土石坝各运用期的稳定分析

土石坝各运用期的稳定分析
土石坝各运用期的稳定分析

重力坝稳定及应力计算

六、坝体强度承载能力极限状态 计算及坝体稳定承载能力极限状态计算(一)、基本资料 坝顶高程:m 校核洪水位(P = %)上游:m 下游:m 正常蓄水位上游:m 下游:m 死水位:m 混凝土容重:24 KN/m3 坝前淤沙高程:m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值:f `= c `= Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = m/s 多年平均最大风速为:v 0 `= m/s 吹程D = 1000 m

(二)、坝体断面 1、非溢流坝段标准剖面 (1)荷载作用的标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位,下游水位) ① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×× /2 = KN W 3 = ×()2× /2 = KN ∑W = KN W 1作用点至O 点的力臂为: /2 = m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?- W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?-

竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OW1 = 2040×= 8772 KN·m M OW2 = -×= -KN·m M OW3 = -×= -445 KN·m ∑M OW = KN·m ②静水压力(水平力) P1 = γH12 /2 = ×-1090)2 /2= -KN P2 =γH22 /2 =×2 /2 = ∑P = -KN P1作用点至O点的力臂为:-1090)/3 = P2作用点至O点的力臂为:-1090)/3 = 静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OP1 = ×= -6089 KN·m M OP2 = ×= KN·m ∑M OP = -KN·m ③扬压力 扬压力示意图请见下页附图: H1 = -1090 = m H2 = -1090 = m (H1 -H1) = -= m 计算扬压力如下: U1 = ××= KN U2 = ××/2 = KN ∑U = KN

土石坝溃坝研究与分析

与土石坝溃坝分析相关题目 土石坝溃坝研究 内容摘要:我国大坝数量居世界首位,但溃坝率亦居世界前列,溃坝导致水库下游地区灾害性的后果十分严重。论文主要是对大坝溃坝的影响因素以及从中所吸取的经验教训进行研究。首先简要介绍了土石坝的兴建情况和溃坝的危害,针对溃坝的原因和机理等进行研究,并对溃坝防治的措施和技术进行论述。依据所研究的原因、措施和相关经验,结合高旗岭尾矿库初期大坝失事的实例,进行了详细的分析,并提出了安全监测、渗流分析及科学设计等合理的防治措施。 关键词:土石坝;溃坝;原因;技术措施 目录

内容摘要 ........................................................ I 引言 (1) 1 土石坝溃坝的危害 (2) 1.1 土石坝的兴建情况 (2) 1.2 土石坝溃坝的危害 (2) 1.3 研究课题的提出 (3) 2 土石坝溃坝的基本原因 (3) 2.1 土石坝的渗漏 (3) 2.1.1 土石坝渗漏的原因 (3) 2.1.2 土石坝渗漏对溃坝的影响分析 (4) 2.2 漫顶 (5) 2.2.1 土石坝漫顶的原因 (5) 2.2.2 漫顶对土石坝溃坝的影响分析 (5) 2.3 滑坡原因 (5) 2.3.1 滑坡产生的原因 (5) 2.3.2 滑坡对土石坝溃坝的影响 (7) 3 溃坝防治措施和技术 (7) 3.1 土石坝渗漏的防治措施 (8) 3.1.1 垂直防渗和水平防渗 (8) 3.1.2 混凝土防渗墙 (8) 3.1.3 高压喷射灌浆防渗 (8) 3.1.4 劈裂灌浆防渗 (9) 3.2 土石坝自然灾害的防治措施 (9) 3.2.1 地震影响 (9) 3.2.2 洪水漫顶 (9) 3.3 科学管理防治溃坝措施 (10) 4 土石坝溃坝案例分析 (11) 4.1 土石坝溃坝案例的简要介绍 (11) 4.2 溃坝情况分析 (11) 4.2.1 坝体渗漏 (11)

