控制理论部分实验指导书DOC

合集下载

自动控制原理实验指导书

自动控制原理实验指导书

⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。

2、通过实验熟悉各种典型环节的传递函数和动态特性。

⼆、实验设备及器材配置1、⾃动控制理论实验系统。

2、数字存储⽰波器。

3、数字万⽤表。

4、各种长度联接导线。

三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。

1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。

现代控制理论基础实验指导书200

现代控制理论基础实验指导书200

现代控制理论基础实验指导书实验一:控制系统模型转换一、实验目的1.掌握控制系统模型转换,并使用计算机仿真软件验证。

2.学习并会简单应用MATLAB软件。

二、实验器材[1] 微型计算机[2] MATLAB软件三、实验要求与任务1.设系统的零极点增益模型为,求系统的传递函数及状态空间模型。

解:在MATLAB软件中,新建m文件,输入以下程序后保存并运行。

%Example 1%k=6;z=[-3];p=[-1,-2,-5];[num,den]=zp2tf(z,p,k)[a,b,c,d]=zp2ss(z,p,k)其中:zp2tf函数——变零极点表示为传递函数表示zp2ss函数——变零极点表示为状态空间表示记录实验结果,并给出系统的传递函数及状态空间模型。

2.给定离散系统状态空间方程求其传递函数模型和零极点模型,并判断其稳定性。

解:在MATLAB软件中,新建m文件,输入以下程序后保存并运行。

%Example 2%a=[ 0 0 ; 0 0 0; ;0 0 0];b=[1;0;1;0];c=[0,0,0,1];d=[0];[num,den]=ss2tf(a,b,c,d)[z,p,k]=ss2zp(a,b,c,d)pzmap(p,z)title('Pole-zero Map')其中:ss2tf函数——变状态空间表示为传递函数表示ss2zp函数——变状态空间表示为零极点表示pzmap ——零极点图记录实验结果,并给出系统的传递函数模型和零极点模型;绘出图形,并判断系统稳定性。

3.已知系统的传递函数为,求系统的零极点增益模型及状态空间模型。

tf2zp函数——变系统传递函数形式为零极点增益形式tf2ss函数——变系统传递函数形式为状态空间表示形式编写程序,记录实验结果,并给出系统的状态空间模型和零极点模型。

4.已知系统状态空间表达式为ss2tf函数——变状态空间表示为传递函数表示ss2zp函数——变状态空间表示为零极点表示编写程序,记录实验结果,并给出系统传递函数模型和零极点模型。

现代控制理论实验指导书2016

现代控制理论实验指导书2016

现代控制理论实验实验一、线性系统状态空间表达式的建立以及线性变换一 实验目的1. 掌握线性定常系统的状态空间表达式。

学会在MATLAB 中建立状态空间模型的方法。

2. 掌握传递函数与状态空间表达式之间相互转换的方法。

学会用MATLAB 实现不同模型之间的相互转换。

3. 掌握状态空间表达式的相似变换。

掌握将状态空间表达式转换为对角标准型、约当标准型、能控标准型和能观测标准型的方法。

学会用MATLAB 进行线性变换。

二 实验内容1. 已知系统的传递函数 (a) )3()1(4)(2++=s s s s G (b) 3486)(22++++=s s s s s G(1)建立系统的TF 或ZPK 模型。

(2)将给定传递函数用函数ss( )转换为状态空间表达式。

再将得到的状态空间表达式用函数tf( )转换为传递函数,并与原传递函数进行比较。

(3)将给定传递函数转换为对角标准型或约当标准型。

再将得到的对角标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。

(4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。

再将得到的能控标准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。

2. 已知系统的状态空间表达式(a) u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=106510 []x y 11=(b) u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=7126712203010 []111=y(c) u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=357213********* []x y 101= (d) u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=011310301100 []x y 210-= (1)建立给定系统的状态空间模型。

