于切线方向 ,与速度垂直 ,故大圆环对小环的作用力不做功 ,选项A 正确、B 错误.开始时大圆环对小环的作用力背离圆心 ,到达圆心等高点时弹力提供向心力 ,故大圆环对小环的作用力指向圆心 ,选项C 、D 错误.答案:A1-2.(多项选择)(2021·全国新课标Ⅱ卷)两实心小球甲和乙由同一种材质制成 ,甲球质量大于乙球质量.两球在空气中由静止下落 ,假设它们运动时受到的阻力与球的半径成正比 ,与球的速率无关.假设它们下落相同的距离 ,那么( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功解析:两球的质量m =ρ·43πr 3 ,对两球由牛顿第二定律a =mg -f m =g -kr ρ·43πr 3=g -k ρ·43πr 2,可得a 甲>a 乙 ,由h =12at 2知甲球的运动时间较短 ,选项A 、C 错误.由v =2ah 得v 甲>v 乙 ,应选项B 正确.因f 甲>f 乙 ,由W f =f ·h 知阻力对甲球做功较大 ,选项D 正确.答案:BD1-3.关于功率公式P =Wt 和P =F v 的说法正确的选项是( )A .由P =Wt 只能求某一时刻的瞬时功率B .从P =F v 知 ,汽车的功率与它的速度成正比C .由P =F v 只能求某一时刻的瞬时功率D .从P =F v 知 ,当汽车发动机功率一定时 ,牵引力与速度成反比解析:由P =Wt 能求某段时间的平均功率 ,当物体做功快慢相同时 ,也可求得某一时刻的瞬时功率 ,选项A 错误;从P =F v 知 ,当汽车的牵引力不变时 ,汽车的瞬时功率与它的速度成正比 ,选项B 错误;由P =F v 能求某一时刻的瞬时功率 ,假设v 是平均速度 ,那么也可求解平均功率 ,选项C 错误;从P =F v 知 ,当汽车发动机功率一定时 ,牵引力与速度成反比 ,选项D 正确.答案:D 1-4.(2021·上海静安区高三质检)物体在平行于斜面向上的拉力作用下 ,分别沿倾角不同斜面的底端 ,匀速运动到高度相同的顶端 ,物体与各斜面间的动摩擦因数相同 ,那么( )A .沿倾角较小的斜面拉 ,拉力做的功较多B .沿倾角较大的斜面拉 ,克服重力做的功较多C .无论沿哪个斜面拉 ,拉力做的功均相同D .无论沿哪个斜面拉 ,克服摩擦力做的功相同 解析:设斜面倾角为θ ,斜面高度h ,斜面长度L =hsin θ,物体匀速被拉到顶端 ,根据动能定理W F =mgh +μmg cos θ·L =mgh +μmg ·htan θ ,那么h 相同时 ,倾角较小那么拉力做的功较多 ,选项A 正确 ,C 错误;重力做功为W G =mgh ,那么重力做功相同 ,选项B 错误;克服摩擦力做的功W f =μmg cos θ·L =μmg ·htan θ,所以倾角越大 ,摩擦力做功越小 ,选项D 错误.答案:A高频考点2 机车启动问题机车的两类启动问题1.恒定功率启动(1)机车先做加速度逐渐减小的变加速直线运动 ,后做匀速直线运动 ,速度 -时间图象如以下图 ,当F =F 阻时 ,v m =P F =PF 阻.(2)动能定理Pt 1-F 阻x =12m v 2m -0.2.恒定加速度启动(1)速度 -时间图象如以下图.机车先做匀加速直线运动 ,当功率增大到额定功率后获得匀加速的最|||大速度v 1.之后做变加速直线运动 ,直至|||到达最|||大速度v m 后做匀速直线运动.(2)常用公式: ⎩⎪⎨⎪⎧F -F 阻=ma P =F v P 额=F 阻v mv 1=at12-1. (2021·全国卷Ⅱ)一汽车在平直公路上行驶.从某时刻开始计时 ,发动机的功率P 随时间t 的变化如以下图.假定汽车所受阻力的大小f 恒定不变.以下描述该汽车的速度v 随时间t 变化的图线中 ,可能正确的选项是( )解析:由P -t 图象知:0~t 1内汽车以恒定功率P 1行驶 ,t 1~t 2内汽车以恒定功率P 2行驶.设汽车所受牵引力为F ,那么由P =F v 得 ,当v 增加时 ,F 减小 ,由a =F -f m 知a 减小 ,又因速度不可能突变 ,所以选项B 、C 、D 错误 ,选项A 正确.答案:A2-2.(2021·南昌十所省重点中学二模)用一根绳子竖直向上拉一个物块 ,物块从静止开始运动 ,绳子拉力的功率按如以下图规律变化 ,物块的质量为m ,重力加速度为g,0~t 0时间内物块做匀加速直线运动 ,t 0时刻后功率保持不变 ,t 1时刻物块到达最|||大速度 ,那么以下说法正确的选项是( )A .物块始终做匀加速直线运动B .0~t 0时间内物块的加速度大小为P 0mt 0C .t 0时刻物块的速度大小为P 0mgD .0~t 1时间内物块上升的高度为P 0mg ⎝⎛⎭⎫t 1-t 02-P 202m 2g3 解析:0~t 0时间内物块做匀加速直线运动 ,t 0时刻后功率保持不变 ,根据P =F v 知 ,v 增大 ,F 减小 ,物块做加速度减小的加速运动 ,当加速度减小到零 ,物体做匀速直线运动 ,故A 错误;根据P 0=F v =Fat ,F =mg +ma 得P =(mg +ma )at ,可知图线的斜率k =P 0t 0=m (g +a )a ,可知a ≠P 0mt 0 ,故B 错误;在t 1时刻速度到达最|||大 ,F =mg ,那么速度v =P 0mg ,可知t 0时刻物块的速度大小小于P 0mg,故C 错误;P -t 图线围成的面积表示牵引力做功的大小 ,根据动能定理得 ,P 0t 02+P 0(t 1-t 0)-mgh =12m v 2 ,解得h =P 0mg ⎝⎛⎭⎫t 1-t 02-P 202m 2g3 ,故D 正确.答案:D2-3.(多项选择)(2021·衡阳市高三第二次联考)一辆汽车在平直的公路上运动 ,运动过程中先保持某一恒定加速度 ,后保持恒定的牵引功率 ,其牵引力和速度的图象如以下图.假设汽车的质量m 、牵引力F 1和速度v 1及该车所能到达的最|||大速度v 3 ,运动过程中所受阻力恒定 ,那么根据图象所给的信息 ,以下说法正确的选项是( )A .汽车行驶中所受的阻力为F 1v 1v 3B .