重力坝稳定分析方法及提高坝体抗滑稳定的工程措施

重力坝的稳定性 汪祥胜3008205112(46)前言: 重力坝是世界出现最早的一种坝型,早在2900年前在埃及就出现了最早的重力挡水坝。随着我国重力坝建设的繁荣,数量的增多和高度的不断提升,使得对稳定分析有着重要的理论和实践意义。大坝的稳定性直接关系到大坝安全性和人民群众的生命财产息息相关,而此次实习的三峡和向家坝皆是重力坝的代表杰作,通过实习定能从深层次上了解有关大坝稳定性的相关问题,包括什么是重力坝,重力坝稳定的意义,其稳定性分析方法和提高坝体抗滑稳定性的工程措施及在实际中的应用情况和应注意的问题。 一.什么是重力坝 1.重力坝是由砼或浆砌石修筑的大体积档水建筑物,其基本剖面是直角三角形,整体是由若干坝段组成。 重力坝在水压力及其他荷载作用下,主要依靠坝体自重产生的抗滑力来满足稳定要求;同时依靠坝体自重产生的压力来抵消由于水压力所引起的拉应力以满足强度要求。 2.优缺点: 重力坝优点:重力坝之所以得到广泛应用,是由于有以下优点:①相对安全可靠,耐久性好,抵抗渗漏、洪水漫溢、地震和战争破坏能力都比较强;②设计、施工技术简单,易于机械化施工;③对不同的地形和地质条件适应性强,任何形状河谷都能修建重力坝,对地基条件要求相对地说不太高;④在坝体中可布置引水、泄水孔口,解决发电、泄洪和施工导流等问题。 重力坝缺点:①坝体应力较低,材料强度不能充分发挥;②坝体体积大,耗用水泥多;③施工期混凝土温度应力和收缩应力大,对温度控制要求高。 3.工作原理;重力坝在水压力及其它荷载作用下必需满足: A、稳定要求:主要依靠坝体自重产生的抗滑力来满足。 B、强度要求:依靠坝体自重产生的压应力来抵消由于水压力所引起的拉应力来满足。 4.重力坝类型: 重力坝按筑坝材料的不同分为:混凝土重力坝和浆砌石重力坝。 重力坝按其结构形式分为:①实体重力坝;②宽缝重力坝;③空腹重力坝。 重力坝按泄水条件可分为非溢流坝和溢流坝两种剖面。 实体重力坝因横缝处理的方式不同可分为三类。①悬臂式重力坝:横缝不设键槽,不灌浆;②铰接式重力坝:横缝设键槽,但不灌浆;③整体 式重力坝:横缝设键槽,并进行灌浆 二.稳定性分析方法: 1.抗滑稳定分析的目的是核算坝体沿坝基面或沿地基深层软弱结构面抗滑稳定的安全度。当岸坡坝段地形陡峻时,还需核算这些坝段在三向荷载作用下的抗滑稳定。

土石坝稳定计算安全评价与计算毕业设计

第4章大坝稳定计算 4.1. 计算方法 4.1.1. 计算原理 本设计稳定分析采用简单条分法——瑞典圆弧法。该法基本假定土坡失稳破坏可简化为一平面应变问题,破坏滑动面为一圆弧形面,将面上作用力相对于圆心形成的阻滑力矩与滑动力矩的比值定义为土坡的稳定安全系数。计算时将可能滑动面上的土体划分成若干铅直土条,略去土条间相互作用力的影响。 图4.1 瑞典圆弧法计算简图 下游坝坡有渗流水存在,应计入渗流对稳定的影响。在计算土条重量时,对浸润线以下的部分取饱和容重,对浸润线以上的部分取实重(土体干重加含水重)。假设土条两侧的渗流水压力基本上平衡,则稳定安全系数的综合简化计算公式为:

∑∑+±+ψ--±= ] /cos )[(} sec ]sin sec cos ){[(R e Q V W b c tg Q b u V W K i i i i i i i i i i i i i i i i i C ααααα‘ ’ (4.1) 其中:i ——土条编号; W ——土条重量; u ——作用于土条底部的孔隙水压力; ,b α——分别为土条宽度和其沿滑裂面的坡角; //,c ?——有效抗剪强度指标; S ——产生滑动的作用力; T ——抗力。 表4.1 坝体安全系数表 4.1.2. 计算工况 根据水工建筑物教材的要求,稳定渗流期校核两种工况的上下游坝坡稳定:正常运用条件和非正常运用条件I ,对于设计洪水位的上下游坝坡,其浸润线和水位均处于正常和校核条件之间,在坝体尺寸和材料相同的情况下,正常和校核满足要求,设计即满足要求。 4.1.3. 基础资料 表4.2 三百梯水库坝体土物理力学指标建议值