用函数eig( ) 求出系统特征值。

用函数tf( ) 和zpk( )将这些状态空间表达式转换为传递函数,记录得到的传递函数和它的零极点。

自动控制原理实验实验指导书

自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。

二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。

1.比例(P)环节的模拟电路及其传递函数示于图1-1。

2.惯性(T)环节的模拟电路及其传递函数示于图1-2。

3.积分(I)环节的模拟电路及其传递函数示于图1-3。

4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。

5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。

6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。

三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。

2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。

附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

自动控制理论实验指导及操作说明书

自动控制理论实验指导及操作说明书

第一部分 THBDC-1控制理论·计算机控制技术实验平台使用说明书第一章系统概述“THBDC-1型控制理论·计算机控制技术实验平台”是我公司结合教学和实践的需要而进行精心设计的实验系统。

适用于高校的控制原理、计算机控制技术等课程的实验教学。

该实验平台具有实验功能全、资源丰富、使用灵活、接线可靠、操作快捷、维护简单等优点。

实验台的硬件部分主要由直流稳压电源、低频信号发生器、阶跃信号发生器、低频频率计、交/直流数字电压表、数据采集接口单元、步进电机单元、直流电机单元、温度控制单元、单容水箱、通用单元电路、电位器组等单元组成。

上位机软件则集中了虚拟示波器、信号发生器、VBScript和JScript脚本编程器、实验仿真等多种功能于一体。

其中虚拟示波器可显示各种波形,有X-T、X-Y、Bode图三种显示方式,并具有图形和数据存储、打印的功能,而VBScript脚本编程器提供了一个开放的编程环境,用户可在上面编写各种算法及控制程序。

实验台通过电路单元模拟控制工程中的各种典型环节和控制系统,并对控制系统进行仿真研究,使学生通过实验对控制理论及计算机控制算法有更深一步的理解,并提高分析与综合系统的能力。

同时通过对本实验装置中四个实际被控对象的控制,使学生熟悉各种算法在实际控制系统中的应用。

在实验设计上,控制理论既有模拟部分的实验,又有离散部分实验;既有经典理论实验,又有现代控制理论实验;而计算机控制系统除了常规的实验外,还增加了当前工业上应用广泛、效果卓著的模糊控制、神经元控制、二次型最优控制等实验。

数据采集部分则采用实验室或工业上常用的USB数据采集卡。

它可直接插在IBM-PC/AT 或与之兼容的计算机USB通讯口上,其采样频率为350K;有16路单端A/D模拟量输入,转换精度均为14位;4路D/A模拟量输出,转换精度均为12位;16路开关量输入,16路开关量输出。

第二章硬件的组成及使用一、直流稳压电源直流稳压电源主要用于给实验平台提供电源。

自动控制理论实验指导书

自动控制理论实验指导书

自动控制理论实验指导书第一章硬件资源EL-AT-II型实验系统主要由计算机、AD/DA采集卡、自动控制原理实验箱、打印机(可选)组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,打印机主要记录各种实验数据和结果,实验箱主要构造被控模拟对象。

显示器打印机计算机 AD/DA卡实验箱电路图1 实验系统构成实验箱面板如图2所示:图2 实验箱面板下面主要介绍实验箱的构成:一、系统电源EL-AT-II系统采用本公司生产的高性能开关电源作为系统的工作电源主要技术性能指标为:1.输入电压:AC 220V2.输出电压/电流:+12V/0.5A,-12V/0.5A,+5V/2A 3.输出功率:22W4.工作环境:-5℃~+40℃。

二、 AD/DA采集卡AD/DA采集卡如图3采用ADUC812芯片做为采集芯片,负责采样数据- 1 -自动控制理论实验指导书 .及与上位机的通信,其采样位数为12位,采样率为10KHz。