汽车匀加速运动的过程中牵引力的冲量大小为m v 1v 3(v 3-v 1)C .速度为v 2时的加速度大小为F 1v 1m v 2D .假设速度为v 2时牵引力恰为F 12,那么有v 2=2v 1解析:根据牵引力和速度的图象和功率P =F v 得汽车运动中的最|||大功率为F 1v 1.该车所能到达的最|||大速度时加速度为零 ,所以此时阻力等于牵引力 ,所以阻力f =F 1v 1v 3 ,选项A正确;根据牛顿第二定律 ,有恒定加速度时 ,加速度a ′=F 1-f m =F 1m -F 1v 1m v 3 ,匀加速的时间:t =v 1a ′=m v 1v 3F 1(v 3-v 1) ,那么汽车匀加速运动的过程中牵引力的冲量大小为I =F 1t =m v 1v 3(v 3-v 1),故B 正确;速度为v 2时的牵引力是F 1v 1v 2 ,对汽车受力分析 ,受重力、支持力、牵引力和阻力 ,根据牛顿第二定律有 ,速度为v 2时加速度大小为a =F 1v 1m v 2-F 1v 1m v 3,故C 错误;假设速度为v 2时牵引力恰为F 12 ,那么F 1v 1v 2=F 12,那么v 2=2v 1 ,选项D 正确;应选ABD .答案:ABD高频考点3 动能定理的应用3-1.(多项选择) (2021·全国卷Ⅲ)如图 ,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最|||低点的过程中 ,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最|||低点时 ,向心加速度的大小为a ,容器对它的支持力大小为N ,那么( )A .a =2(mgR -W )mRB .a =2mgR -WmRC .N =3mgR -2WRD .N =2(mgR -W )R解析:质点P 下滑过程中 ,重力和摩擦力做功 ,根据动能定理可得mgR -W =12m v 2 ,根据公式a =v 2R ,联立可得a =2(mgR -W )mR ,A 正确 ,B 错误;在最|||低点重力和支持力的合力充当向心力 ,根据牛顿第二定律可得 ,N -mg =ma ,代入可得 ,N =3mgR -2WR,C 正确 ,D 错误.答案:AC3-2.(2021·成都外国语学校月考)如图 ,质量为M =3 kg 的小滑块 ,从斜面顶点A 静止开始沿ABC 下滑 ,最|||后停在水平面D 点 ,不计滑块从AB 面滑上BC 面 ,以及从BC 面滑上CD 面的机械能损失.:AB =BC =5 m ,CD =9 m ,θ=53° ,β=37° ,重力加速度g =10 m/s 2 ,在运动过程中 ,小滑块与接触面的动摩擦因数相同.那么( )A .小滑块与接触面的动摩擦因数μ=0.5B .小滑块在AB 面上运动时克服摩擦力做功 ,等于在BC 面上运动克服摩擦力做功 C .小滑块在AB 面上运动时间大于小滑块在BC 面上的运动时间D .小滑块在AB 面上运动的加速度a 1与小滑块在BC 面上的运动的加速度a 2之比是5/3 解析:根据动能定理得 ,Mg (S AB sin θ+S BC sin β)-μMg (S AB cos θ+S BC cos β)-μMS CD =0 ,解得:μ=716 ,A 错误;在AB 段正压力小于BC 段正压力 ,故在AB 段克服摩擦力做功小于在BC 段克服摩擦力做的功 ,B 错误;小滑块在AB 面上运动的平均速度小于小滑块在BC 面上的平均速度 ,故小滑块在AB 面上运动时间大于小滑块在BC 面上运动时间 ,C 正确;小滑块在AB 面上运动的加速度:a 1=g sin θ-μg cos θ=438m/s 2 ,小滑块在BC 面上运动的加速度∶a 2=g sin β-μg cos β=52m/s 2 ,那么a 1∶a 2=43∶20 ,D 错误.答案:C3-3. (2021·江西师范大学附属中学月考)如以下图 ,竖直放置的等螺距螺线管高为h ,该螺线管是用长为l 的硬质直管(内径远小于h )弯制而成.一光滑小球从上端管口由静止释放 ,关于小球的运动 ,以下说法正确的选项是( )A .小球到达下端管口时的速度大小与l 有关B .小球到达下端管口时重力的功率为mg 2ghC .小球到达下端的时间为2l 2ghD .小球在运动过程中受管道的作用力大小不变解析:在小球到达最|||低点的过程中只有重力做功 ,故根据动能定理可知mgh =12m v 2 ,解得v =2gh 小球到达下端管口时的速度大小与h 有关 ,与l 无关 ,故A 错误;到达下端管口的速度为v =2gh ,速度沿管道的切线方向 ,故重力的瞬时功率为p =mg 2gh sin θ ,故B 错误;物体在管内下滑的加速度为a =gh l ,故下滑所需时间为t ,那么l =12at 2 ,即t =2la=2l 2gh,故C 正确;小球做的是加速螺旋运动 ,速度愈来愈大 ,做的是螺旋圆周运动 ,根据F n =m v 2R可知 ,支持力越来越大 ,故D 错误;应选C . 答案:C3-4.(2021·全国卷Ⅱ)为提高冰球运发动的加速能力 ,教练员在冰面上与起跑线相距s 0和s 1(s 1<s 0)处分别放置一个挡板和一面小旗 ,如以下图.训练时 ,让运发动和冰球都位于起跑线上 ,教练员将冰球以初速度v 0击出 ,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时 ,运发动垂直于起跑线从静止出发滑向小旗.训练要求当冰球到达挡板时 ,运发动至|||少到达小旗处.假定运发动在滑行过程中做匀加速运动 ,冰球到达挡板时的速度为v 1.重力加速度大小为g .求(1)冰球与冰面之间的动摩擦因数; (2)满足训练要求的运发动的最|||小加速度.解析:(1)设冰球的质量为m ,冰球与冰面之间的动摩擦因数为μ ,由动能定理得 -μmgs 0=12m v 21-12m v 20 ① 解得μ=v 20-v 212gs 0②(2)冰球到达挡板时 ,满足训练要求的运发动中 ,刚好到达小旗处的运发动的加速度最|||小.