土石坝自测题及其答案

第四章土石坝答案 一、填空题 1.碾压式土石坝;水力充填坝;定向爆破堆石坝 2.均质坝;粘土心墙坝;粘土斜心墙坝;粘土斜墙坝。 3.;坝顶高程;宽度;坝坡;基本剖面 4. Y= R+e+A ; R:波浪在坝坡上的最大爬高、 e:最大风雍水面高度;A安全加高。 5.马道;坡度变化处 6.高出设计洪水位0.3-0.6m且不低于校核洪水位;校核水位。 7.松散体;水平整体滑动。 8.浸润线;渗透动水压力;不利。 9.曲线滑裂面;直线或折线滑裂面 10.开挖回填法;灌浆法;挖填灌浆法 11.临界坡降;破坏坡降。 12.饱和;浮 13.护坡 14.粘性土截水墙;板桩;混凝土防渗墙

15.渗流问题 16.集中渗流;不均匀沉降 17.开挖回填法;灌浆法;挖填灌浆法。 18. “上截下排”;防渗措施;排水和导渗设备 二、单项选择题 1.土石坝的粘土防渗墙顶部高程应( B )。 A、高于设计洪水位 B、高于设计洪水位加一定超高,且不低于校核洪水位 C、高于校核洪水位 D、高于校核洪水位加一定安全超高 2.关于土石坝坝坡,下列说法不正确的有( A )。 A、上游坝坡比下游坝坡陡 B、上游坝坡比下游坝坡缓 C、粘性土料做成的坝坡,常做成变坡,从上到下逐渐放缓,相邻坡率 差为0.25或0.5 D、斜墙坝与心墙壁坝相比,其下游坝坡宜偏陡些,而上游坝坡可适当放 缓些 3.反滤层的结构应是( B )。 A、层次排列应尽量与渗流的方向水平

B、各层次的粒径按渗流方向逐层增加 C、各层的粒径按渗流方向逐渐减小,以利保护被保护土壤 D、不允许被保护土壤的细小颗粒(小于0.1mm的砂土)被带走 4.砂砾地基处理主要是解决渗流问题,处理方法是“上防下排”,属于上防的措施有( A )。 A、铅直方向的粘土截水槽、混凝土防渗墙、板桩 B、止水设备 C、排水棱体 D、坝体防渗墙 5.粘性土不会发生( A )。 A、管涌 B、流 土 C、管涌或流土 D、不确定 6.下列关于反滤层的说法不正确的是( B )。 A、反滤层是由2~3层不同粒径的无粘性土料组成,它的作用是滤土排 水 B、反滤层各层材料的粒径沿渗流方向由大到小布置。 C、相邻两层间,较小层的颗粒不应穿过粒径较大层的孔隙 D、各层内的颗粒不能发生移动 7.土石坝上、下游坝面如设变坡,则相邻坝面坡率差值一般应在( C )

土石坝溃坝研究

网络教育学院 本科生毕业论文(设计) 题目:土石坝溃坝研究 学习中心: 层次:专科起点本科 专业: 年级:年春/秋季 学号: 学生: 指导教师: 完成日期:年月日

内容摘要 土石坝是坝工建设中应用最为广泛和发展最快的一种坝型,我国的大坝数量已居世界之首,溃坝率也具前列。本文首先简要介绍了土石坝的兴建情况和溃坝的……,针对溃坝的原因和机理等进行……,并对溃坝防治的措施和……。最后结合土石坝案例,了解研究堰塞型土石坝的…….,这对研究堰塞坝的溃决过程、洪水演进具有重大意义,是防洪减灾、保障下游人民的生命财产安全的重中之重。 关键词:土石坝;溃坝;原因;技术措施 需要完整版请联系文档上传者(观察用户名即可)