在卡上有一块32KBit的RAM62256,用来存储采集后的数据。

AD/DA采集卡有两路输出(DA1、DA2)和四路输入(AD1、AD2、AD3、AD4),其输入和输出电压均为-5V~+5V。

图3 AD/DA采集卡另外在AD/DA卡上有一个9针RS232串口插座用来连接AD/DA卡和计算机,20针的插座用来和控制对象进行通讯。

三、实验箱面板实验箱面板布局如图4所示。

AD/DA卡输入输出模块实验模块1 实验模块2 二极管区 EL-CAT-II 电阻、电容、二极管区实验模块3 变阻箱、变容箱模块实验模块5 实验模块6 实验模块7 图4 实验箱面板布局实验箱面板主要由以下几部分构成: 1.实验模块本实验系统有八组由放大器、电阻、电容组成的实验模块。

每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。

这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。

自动控制原理实验指导书

自动控制原理实验指导书

自动控制原理实验指导书内蒙古工业大学电力学院自动化系2012年10月目录实验一典型环节模拟及二阶系统的时域瞬态响应分析 (1)实验二频率特性的测试 (8)实验三控制系统的动态校正 (12)实验四非线性系统的相平面分析 (14)实验五状态反馈 (20)TKKL—1型控制理论电子模拟实验箱使用说明书 (23)实验一 典型环节模拟及二阶系统的时域瞬态响应分析一、实验目的1.通过搭建典型环节模拟电路,熟悉并掌握控制理论电子模拟实验箱的使用方法。

2.了解并掌握各典型环节的传递函数及其特性,掌握用运放搭建电子模拟线路实现典型环节的方法。

3.掌握二阶系统单位阶跃响应的特点,理解二阶系统参数变化对输出响应的影响。

二、实验仪器1.控制理论电子模拟实验箱一台;2.超低频扫描示波器一台;3.万用表一只。

三、实验原理1.典型环节的传递函数及其模拟电路图(1)比例环节图1-1 比例环节的方框图比例环节的方框图如图1-1所示,其传递函数为()()C s K R s (1-1)比例环节的模拟电路图如图1-2所示,其传递函数为21()()R C s R s R = (1-2) 比较式(1-1)和式(1-2),得:21R K R =图1-2 比例环节的模拟电路图当输入为单位阶跃信号,即()1()r t t =时,由式(1-1)得输出() (0)c t K t =≥,其输出波形如图1-3所示。

图1-3 比例环节的单位阶跃响应(2)积分环节图1-4 积分环节的方框图积分环节的方框图如图1-4所示,其传递函数为()1()C s R s Ts= (1-3)图1-5 积分环节的模拟电路图积分环节的模拟电路图如图1-5所示,其传递函数为()1()C s R s RCs= (1-4) 比较式(1-3)和式(1-4),得:T RC =当输入为单位阶跃信号,即()1()r t t =时,由式(1-3)得输出1()c t t T= 其输出波形如图1-6所示。

自动控制理论实验指导

自动控制理论实验指导
(2)逆时针调节实验箱的旋钮,使阶跃信号为正。
(3)阶跃信号接到示波器上,调节实验箱和示波器的幅度旋钮。使跳变幅度为为一格(模拟为+1V)。
(4)1<ξ:
令R1=100k、R2=51k、R3=200k、C1=1uF、C2=1uF。K=R2/R1=2,T1=R2C1=51*1=0.051s,T2=R3C2=200*1=0.2s。
1)将接地夹就近接于待测信号的地端。
2)将信号探头接于待测信号。
3)调整示波器的输入幅度档位选择开关,选择合适的档位使信号幅度便于观察。
4)将输入幅度档位选择开关中心的旋钮顺时针旋到底。
5)选择时间“TIME/DIV”使波形正确显示。调节“微调”旋钮使波形稳定。
6)将波形水平方向压缩为重合于Y轴的一条竖线,其底端点位于0点,或选择扫描时间使波形为一条水平带。
其中: 阻尼自然频率
、β=ζ t
、 、
按下阶跃信号按钮,观察示波器的衰减震荡波形。如图3-5所示。
图3-5衰减震荡波形
(6)ξ=0:令R3=0,属于无阻尼状态,系统的响应为等幅震荡波形,无阻尼自然角频率为 。
五.实验报告:
1.绘制出实验的原理图,并标明参数。
2.绘制出实验的波形。分析各波形结果。
例如:从输入的方波读出幅度所占Y轴的格数为6。
则6*0.63=3.8
从Y轴的3.8处读出X轴上的时间值为1格,此时时间档位的值为5ms,则1*5ms=5ms。
(7)将实验结果填入表2-1中。
表2-1实验结果
1.T的理论值
2.电压
3..实测T值
4.误差
R
C
T0
E(V)
0.632E对应的t(格)
时间单位t0(ms/格)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制理论实验指导书吴彰良编郑州轻工业学院机电工程学院目录实验一典型环节与系统的模拟与分析实验二频率特性的测试与分析实验三控制系统的串联校正实验一典型环节与系统的模拟与分析一、实验目的1.熟悉并掌握THZK-1型测控技术综合实验装置的使用方法。