设这种情况下 ,冰球和运发动的加速度大小分别为a 1和a 2 ,所用的时间为t .由运动学公式得v 20-v 21=2a 1s 0③ v 0-v 1=a 1t ④ s 1=12a 2t 2⑤ 联立③④⑤式得a 2=s 1(v 1+v 0)22s 20⑥答案:(1)v 20-v 212gs 0 (2)s 1(v 1+v 0)22s 201.动能定理往往用于单个物体的运动过程 ,由于不牵扯加速度及时间 ,比动力学研究方法要简洁.2.动能定理表达式是一个标量式 ,在某个方向上应用动能定理是没有依据的. 3.物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程) ,此时可以分段考虑 ,也可以对全过程考虑 ,但假设能对整个过程利用动能定理列式那么可使问题简化.应用动能定理解决多过程多体类问题动能定理解决多过程问题(2021·全国乙卷)如图 ,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处 ,另一端位于直轨道上B 处 ,弹簧处于自然状态.直轨道与一半径为56R 的光滑圆弧轨道相切于C 点 ,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑 ,最|||低到达E 点(未画出) ,随后P 沿轨道被弹回 ,最|||高到达F 点 ,AF =4R .P 与直轨道间的动摩擦因数μ=14 ,重力加速度大小为g .取sin 37°=35 ,cos 37°=45(1)求P 第|一次运动到B 点时速度的大小. (2)求P 运动到E 点时弹簧的弹性势能.(3)改变物块P 的质量 ,将P 推至|||E 点 ,从静止开始释放.P 自圆弧轨道的最|||高点D 处水平飞出后 ,恰好通过G 点.G 点在C 点左下方 ,与C 点水平相距72R 、竖直相距R .求P 运动到D 点时速度的大小和改变后P 的质量.[思路点拨] (1)物块P 从C 到B 点 ,受力情况、运动情况怎样 ?可用什么公式求解 ? (2)物块P 从C 到E 再到F 点 ,受力情况及各力做功情况怎样 ?如何求f 做的功 ?怎样求BE 这段距离 ?(3)分析物块P 从C 到E 的过程中各力对物块做功的情况 ,如何求弹簧弹力做的功 ? (4)改变物块质量后 ,物块由D 到G 做什么运动 ?应用什么公式 ?(5)改变物块质量后 ,分析由E 到D 过程中各力做功情况 ,由动能定理求解改变后P 的质量.提示:(1)物块P 受重力mg 、支持力N 、摩擦力f 作用 ,做匀加速直线运动 ,可由牛顿第二定律结合运动学公式求解 ,也可由动能定理求解.(2)物块受重力mg 、支持力N 、弹簧弹力及摩擦力作用 ,全过程只有重力和摩擦力做功 ,由能量守恒定律可求BE 的长度.(3)确定始末状态的动能 ,分析各力做功 ,由W G +W f +W 弹=ΔE k 求解. (4)平抛运动:y =12gt 2 ,x =v 0t .【解析】 (1)根据题意知 ,B 、C 之间的距离l 为 l =7R -2R①设P 到达B 点时的速度为v B ,由动能定理得 mgl sin θ-μmgl cos θ=12m v 2B② 式中θ=37°.联立①②式并由题给条件得 v B =2gR .③(2)设BE =x .P 到达E 点时速度为零 ,设此时弹簧的弹性势能为E p .P 由B 点运动到E 点的过程中 ,由动能定理有mgx sin θ-μmgx cos θ-E p =0-12m v 2B④E 、F 之间的距离l 1为 l 1=4R -2R +x⑤P 到达E 点后反弹 ,从E 点运动到F 点的过程中 ,由动能定理有 E p -mgl 1sin θ-μmgl 1cos θ=0⑥联立③④⑤⑥式并由题给条件得 x =R ⑦ E p =125mgR .⑧(3)设改变后P 的质量为m 1.D 点与G 点的水平距离x 1和竖直距离y 1分别为x 1=72R -56R sinθ⑨ y 1=R +56R +56R cos θ⑩式中 ,已应用了过C 点的圆轨道半径与竖直方向夹角仍为θ的事实. 设P 在D 点的速度为v D ,由D 点运动到G 点的时间为t . 由平抛运动公式有 y 1=12gt 2⑪ x 1=v D t⑫联立⑨⑩⑪⑫式得 v D =355gR⑬设P 在C 点速度的大小为v C .在P 由C 点运动到D 点的过程中机械能守恒 ,有 12m 1v 2C =12m 1v 2D +m 1g ⎝⎛⎭⎫56R +56R cos θ⑭P 由E 点运动到C 点的过程中 ,由动能定理有 E p -m 1g (x +5R )sin θ-μm 1g (x +5R )cos θ=12m 1v 2C ⑮联立⑦⑧⑬⑭⑮式得 m 1=13m .⑯ 【答案】 (1)2gR (2)125mgR (3)355gR 13m应用动能定理解题的根本思路动能定理解决多物体问题如以下图 ,足够长的木板上外表光滑 ,其质量M =10 kg ,在水平拉力F =50 N 的作用下 ,以v 0=5 m/s 的速度沿水平地面向右匀速运动.现有假设干个小铁块 ,它们质量均为m =1 kg.某时刻将一个铁块轻轻放在木板最|||右端 ,木板运动L =1 m 后 ,又将第二个铁块轻轻放在木板最|||右端 ,只要木板运动L 就在木板最|||右端轻轻放上一个铁块.(g 取10 m/s 2)求:(1)放上第|一个铁块后 ,木板运动1 m 时的速度大小; (2)直到木板停下来能放在木板上的铁块个数;(3)木板停下来前放在木板上的最|||后一个铁块与木板最|||右端的距离.【解析】 (1)开始时木板匀速运动 ,设木板与地面间的动摩擦因数为μ ,那么有F =μMg ,解得μ=0.5放上第1个铁块后 ,根据动能定理有μmgL =12M v 20-12M v 21 ,解得v 1=2 6 m/s .(2)假设木板上放x 个铁块后木板仍向右运动 ,那么木板所受合力F 合=f -F =xμmg 放上第2个铁块后 ,有2μmgL =12M v 21-12M v 22 放上第n 个铁块后 ,有nμmgL =12M v 2n -1-12M v 2n 可得(1+2+3+…+n )μmgL =12M v 20-12M v 2n 木板停下来时有v n =0 ,整理得n 2+n -50=0 ,解得n =6.6 ,所以最|||终能有7个铁块放在木板上.