目录 内容摘要 ........................................................................................................................... I 引言 . (1) 1 土石坝溃坝的危害 .................................................................. 错误!未定义书签。 1.1 土石坝的兴建情况 ....................................................... 错误!未定义书签。 1.2 土石坝溃坝的危害 ....................................................... 错误!未定义书签。 1.3 研究课题的提出 ........................................................... 错误!未定义书签。 2 土石坝溃坝的基本原因 .......................................................... 错误!未定义书签。 2.1 土石坝的渗漏 ............................................................... 错误!未定义书签。 2.1.1 土石坝渗漏的原因 ............................................ 错误!未定义书签。 2.1.2 土石坝渗漏对溃坝的影响分析 ........................ 错误!未定义书签。 2.2 漫顶 ............................................................................... 错误!未定义书签。 2.2.1 土石坝漫顶的原因 .............................................. 错误!未定义书签。 2.2.2 漫顶对土石坝溃坝的影响分析 .......................... 错误!未定义书签。 2.3 滑坡原因 ....................................................................... 错误!未定义书签。 2.3.1 滑坡产生的原因 .................................................. 错误!未定义书签。 2.3.2 滑坡对土石坝溃坝的影响 .................................. 错误!未定义书签。 2.4 地震 ................................................................................. 错误!未定义书签。 3 溃坝防治措施和技术 .............................................................. 错误!未定义书签。 3.1 土石坝渗漏的防治措施 ............................................... 错误!未定义书签。 3.1.1 灌浆防渗 ............................................................ 错误!未定义书签。 3.1.2 套井回填防渗 .................................................... 错误!未定义书签。 3.1.3 混凝土防渗 ........................................................ 错误!未定义书签。 3.1.4 土工膜防渗 ........................................................ 错误!未定义书签。 3.2 土石坝滑坡的防治措施 ............................................... 错误!未定义书签。 3.2.1 合理设计 ............................................................ 错误!未定义书签。 3.2.2 加强管理 ............................................................ 错误!未定义书签。 3.3 科学管理防治溃坝措施 ............................................... 错误!未定义书签。 3.3.1 水库管理 ............................................................ 错误!未定义书签。

重力坝稳定及应力计算书..

5.1重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程1152.00m,坝高H=40.00m。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m B10 。 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 5.2重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表4.5。 表4.5 荷载组合表 组合情况相关 工况 自 重 静水 压力 扬压 力 泥沙 压力 浪压 力 冰压 力 地震 荷载 动水 压力 土压 力 基本正常√√√√√√

土石坝溃坝原因分析

土石坝溃坝原因分析 摘要对土石坝的概念、组成及优缺点进行了概述,并分析了土石坝溃坝的原因,对充分发挥土石坝的兴利作用具有重要意义。 关键词土石坝;溃坝;原因 中国大坝数量居世界首位,然而,中国溃坝率亦居世界前列。据1954—2001年的统计,中国大坝年溃坝率,远超世界其他国家。溃坝的危害程度很高,尤其是对于高坝大库和大江大河的堤防工程,一旦失事其危害十分巨大。分析土石坝的溃坝原因,对于充分发挥水利工程的兴利作用,保证人民生命财产安全有着十分重要的意义。 1土石坝概述 土石坝是指由当地土料、石料或土石混合料填筑而成的坝,又称当地材料坝。当坝体材料以土和砂砾为主时,称土坝;以石渣、卵石、块石为主时,称堆石坝;土、石料均占有一定比例时,称土石混合坝。三者在工作条件、结构型式和施工方法上均有相似之处,通称土石坝。土石坝在世界上历史最为悠久,应用最为广泛,随着近年来大型土方施工机械、岩土理论和计算技术的发展,放宽了对筑坝材料的使用范围,缩短了工期,也使土石坝成为当今世界坝工建设中发展最快的一种坝型[1]。土石坝一般由坝身、防渗体、排水体和护坡四部分组成。坝身是土石坝的主体,坝的稳定主要靠它来维持;防渗体的作用是降低浸润线,防止渗透破坏和减少渗透流量;排水体主要用于安全地排出渗水,降低坝体浸润线和防止渗透变形,同时,还可以增强下游坝坡稳定性;护坡的作用是防止波浪、冰层、温度变化和雨水等对坝坡的破坏。 土石坝之所以被广泛采用,主要基于以下3点原因:一是就地取材,与混凝土坝相比,节省大量水泥、钢材和木材,减少了筑坝材料远途运输费用;二是对地质、地形条件要求低,任何不良地基经处理后均可筑土石坝;三是施工方法灵活,技术简单,且管理方便,易于加高扩建。土石坝也存在一些不足,如不允许坝顶溢流(过水土石坝除外),所需溢洪道或其他泄水建筑物的造价往往很大;在河谷狭窄、洪水流量大的河道上施工导流较混凝土坝困难;采用黏性土料作防渗体时,黏性土料施工受气候条件影响较大等。 2土石坝溃坝的原因分析 2.1土石坝的渗漏 2.1.1土石坝渗漏的原因。对土石坝渗漏的原因,渗流控制理论分析认为一般有以下3点:①坝体填土与排水体之间的反滤层设计不正确,层间系数过大,