2.熟悉各典型环节的传递函数及其特性,掌握典型环节的电路模拟。

3.测量各典型环节的阶跃响应曲线,了解参数变化对其动态特性的影响。

二、实验设备1.控制理论及计算机控制技术(一)、(二)2.示波器3.直流电压表三、实验内容1.设计并组建各典型环节的模拟电路。

2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。

四、实验步骤1.利用实验装置上控制理论及计算机控制技术实验箱(一)中的模拟电路单元,构建所设计的各典型环节(包括比例、积分、惯性环节)的模拟电路。

待检查电路接线无误后,接通实验台的总电源,将直流稳压电源接入实验箱中。

(注意地线也要接入)。

2.对相关的实验单元的运放进行锁零(将信号发生器单元中的锁零按钮打到锁零状态即可)。

注意:积分、比例积分、比例积分微分实验中所用到的积分环节单元实验前需锁零(按下锁零按钮)实验开始时须将锁零按钮弹起3.测试各典型环节的阶跃响应,并研究参数变化对输出响应的影响(1)用直流电压表测试其输出电压,并调节电位器,使其输出电压为“1”V。

(2)将“阶跃信号发生器”的输出端与相关电路的输入端相连。

(3)加阶跃信号电压,按照实验内容进行,对每一组参数都要将曲线描绘下来,由示波器读出相应数据。

五、实验报告要求1.画出各典型环节的实验电路图,并注明参数。

2.写出各典型环节的传递函数。

3.根据所测的典型环节单位阶跃响应曲线,分析参数变化对动态特性的影响?六、实验思考题1.用运放模拟典型环节时,其传递函数是在什么假设条件下近似导出的?2.积分环节和惯性环节主要差别是什么?在什么条件下,惯性环节可以近似地视为积分环节?而又在什么条件下,惯性环节可以近似地视为比例环节?3.在积分环节和惯性环节实验中,如何根据单位阶跃响应曲线的波形,确定积分环节和惯性环节的时间常数?七、附录1.比例(P )环节比例环节的传递函数与方框图分别为K s u s u s G i o ==)()()( 其模拟电路(后级为反相器)和单位阶跃响应曲线分别如图1-1所示。

图1-1 比例环节的模拟电路图和单位阶跃响应曲线其中K=12R R ,这里取 R 1=100K ,R 2=200K ,R 0=200K 。

通过改变电路中R1、R2的阻值,可改变放大系数。

实验台上的参考单元:实验箱(一)U15、U17。

2.积分(I)环节积分环节的传递函数与方框图分别为Ts1)s (U )s (U )s (G i o ==其模拟电路和单位阶跃响应分别如图1-2所示。

图1-2 积分环节的模拟电路图和单位阶跃响应曲线其中 T=RC ,这里取 C=10uF ,R=100K ,R 0=200K 。

通过改变R 、C 的值可改变响应曲线的上升斜率。

实验台上的参考单元: 实验箱(一)U6、U9。

3.比例积分(PI)环节积分环节的传递函数与方框图分别为)CSR 11(R R CS R 1R R CS R 1CS R )s (U )s (U )s (G 21211212i o +=+=+==其模拟电路和单位阶跃响应分别如图1-3所示。