(3)当放上第7个铁块后 ,设木板停下来后铁块距木板最|||右端的距离为d ,由(2)可知 6(6+1)2μmgL +7μmgd =12M v 20-0 解得d =47m .【答案】 (1)26m/s (2)7个 (3)47m第6讲 机械能守恒与能量守恒一、明晰一个网络,理解机械能守恒定律的应用方法二、掌握系统机械能守恒的三种表达式三、理清、透析各类功能关系高频考点1机械能守恒定律的应用运用机械能守恒定律分析求解问题时,应注意:1.研究对象的选取研究对象的选取是解题的首|||要环节,有的问题选单个物体(实为一个物体与地球组成的系统)为研究对象机械能不守恒,但选此物体与其他几个物体组成的系统为研究对象,机械能却是守恒的.如以下图,单独选物体A机械能减少,但由物体A、B二者组成的系统机械能守恒.2.要注意研究过程的选取有些问题研究对象的运动过程分几个阶段,有的阶段机械能守恒,而有的阶段机械能不守恒.因此,在应用机械能守恒定律解题时要注意过程的选取.3.注意机械能守恒表达式的选取"守恒的观点〞的表达式适用于单个或多个物体机械能守恒的问题,列式时需选取参考平面.而用 "转移〞和 "转化〞的角度反映机械能守恒时,不必选取参考平面.1-1.(多项选择)(2021·全国Ⅱ卷)如图,滑块a、b的质量均为m ,a套在固定竖直杆上,与光滑水平地面相距h ,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g.那么()A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最|||小时,b对地面的压力大小为mg解析:由题意知,系统机械能守恒.设某时刻a、b的速度分别为v a、v b.此时刚性轻杆与竖直杆的夹角为θ ,分别将v a、v b分解,如图.因为刚性杆不可伸长 ,所以沿杆的分速度v ∥与v ∥′是相等的 ,即v a cos θ=v b sin θ.当a 滑至|||地面时θ=90° ,此时v b =0 ,由系统机械能守恒得mgh =12m v 2a ,解得v a =2gh ,选项B正确;同时由于b 初、末速度均为零 ,运动过程中其动能先增大后减小 ,即杆对b 先做正功后做负功 ,选项A 错误;杆对b 的作用先是推力后是拉力 ,对a 那么先是阻力后是动力 ,即a 的加速度在受到杆的向下的拉力作用时大于g ,选项C 错误;b 的动能最|||大时 ,杆对a 、b 的作用力为零 ,此时a 的机械能最|||小 ,b 只受重力和支持力 ,所以b 对地面的压力大小为mg ,选项D 正确.答案:BD1-2.(多项选择)(2021·泰安市高三质检)如以下图 ,将质量为2 m 的重物悬挂在轻绳的一端 ,轻绳的另一端系一质量为m 的环 ,环套在竖直固定的光滑直杆上A 点 ,光滑定滑轮与直杆的距离为d .A 点与定滑轮等高 ,B 点在距A 点正下方d 处.现将环从A 处由静止释放 ,不计一切摩擦阻力 ,以下说法正确的选项是( )A .环到达B 处时 ,重物上升的高度h =dB .环从A 到B ,环减少的机械能等于重物增加的机械能C .环从A 点能下降的最|||大高度为43dD .当环下降的速度最|||大时 ,轻绳的拉力T =2mg解析:根据几何关系有 ,环从A 下滑至|||B 点时 ,重物上升的高度h =2d -d ,故A 错误;环下滑过程中无摩擦力做功 ,故系统机械能守恒 ,即满足环减小的机械能等于重物增加的机械能 ,故B 正确;设环下滑最|||大高度为H 时环和重物的速度均为零 ,此时重物上升的最|||大高度为:H 2+d 2-d ,根据机械能守恒有:mgH =2mg (H 2+d 2-d ) ,解得:H =4d3 ,故C正确;环向下运动 ,做非匀速运动 ,就有加速度 ,所以重物向上运动 ,也有加速度 ,即环运动的时候 ,绳的拉力不可能是2mg ,故D 错误.所以BC 正确 ,AD 错误.答案:BC1-3.(2021·全国卷Ⅰ)一质量为8.00×104kg 的太空飞船从其飞行轨道返回地面.飞船在离地面高度1.60×105 m 处以7.50×103 m/s 的速度进入大气层 ,逐渐减慢至|||速度为100 m/s 时下落到地面.取地面为重力势能零点 ,在飞船下落过程中 ,重力加速度可视为常量 ,大小取为9.8 m/s 2.(结果保存2位有效数字)(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600 m 处至|||着地前瞬间的过程中克服阻力所做的功 ,飞船在该处的速度大小是其进入大气层时速度大小的2.0%.解析:(1)飞船着地前瞬间的机械能为 E k0=12m v 20①式中 ,m 和v 0分别是飞船的质量和着地前瞬间的速率.由①式和题给数据得 E k0=4.0×108 J② 设地面附近的重力加速度大小为g .飞船进入大气层时的机械能为 E h =12m v 2h+mgh③式中 ,v h 是飞船在高度1.60×105 m 处的速度大小.由③式和题给数据得 E h ≈2.4×1012J④(2)飞船在高度h ′=600 m 处的机械能为 E h ′=12m ⎝⎛⎭⎫2.0100v h 2+mgh ′⑤由功能原理得 W =E h ′-E k0⑥式中 ,W 是飞船从高度600 m 处至|||着地前瞬间的过程中克服阻力所做的功.由②⑤⑥式和题给数据得W ≈9.7×108 J⑦答案:(1)4.0×108 J 2.4×1012 J (2)9.7×108 J1-4. (2021·全国丙卷)如图 ,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道 ,两者在最|||低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R2.