重力坝抗滑稳定与应力计算

项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段 计算书名称:重力坝抗滑稳定及应力计算 审查: 校核: 计算: 黄河勘测规划设计有限公司 Yellow River Engineering Consulting Co. ,Ltd. 二〇一二年四月

目录 1.计算说明..................................................................................... 错误!未定义书签。 目的与要求 ......................................................................... 错误!未定义书签。 基本数据 ............................................................................. 错误!未定义书签。 2.计算参数和研究方法................................................................. 错误!未定义书签。 荷载组合 ............................................................................. 错误!未定义书签。 计算参数及控制标准 ......................................................... 错误!未定义书签。 计算理论和方法 ................................................................. 错误!未定义书签。 3.计算过程..................................................................................... 错误!未定义书签。 荷载计算 ............................................................................. 错误!未定义书签。 自重 ............................................................................. 错误!未定义书签。 水压力 ......................................................................... 错误!未定义书签。 扬压力 ......................................................................... 错误!未定义书签。 地震荷载 ..................................................................... 错误!未定义书签。 安全系数及应力计算 ......................................................... 错误!未定义书签。 4.结果汇总..................................................................................... 错误!未定义书签。

土石坝自测题及答案

第四章土石坝自测题 一、填空题 1.土石坝按施工方法可分为、、和等形式。 2.土坝按防渗体的位置分为、、、。 3.土石坝的剖面拟定是指、、和的拟定。 4.在土石坝的坝顶高程计算中,超高值Y= (写出公式)。公式中各字母代表的含义是:、、。 5.碾压式土石坝上下游坝坡常沿高程每隔10~30m设置,宽度不小于~,一般设在。 6.当有可靠防浪墙时,心墙顶部高程应,否则,心墙顶部高程应不低于。 7.由于填筑土石坝坝体的材料为,抗剪强度低,下游坝坡平缓,坝体体积和重量都较大,所以不会产生。 8.土石坝挡水后,在坝体内形成由上游向下游的渗流。坝体内渗流的水面线叫做。其下的土料承受着,并使土的内磨擦角和粘结力减小,对坝坡稳定。 9..土石坝可能滑动面的形式有、和复合滑裂面。 10.土石坝裂缝处理常用的方法有、、等。 11.土石坝管涌渗透变形中使个别小颗粒土在孔隙内开始移动的水力坡降;使更大的土粒开始移动,产生渗流通道和较大范围内破坏的水力坡降称。 12.在土石坝的坝坡稳定计算中,可用替代法考虑渗透动水压力的影响,在计算下游水位以上、浸润线以下的土体的滑动力矩时用重度,计算抗滑力矩时用重度。