其中 ,T=R 1C ,这里取C=10uF ,R 1=100K ,R 2=100K ,R 0=200K 。

通过改变R2、R1、C 的值可改变比例积分环节的放大系数K 和积分时间常数T 。

图1-3 比例积分环节的模拟电路图和单位阶跃响应曲线实验台上的参考单元:实验箱(一)U7、U9。

4.比例微分(PD)环节比例微分环节的传递函数与方框图分别为:)1()1()(112CS R R R TS K s G +=+= 其中C R T R R K 112,/== 其模拟电路和单位阶跃响应分别如图1-4所示。

图1-4 比例微分环节的模拟电路图和单位阶跃响应曲线这里取C=1uF ,R 1=100K ,R 2=200K ,R 0=200K 。

通过改变R2、R1、C 的值可改变比例微分环节的放大系数K 和微分时间常数T 。

实验台上的参考单元: 实验箱(一)U7、U9。

5.比例积分微分(PID)环节比例积分微分(PID)环节的传递函数与方框图分别为 S T S T Kp s G d i ++=1)( 其中212211C R C R C R Kp +=,21C R T i =,12C R T d = SC R S C R S C R 211122)1)(1(++=12R R K=S C R S C R C R C R C R 12212111221+++=S S1.01.012++=(当Kp =2,i T =0.1,d T =0.1时)其模拟电路和单位阶跃响应分别如图1-5所示。

图1-5 比例积分微分环节的模拟电路图和单位阶跃响应曲线其中C 1=1uF ,C 2=1uF ,R 1=100K ,R 2=100K ,R 0=200K 。

通过改变R 2、R 1、C 1、C 2的值可改变比例积分微分环节的放大系数K 、微分时间常数d T 和积分时间常数i T 。

实验台上的参考单元:实验箱(一)U8、U9。

6.惯性环节惯性环节的传递函数与方框图分别为1T S K)s (U )s (U )s (G i o +==其模拟电路和单位阶跃响应分别如图1-6所示。

其中12R R K =,T=R 2C ,这里取C=1uF ,R 1=100K ,R 2=100K ,R 0=200K 。

通过改变R2、R1、C 的值可改变惯性环节的放大系数K 和时间常数T 。

图1-6惯性环节的模拟电路图和单位阶跃响应曲线实验台上的参考单元:实验箱(一)U9、U10。

实验二 频率特性的测试与分析一、实验目的1.掌握系统的频率特性曲线的测试原理及方法。

2.根据实验求得的频率特性曲线求取相应的传递函数。

二、实验设备同实验一 三、实验内容1.惯性环节的频率特性测试。

2.二阶系统频率特性测试。

3.由实验测得的频率特性曲线,求取相应的传递函数。

四、实验原理设G(S)为一最小相位系统(环节)的传递函数。

如在它的输入端施加一幅值为Xm 、频率为ω的正弦信号,则系统的稳态输出为)sin()()sin(ϕωωϕω+=+=t j G Xm t Y y m ①由式①得出系统输出,输入信号的幅值比)()(ωωj G Xmj G Xm Xm Ym == ②显然,)(ωj G 是输入X(t)频率的函数,故称其为幅频特性。

如用dB (分贝)表示幅频值的大小,则式②可改写为XmYm j G Lg L lg20)(20)(==ωω ③在实验时,只需改变输入信号频率ω的大小(幅值不变),就能测得相应输出信号的幅值Ym ,代入上式,就可计算出该频率下的对数幅频值。