一小球在A 点正上方与A 相距R4处由静止开始自由下落 ,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.解析:(1)设小球的质量为m ,小球在A 点的动能为E k A ,由机械能守恒定律得E k A =mg R4①设小球在B 点的动能为E k B ,同理有E k B =mg 5R4② 由①②式得E k BE k A=5.③(2)假设小球能沿轨道运动到C 点 ,那么小球在C 点所受轨道的正压力N 应满足N ≥0④设小球在C 点的速度大小为v C ,由牛顿第二定律和向心加速度公式有N +mg =m v 2CR 2 ⑤由④⑤式得 ,v C 应满足mg ≤m 2v 2CR⑥ 由机械能守恒定律得mg R 4=12m v 2C⑦由⑥⑦式可知 ,小球恰好可以沿轨道运动到C 点. 答案:(1)5 (2)能沿轨道运动到C 点高频考点2 能量守恒定律的应用(2021·福建卷)如图 ,质量为M 的小车静止在光滑水平面上 ,小车AB 段是半径为R 的四分之一圆弧光滑轨道 ,BC 段是长为L 的水平粗糙轨道 ,两段轨道相切于B 点.一质量为m 的滑块在小车上从A 点由静止开始沿轨道滑下 ,重力加速度为g .(1)假设固定小车 ,求滑块运动过程中对小车的最|||大压力大小;(2)假设不固定小车 ,滑块仍从A 点由静止下滑 ,然后滑入BC 轨道 ,最|||后从C 点滑出小车.滑块质量m =M2 ,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍 ,滑块与轨道BC 间的动摩擦因数为μ ,求:①滑块运动过程中 ,小车的最|||大速度大小v m ; ②滑块从B 到C 运动过程中 ,小车的位移大小s .[思路点拨] (1)由题中信息 "小车静止在光滑水平面上〞得知假设不固定小车 ,那么当滑块下滑时小车会在水平面上向左滑动.(2)由BC 段粗糙可知滑块在BC 段相对小车滑动时会产生热量. (3)滑块对小车压力最|||大的位置在哪里 ?怎样求最|||大压力 ? (4)小车不固定时什么时候速度最|||大 ?怎样求小车的最|||大速度 ?提示:(3)滑块对小车压力最|||大的位置在B 处 ,由能量守恒定律求得滑块在B 处的速度 ,再由牛顿第二定律求出滑块在B 处的支持力 ,由牛顿第三定律得到滑块对小车的压力.(4)滑块滑到小车的B 点时 ,小车速度最|||大 ,由下滑过程中小车和滑块组成的系统机械能守恒即可求出最|||大速度.【解析】 (1)滑块滑到B 点时对小车压力最|||大 ,从A 到B 机械能守恒 ,有mgR =12m v 2B,滑块在B 点处 ,由牛顿第二定律有N -mg =m v 2BR解得N =3mg由牛顿第三定律可得N ′=3mg .(2)①滑块下滑到达B 点时 ,小车速度最|||大.由机械能守恒定律 ,有mgR =12M v 2m +12m (2v m )2解得v m =gR3. ②设滑块运动到C 点时 ,小车速度大小为v C ,由功能关系有mgR -μmgL =12M v 2C +12m (2v C )2设滑块从B 到C 过程中 ,小车运动加速度大小为a ,由牛顿第二定律有μmg =Ma由运动学规律有v 2C -v 2m =-2as解得s =13L .【答案】 (1)3mg (2)①gR 3 ②L 31.与能量有关的力学综合题的特点(1)常见的与能量有关的力学综合题有单一物体多过程和多个物体多过程两大类型; (2)联系前后两个过程的关键物理量是速度 ,前一个过程的末速度是后一个过程的初速度;(3)当涉及功、能和位移时 ,一般选用动能定理、机械能守恒定律或能量守恒定律 ,题目中出现相对位移时 ,应优先选择能量守恒定律.2.解答与能量有关的综合题时的本卷须知(1)将复杂的物理过程分解为几个简单的物理过程 ,挖掘出题中的隐含条件 ,找出联系不同阶段的 "桥梁〞.(2)分析物体所经历的各个运动过程的受力情况以及做功情况的变化 ,选择适合的规律求解.2-1.(多项选择)(2021·湖北省六校联合体高三联考)图示为某探究活动小组设计的节能运动系统.斜面轨道倾角为30° ,质量为M 的木箱与轨道的动摩擦因数为35,木箱在轨道A 端时 ,自动装货装置将质量为m 的货物装入木箱 ,然后木箱载着货物沿轨道无初速度滑下 ,在轻弹簧被压缩至|||最|||短时 ,自动卸货装置立刻将货物卸下 ,然后木箱恰好被弹回到轨道A 端 ,重复上述过程.以下选项正确的选项是( )A .m =3MB .m =2MC .木箱不与弹簧接触时 ,上滑过程的运动时间大于下滑过程中的运动时间D .假设货物的质量减少 ,那么木箱一定不能回到A 处解析:设下滑的距离为l ,根据能量守恒有(M +m )gl sin θ-μ(M +m )gl cos θ=Mgl sin θ+μMgl cos θ得m =3 M ,A 正确、B 错误;受力分析可知 ,下滑时加速度为g -μg cos θ ,上滑时加速度为g +μg cos θ ,上滑过程可以看作相同大小加速度的反向的初速度为零的下滑过程 ,位移相同 ,加速度大的时间短 ,C 错误;根据(M +m )gl sin θ-μ(M +m )gl cos θ=Mgl sin θ+μMgl cos θ ,木箱恰好被弹回到轨道A 端 ,如果货物的质量减少 ,等号前边一定小于后边 ,即轻弹簧被压缩至|||最|||短时的弹性势能小于木箱回到A 处所需的能量 ,那么木箱一定不能回到A 处 ,D 正确;应选AD .答案:AD2-2.(多项选择)(2021·南昌市高三第二次模拟)水平长直轨道上紧靠放置n 个质量为m 可看作质点的物块 ,物块间用长为l 的细线连接 ,开始处于静止状态 ,轨道动摩擦力因数为μ.用水平恒力F 拉动1开始运动 ,到连接第n 个物块的线刚好拉直时整体速度正好为零 ,那么( )A .拉力F 所做功为nFlB .系统克服摩擦力做功为n (n -1)μmgl2C .F >nμmg 2D .(n -1)μmg <F <nμmg解析:物体1的位移为(n -1)l ,那么拉力F 所做功为W F =F ·(n -1)l =(n -1)Fl ,故A 错。