13.土石坝的上游面,为防止波浪淘刷、冰层和漂浮物的损害、顺坝水流的冲刷等对坝坡的危害,必须设置。 14.土石坝砂砾石地基处理属于“上防”措施,铅直方向的有、板桩、和帷幕灌浆。 15.砂砾石地基一般强度较大,压缩变形也较小,因而对建筑在砂砾石地基上土石坝的地基处理主要是解决。 16.土石坝与混凝土坝、溢洪道、船闸、涵管等混凝土建筑物的连接,必须防止接触面的,防止因而产生的裂缝,以及因水流对上下游坝坡和坝脚的冲刷而造成的危害。 17.土坝的裂缝处理常用的方法有、、等。 18.土石坝的渗漏处理时,要遵循“”的原则,即在坝的上游坝体和坝基、阻截渗水,在坝的下游面设排出渗水。 二、单项选择题 1.土石坝的粘土防渗墙顶部高程应()。 A、高于设计洪水位 B、高于设计洪水位加一定超高,且不低于校核洪水位 C、高于校核洪水位 D、高于校核洪水位加一定安全超高 2.关于土石坝坝坡,下列说法不正确的有()。 A、上游坝坡比下游坝坡陡 B、上游坝坡比下游坝坡缓

溃坝洪水演进的理论分析——读书报告

堤坝溃决洪水演进的理论分析 摘要:崩滑堵江事件在世界范围内,尤其在山区广泛存在。每年因为类似事件 的发生都会至少造成数以千万计人的生命财产受到不同程度的威胁及伤害,崩滑堵江事件及其灾害链已严重影响人类的工程经济活动。因此对于堤坝溃决洪水的演进分析便显得尤为紧迫。本文对洪水演进进行了理论分析,得出了相关结论,为日后的工程实际活动很好地提供了理论指导。 关键词:堤坝溃决;洪水演进;理论分析 Theoretical analysis of flood routing after dam break The natural damming of rivers by landslides is a significant hazard in many areas. Landslide damming is particularity common in mountainous regions.Every year,related events have caused at least tens of millions of people's life and property being threatened and damaged.Debris blocking river events and disasters chain has serious impact on human engineering activity.So it’s necessary to carry on theoretical analysis of flood routing after dam break.This paper has worked on the theoretical analysis,related conclusions have been drawn,which could well provide a theoretical guidance on further engineering practical activity. Key words: dam break;flood routing;theoretical analysis 1.研究目的与意义 崩滑堵江形成的天然堵江(堆石)坝高几米至几百米,其最大坝高比目前世界上已建、在建或拟建的人工土石坝均高;堰塞湖体积从几十万方至上百亿方,大者足以与人工水库相媲美;存在时间由几十分钟至上千年;溃坝后形成的洪水异常凶猛,洪峰高几米至几十米,演进过程中造成严重灾害[6]。 因此, 认识掌握堤坝溃决机理并对堤坝溃决过程进行模拟, 对于建立堤坝溃决的早期预警体系、人员紧急疏散预案和基于风险的堤坝设计方法等都具有重要意义.对于洪水演进进程作理论研究与分析,旨在了解整个发生过程,为实际发生的工程事件提供理论支撑。 2.国内外研究动态

重力坝抗滑稳定计算书

重力坝抗滑稳定计算书-CAL-FENGHAI.-(YICAI)-Company One1

深圳市野生动物救护中心养公坑蓄水工程 技施设计 浆砌石重力坝抗滑稳定 计算书 国家电力公司中南勘测设计研究院 2004年12月

说 明 1.计算目的与要求 对拟定的体型进行抗滑稳定计算,求出拟定体型在各种设计工况下的抗滑稳定安全系数。同时对坝基面的应力进行计算,以论证是否满足规定的正常使用极限状态与承载能力极限状态要求。 2.计算基本依据 1. 建筑体型结构尺寸见附图1; 2. 主要地质参数见资料单; 3. 材料容重: 浆砌块石:取3/0.23m kN s =γ; 水:取3/8.9m kN w =γ; 土的饱和溶重3/12m kN =γ 3.计算方法及计算公式 1. 基本假定 1) 坝体为均质、连续、各向同性的弹性材料; 2) 取单宽1米计算,不考虑坝体之间的内部应力。 3) 本工程规模小,只计算坝体的抗滑稳定,不对坝体剖面 进行浅层与深层抗滑稳定分析以及坝基面应力分析。 2. 地基应力计算 按偏心受压公式计算应力: σmax =W M A G ∑∑+ σmin =W M A G ∑ ∑- 式中 ∑G —坝体本身的重力,kN ; A ——坝基的受力面积,m 2; ∑M —坝体各部分的重力对形心的弯距,;