根据实验作出被测系统(环节)的对数幅频曲线,就能对该系统(环节)的数学模型作出估计。

五、实验步骤1.利用实验箱上的模拟电路单元,设计一个惯性环节(可参考本实验附录的图2-4)的模拟电路。

当电路接线检查无误后,接通实验装置的总电源,将直流稳压电源接入实验箱。

2.惯性环节频率特性曲线的测试把“低频函数信号发生器”的输出端与惯性环节的输入端相连,当“低频函数信号发生器”输出一个幅值恒定的正弦信号时,用示波器观测该环节的输入与输出波形的幅值,随着正弦信号频率的不断改变,可测得不同频率时惯性环节输出的增益和相位,画出该环节的频率特性。

3.利用实验平台上的模拟电路单元,设计一个二阶闭环系统(可参考本实验附录的图2-7)的模拟电路。

完成二阶系统闭环频率特性曲线的测试,并求取其传递函数。

六、实验报告要求1.写出被测环节和系统的传递函数,并画出相应的模拟电路图。

2.不用上位机实验时,把实验测得的数据和理论计算数据列表,绘出它们的Bode 图,并分析实测的Bode 图产生误差的原因。

3.用上位机实验时,根据由实验测得二阶闭环频率特性曲线,写出该系统的传递函数。

七、实验思考题1.在实验中如何选择输入正弦信号的幅值?2.根据上位机测得的Bode 图的幅频特性,就能确定系统(或环节)的相频特性,试问这在什么系统时才能实现? 八、附录1.Bode 图的测试方法 1) 用示波器测量幅频特性 mm m m X YX Y j G 22)(==ω 改变输入信号的频率,测出相应的幅值比,并计算 mmX Y A L 22log 20)(log 20)(==ωω (dB ) 其测试框图如下所示:图2-2 幅频特性的测试图2)用虚拟示波器测幅频特性图2-3 用虚拟示波器测幅频特性的方框图2.惯性环节传递函数和电路图为11.011)()()(+=+==s TS K s u s u s G i o图2-4 惯性环节的电路图其中 C=1uF,R 1=100K ,R 2=100K ,R 0=200K 其幅频特性为图2-5 惯性环节的幅频特性实验台所用参考单元:实验箱(一)U11、U16 3.二阶系统传递函数和方框图为:22222255512.01)(nn n S S S S S S S W ωξωω++=++=++= 5=n ω,12.125525===ξ(过阻尼)图2-6 典型二阶系统的方框图其模拟电路图为图2-7 典型二阶系统的电路图其中Rx 可调。

这里可取100K )1(>ξ、10K )707.00(<<ξ两个典型值。

其幅频特性为图2-8 典型二阶系统的幅频特性)1(>ξ实验台所用参考单元:实验箱(一)之U5、U6、U7 4.无源滞后—超前校正网络 其模拟电路图为图2-9无源滞后—超前校正网络其中R 1=100K ,R 2=100K ,C 1=0.1uF ,C 2=1uF其传递函数为 )/1)(1()1)(1()(1212ββS T S T S T S T S G C ++++=其幅频特性为图2-10 无源滞后—超前校正网络的幅频特性实验台所用参考单元:实验箱(二)U5。

实验三控制系统的串联校正一、实验目的1.熟悉串联校正装置的结构和特性。

2.掌握串联校正装置的设计方法和对系统的实时调试技术。

二、实验设备同实验一三、实验内容1.观测未加校正装置时系统的动、静态性能。

2.按动态性能的要求,分别用时域法或频域法(期望特性)设计串联校正装置。

3.观测引入校正装置后系统的动、静态性能,并予以实时调试,使之动、静态性能均满足设计要求。

四、实验原理下图是一串联校正系统的方块图:图中校正装置G c(S)与被控对象G0(S)是串联相连接。

串联校正装置有两种:一种是超前校正,它是利用超前校正装置的相位超前特性来改善系统的动态性能;另一种是滞后校正,它是利用滞后校正装置的高频幅值衰减特性,使系统在满足静态性能的前提下又能满足其动态性能的要求。

相关文档
最新文档