2020年高考物理必考题功功率动量定理猜押试题答案解析与点睛(24页)

2020年高考物理必考题功功率动量定理猜押试题答案解析与点睛(24页)

2020年高考物理必考题功功率动量定理猜押试题功功率动量定理考点1 功的理解和正负的判断知识储备:1.做功两因素:力和物体在力的方向上发生的位移。

2.公式:W=Fl cos α。

(1)α是力与位移方向之间的夹角,l是物体对地的位移。

(2)该公式只适用于恒力做功。

3.功的正负的判断方法【典例1】(2017·新课标全国Ⅱ卷)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环。

小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力A.一直不做功B.一直做正功C.始终指向大圆环圆心D.始终背离大圆环圆心【答案】A【解析】大圆环光滑,则大圆环对小环的作用力总是沿半径方向,与速度方向垂直,故大圆环对小环的作用力一直不做功,选项A正确,B错误;开始时大圆环对小环的作用力背离圆心,最后指向圆心,故选项CD错误;故选A。

【名师点睛】此题关键是知道小圆环在大圆环上的运动过程中,小圆环受到的弹力方向始终沿大圆环的半径方向,先是沿半径向外,后沿半径向里。

考点2 机车的两种启动方式 知识储备:1.以恒定功率启动的运动过程分析2.以恒定加速度启动的运动过程分析3.两类启动的图像比较【典例2】在港珠澳大桥6.7千米海底隧道的两端各建有一个人工岛,两人工岛及隧道路面可简化成如图所示,各部分的长度已在图中标出,其中倾斜路面与水平路面之间有一小段圆弧连接,重力加速度为g 。

(1)假设汽车在倾斜路面上运动所受阻力和在水平路面上运动所受阻力相等。

若汽车关闭发动机后刚好能够从左侧倾斜路面向下匀速运动,求汽车关闭发动机以速度v 0从左侧倾斜路面的最高点向下运动后,能够在水平路面上运动的距离s (s <L 2);(2)已知质量为m 、额定功率为P 的汽车在水平路面上行驶的最大速度为v m1,若汽车在水平路面上以加速度a 匀加速启动,求汽车做匀加速运动的时间;(3)已知质量为m 、额定功率为P 的汽车在图中右侧倾斜路面上向上行驶的最大速度为v m2,求汽车以额定功率在右侧倾斜路面上向上行驶速度为v 1(v 1<v m2)时的加速度大小。

(物理)高考必备物理动能与动能定理技巧全解及练习题(含答案)及解析

(物理)高考必备物理动能与动能定理技巧全解及练习题(含答案)及解析

(物理)高考必备物理动能与动能定理技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。

水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。

用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。

已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.如图所示,竖直平面内有一固定的光滑轨道ABCD ,其中AB 是足够长的水平轨道,B 端与半径为R 的光滑半圆轨道BCD 平滑相切连接,半圆的直径BD 竖直,C 点与圆心O 等高.现有一质量为m 的小球Q 静止在B 点,另一质量为2m 的小球P 沿轨道AB 向右匀速运动并与Q 发生对心碰撞,碰撞后瞬间小球Q 对半圆轨道B 点的压力大小为自身重力的7倍,碰撞后小球P 恰好到达C 点.重力加速度为g .(1)求碰撞前小球P 的速度大小;(2)求小球Q 离开半圆轨道后落回水平面上的位置与B 点之间的距离;(3)若只调节光滑半圆轨道BCD 半径大小,求小球Q 离开半圆轨道D 点后落回水平面上的位置与B 点之间的距离最大时,所对应的轨道半径是多少? 【答案】(1)(2)(3)【解析】 【分析】 【详解】设小球Q 在B 处的支持力为;碰后小球Q 的速度为,小球P 的速度为;碰前小球P 的速度为;小球Q 到达D 点的速度为. (1)由牛顿第三定律得小球Q 在B 点碰后小球Q 在B 点由牛顿第二定律得:碰后小球P 恰好到C 点,由动能定理得:P 、Q 对心碰撞,由动量守恒得:联立解得:(2)小球Q 从B 到D 的过程中,由动能定理得:解得,所以小球Q 能够到达D 点由平抛运动规律有:联立解得(3)联立解得:当时x 有最大值所以【点睛】解决本题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确分析能量是如何转化,分段运用能量守恒定律列式是关键.3.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。

2020年高考物理压轴题专练附解答:功和能

2020年高考物理压轴题专练附解答:功和能

2020年高考物理压轴题专练:功和能【知识回扣】 一、功和功率 1.功的计算恒力做的功:直接用W =Fl cos α计算。

变力做的功:①应用动能定理求解;②应用W =Pt 求解,此法适用于变力的功率P 不变; 2.功率的计算平均功率的计算方法:①利用P=tW ;②利用P =F·v cos α,其中v 为物体运动的平均速度。

瞬时功率的计算方法:利用公式P =Fvcos α,其中v 为t 时刻的瞬时速度; 3. 机车的两种启动模型的分析 (1)模型综述物体在牵引力(受功率和速度制约)作用下,从静止开始克服一定的阻力,加速度不变或变化,最终加速度等于零,速度达到最大值。

(2)模型特征a. 以恒定功率启动的方式: ①动态过程:②这一过程的速度—时间图象如图所示:b. 以恒定加速度启动的方式: ①动态过程:②这一过程的速度—时间图象如图所示:深化拓展:无论哪种启动方式,机车最终的最大速度都应满足:v m =fF P,且以这个速度做匀速直线运动。

二、动能定理1. 动能定理:合外力做功等于物体在这个过程中动能的变化量。

W =E k2-E k1=12mv 22-12mv 21. 2.适用范围(1)动能定理既适用于直线运动,也适用于曲线运动。

(2)既适用于恒力做功,也适用于变力做功。

三、机械能守恒定律1.判断机械能是否守恒的两个角度(1)从做功的角度:若只有重力(或弹力)做功或虽有其他外力做功但其他力做功的代数和为零,则该物体(或该系统)的机械能守恒。

2.从能的角度:若系统内只有动能和势能的相互转化,没有其他形式的能与机械能转化,且系统与外部也没有能力的转化与转移,则系统机械能守恒。

2.机械能守恒的三种表示形式(1)守恒观点:E k1+E p1=E k2+E p2(要选零势能参考平面) (2)转化观点:ΔE k =-ΔE p (不用选零势能参考平面) (3)转移观点:ΔE A 增=ΔE B 减(不用选零势能参考平面) 四、力学中的功能关系合外力做功等于物体动能的改变 W 合=E k2-E k1=ΔE k 重力做功衡量重力势能的减少量 W G =E p1-E p2=-ΔE p 弹簧弹力做功衡量弹性势能的减少量W 弹=E p1-E p2=-ΔE p 除了重力和弹簧弹力之外的其他力所做的总功,等于物体机械能的改变W 其他=E 2-E 1=ΔE一对滑动摩擦力做功的代数和等于因摩擦而产生的内能Q =fx 相对,x 相对为物体间相对滑动的距离【热门考点透析】考点一 功和功率1.轻质弹簧右端固定在墙上,左端与一质量m=0.5 kg 的物块相连,如图甲所示,弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=0.2。

高考物理高考必备物理动能与动能定理技巧全解及练习题(含答案)

高考物理高考必备物理动能与动能定理技巧全解及练习题(含答案)

高考物理高考必备物理动能与动能定理技巧全解及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =3.某小型设备工厂采用如图所示的传送带传送工件。

高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析

高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析

高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,圆弧轨道AB 是在竖直平面内的14圆周,B 点离地面的高度h =0.8m ,该处切线是水平的,一质量为m =200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D 到C 点的距离为x =4m ,重力加速度为g =10m /s 2.求:(1)圆弧轨道的半径(2)小球滑到B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m .(2)小球滑到B 点时对轨道的压力为6N ,方向竖直向下. 【解析】(1)小球由B 到D 做平抛运动,有:h=12gt 2 x =v B t 解得: 10410/220.8B g v xm s h ==⨯=⨯ A 到B 过程,由动能定理得:mgR=12mv B 2-0 解得轨道半径 R =5m(2)在B 点,由向心力公式得:2Bv N mg m R-=解得:N =6N根据牛顿第三定律,小球对轨道的压力N =N =6N ,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高考物理小题狂练8:功和功率、动能和动能定理(附解析)一、考点内容(1)功的理解与计算;(2)恒力及合力做功的计算、变力做功;(3)机车启动问题;(4)功、功率与其他力学知识的综合;(5)动能及动能定理;(6)应用动能定理求解多过程问题;(7)应用动能定理求解多物体的运动问题。

二、考点突破1.(多选)如图所示,轻绳一端受到大小为F的水平恒力作用,另一端通过定滑轮与质量为m、可视为质点的小物块相连。

开始时绳与水平方向的夹角为θ。

当小物块从水平面上的A点被拖动到水平面上的B点时,位移为L,随后从B点沿斜面被拖动到定滑轮O处,BO间距离也为L。

小物块与水平面及斜面间的动摩擦因数均为μ,若小物块从A,小物块在BO段运动过程中克服摩点运动到O点的过程中,F对小物块做的功为WF,则以下结果正确的是()擦力做的功为Wf=FL(cos θ+1)A.WB.W F=2FL cos θC.W f=μmgL cos 2θD.W f=FL-mgL sin 2θ2.(多选)物体受到水平推力F的作用在粗糙水平面上做直线运动。

通过力和速度传感器监测到推力F、物体速度v随时间t变化的规律分别如图甲、乙所示。

取g=10 m/s2,则下列说法正确的是()A.物体的质量m=0.5 kgB.物体与水平面间的动摩擦因数μ=0.4C.第2 s内物体克服摩擦力做的功W=2 JD.前2 s内推力F做功的平均功率P=3 W3.(多选)质量为400 kg的赛车在平直赛道上以恒定功率加速,受到的阻力不变,其加的关系如图所示,则赛车()速度a和速度的倒数1vA.速度随时间均匀增大B.加速度随时间均匀增大C.输出功率为160 kWD.所受阻力大小为1600 N4.从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。

距地面高度h在3 m以内时,物体随h的变化如图所示。

重力加速度取10 m/s2。

该物体的上升、下落过程中动能Ek质量为()A.2 kg B.1.5 kg C.1 kg D.0.5 kg5.(多选)如图所示为一滑草场,某条滑道由上、下两段高均为h,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ。

质量为m的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=0.6,cos 37°=0.8)。

则( ) A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g6.(多选)在倾角为θ的光滑斜面上有两个用轻弹簧相连接的物块A 、B ,它们的质量分别为m 1、m 2,弹簧劲度系数为k ,C 为一固定挡板,系统处于静止状态。

现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,当物块B 刚要离开C 时,物块A 运动的距离为d ,速度为v ,重力加速度大小为g ,则此时( ) A .m 2g sin θ=kdB .物块A 加速度大小为F -kdm 1C .重力对物块A 做功的功率为(kd -m 2g sin θ)vD .弹簧的弹力对物块A 做功的功率为(kd -m 2g sin θ)v8.如图所示,竖直平面内放一直角杆MON ,OM 水平,ON 竖直且光滑,用不可伸长的轻绳相连的两小球A 和B 分别套在OM 和ON 杆上,B 球的质量为2 kg ,在作用于A 球的水平力F 的作用下,A 、B 两球均处于静止状态,此时OA =0.3 m ,OB =0.4 m ,改变水平力F 的大小,使A 球向右加速运动,已知A 球向右运动0.1 m 时速度大小为3 m/s ,则在此过程中绳的拉力对B 球所做的功为(取g =10 m/s 2)( )A .11 JB .16 JC .18 JD .9 J9.(多选)如图所示,内壁光滑半径大小为R 的圆轨道竖直固定在桌面上,一个质量为m 的小球静止在轨道底部A 点。

现用小锤沿水平方向快速击打小球,击打后迅速移开,使小球沿轨道在竖直面内运动。

当小球回到A 点时,再次用小锤沿运动方向击打小球,通过两次击打,小球才能运动到圆轨道的最高点。

已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功W 1,第二次击打过程中小锤对小球做功W 2。

设先后两次击打过程中小锤对小球做功全部用来增加小球的动能,则W 1W 2的值可能是( )A .12B .23C .34 D .110.多级火箭是由数级火箭组合而成的运载工具,每一级都有发动机与燃料,目的是为了提高火箭的连续飞行能力与最终速度。

现有一小型多级火箭,质量为M ,第一级发动机的额定功率为P ,先使火箭由静止竖直向上做加速度为a 的匀加速直线运动。

若空气阻力为f 并保持不变,不考虑燃料燃烧引起的质量变化及高度不同引起的重力变化,达到额定功率后,发动机功率保持不变,直到火箭上升达到最大速度时高度为H 。

试求: (1)第一级发动机能使火箭达到的最大速度。

(2)第一级发动机做匀加速运动的时间。

(3)第一级发动机以额定功率开始工作,直到最大速度时的运行时间。

11.如图所示,光滑圆弧AB在竖直平面内,圆弧B处的切线水平,A、B两端的高度差为h1=0.2 m,B端高出水平地面h2=0.8 m,O点在B点的正下方,将一确定的滑块从A端由静止释放,落在水平面上的C点处。

取g=10 m/s2。

求:(1)落地点C到O的距离x OC;(2)在B端平滑连接一水平放置长为L=1.0 m的木板MN,滑块从A端释放后正好运动到N端停止,求木板MN与滑块间的动摩擦因数;(3)若将木板右端截去长为ΔL的一段,滑块从A端释放后将滑离木板落在水平面上P点处,要使落地点P距O点的距离最远,则ΔL应为多少?距离s的最大值为多少?12.如图所示,竖起平面内的四分之一光滑圆弧轨道AB与水平直轨道BD相切于B点,轨道D端固定一竖起挡板。

圆弧轨道的圆心为O、半径为R,轨道BC段光滑且长度大于2R,CD段粗糙且长度为R。

质量均为m的P、Q两个小球用轻杆连接,从图示位置由静止释放,Q球与档板碰撞后反向弹回,每次碰撞后瞬间P、Q两球的总动能均为碰撞前瞬间的34。

Q球第一次反弹后,P球沿轨道AB上升的最大高度为25R,重力加速度为g。

求:(1)P球第一次运动至B点时速度大小v0及此过程中轻杆对Q球所做的功W;(2)Q球与轨道CD间的动摩擦因数μ;(3)Q球最终静止时与挡板间的距离x。

答案1.【答案】BC【解析】小物块从A点运动到O点,拉力F的作用点移动的距离x=2L cos θ,所以拉力F做的功WF=Fx=2FL cos θ,A错误,B正确;由几何关系知斜面的倾角为2θ,所以小物块在BO段受到的摩擦力f=μmg cos 2θ,则Wf=fL=μmgL cos 2θ,C正确,D错误。

2.【答案】ABC【解析】由题图甲、乙可知,在1~2 s,推力F2=3 N,物体做匀加速直线运动,其加速度a=2 m/s2,由牛顿运动定律可得,F2-μmg=ma;在2~3 s,推力F3=2 N,物体做匀速直线运动,由平衡条件可知,μmg=F3;联立解得物体的质量m=0.5 kg,物体与水平面间的动摩擦因数μ=0.4,选项A、B正确;由速度—时间图象所围的面积表示位移可得,第2 s内物体位移x=1 m,克服摩擦力做的功Wf=μmgx=2 J,选项C正确;第1 s内,由于物体静止,推力不做功;第2 s内,推力做功W=F2x=3 J,即前2 s内推力F做功为W′=3 J,前2 s内推力F做功的平均功率P=W′t =32W=1.5 W,选项D错误。

3.【答案】CD【解析】由题图可知,加速度变化,故赛车做变加速直线运动,故A错误;a-1v函数方程为a=400v-4,汽车加速运动,速度增大,加速度减小,故B错误;对汽车受力分析,受重力、支持力、牵引力和摩擦力,根据牛顿第二定律,有:F-f=ma,其中:F=Pv,联立得:a=Pmv -fm,结合图线,当物体的速度最大时,加速度为零,故结合图象可以知道,a=0时,1v =0.01,v=100 m/s,所以最大速度为100 m/s,由图象可知:-fm=-4,解得:f =4m =4×400 N =1600 N ,0=1400·P 100-f400,解得:P =160 kW ,故C 、D 正确。

4.【答案】C【解析】设物体的质量为m ,则物体在上升过程中,受到竖直向下的重力mg 和竖直向下的恒定外力F ,由动能定理结合题图可得-(mg +F )×3 m =(36-72) J ;物体在下落过程中,受到竖直向下的重力mg 和竖直向上的恒定外力F ,再由动能定理结合题图可得(mg -F )×3 m =(48-24) J ,联立解得m =1 kg 、F =2 N ,选项C 正确,A 、B 、D 均错误。

5.【答案】AB【解析】由题意根据动能定理有,2mgh -W f =0,即2mgh -μmg cos 45°·h sin 45°-μmg cos 37°·h sin 37°=0,得动摩擦因数μ=67,则A 项正确;载人滑草车克服摩擦力做的功为W f =2mgh ,则C 项错误;载人滑草车在上下两段的加速度分别为a 1=g (sin 45°-μcos 45°)=214g ,a 2=g (sin 37°-μcos 37°)=-335g ,则载人滑草车在上下两段滑道上分别做加速运动和减速运动,则在上段底端时达到最大速度v ,由运动学公式有2a 1h sin 45°=v 2得,v =2a 1hsin 45°=2gh7,故B 项正确,D 项错误。

6.【答案】BC【解析】开始系统处于静止状态,弹簧弹力等于A 的重力沿斜面向下的分力,当B 刚离开C 时,弹簧的弹力等于B 的重力沿斜面向下的分力,故m 2g sin θ=kx 2,但由于开始时弹簧是压缩的,故d >x 2,故m 2g sin θ<kd ,故A 错误;物块A 的加速度a =F -kx 2-m 1g sin θm 1,开始弹簧处于压缩状态,压缩量x 1=m 1g sin θk ,又x 1+x 2=d ,解得a =F -kd m 1,故B 正确;由于速度v 与重力夹角不为零,故重力的瞬时功率等于m 1gv sin θ,则由m 1g sin θ=kx 1、m 2g sin θ=kx 2及x 1+x 2=d 得,m 1g sin θ+m 2g sin θ=kd ,所以重力做功的功率P =(kd -m 2g sin θ)v ,故C 正确;当物块B 刚要离开C 时,弹簧的弹力为m 2g sin θ,则弹力对物块A 做功的功率为m 2sin θ·v ,故D 错误。

相关文档
最新文档