W —作用在计算截面的抗弯截面系数; 3.抗滑稳定 坝受到铅直力和水平力的共同作用下,要求沿坝基底面的抗滑力必须大于作用在坝结构水平向的滑动力,并有一定的安全系数。 计算公式为: K C = ∑∑H f G * 式中K c —结构的抗滑稳定安全系数; ∑G —坝的基底总铅直力,kN ; ∑H —坝的水平方向总作用力,kN ; f —坝基底的摩擦系数。 4.计算结果总表 5.结论 经由计算可知,该方案,结构能够满足浆砌石坝在不同运用时期的地基应力和抗滑稳定要求,不会发生地基沉陷和滑动变形,并满足经济适用的原则。 6.主要参考书目 a )《浆砌石坝设计规范(SL25-91》; b )《水工建筑物荷载设计规范(DL5077—1997)》;

土石坝坝顶超高计算

鸡公尖水库安全复核 一、防办计算 经测量计算,漳河水库最大风速w=20.7m/s ,风区长度(吹程)d=6000m 。根据现有土石坝碾压规范要求坝顶超高为:y=r+e+a ,其中a 值为安全加高值,根据规范在设计水位下a=1.5m ,校核水位下为0.7m 。 e 为风壅水面高度,计算公式为e=m gh d kw 22cos β,其中k 为综合摩阻系数,k=3.6×10-6 ;β为风向与坝轴线法线夹角取为0度。m h 为平均水深,取鸡公尖水深,鸡公尖坝顶高程126.50m ,最大坝高58m ,由此可以算出坝底高程为68.5m ,因此在设计水位下,m h =123.89-68.5=55.39m ;在校核水位下,m h =124.30-68.5=55.8m 。由此得出,设计水位下e=0.008525248;校核水位下e=0.008462607。 r 为波浪高度,算法采用鹤地水库公式,按频率2%波高计算。公式: 2% 2w gh =0.00625w 1/63/12??????w gd 计算出: m h =2.335618 m 因此,坝顶超高计算结果: 设计水位:y=2.335618+0.008525248+1.5=3.844144 m 校核水位:y=2.335618+0.008462607+0.7=3.044081m 二、历次计算结果

1、64年设计报告 风速为21m/sec,扩度为5.5公里。 2、汛限水位研究报告 鸡公尖水库0.2%设计水位124.99m、PMF校核水位126.04m。加固后防浪墙顶标高127.70m、坝顶标高126.50m。 1)设计水位时 如遇8级风上限与9级风下限风速20.7m/s,波浪爬高h B=1.094m,风壅水面高度e=0.023m,安全加高1.5m(正常),坝顶超高Y=h B+e+1.5=2.62m。需坝顶或防浪墙顶高程为:124.99+Y=127.61m,是小于127.70m。 如遇9级风上限风速24.4m/s,波浪爬高h B=1.344m,风壅水面高度e=0.032m,安全加高 1.5m(正常),坝顶超高Y=hB+e+1.5=2.88m。需坝顶或防浪墙顶高程为:124.99+Y=127.87m,是大于防浪墙顶标高127.70m的0.17m。 2)校核水位时 如遇7级风上限与8级风下限风速17.1m/s,波浪爬高h B=0.862m,风壅水面高度e=0.016m,安全加高0.7m(特殊),坝顶超高Y=h B+e+0.7=1.58m。需坝顶或防浪墙顶高程为:125.96+Y=127.54m,是小于127.70m。 如遇8级风上限与9级风下限风速20.7m/s,波浪爬高h B=1.114m,风壅水面高度e=0.026m,安全加高0.7m(特殊),坝顶超高Y=hB+e+0.7=1.84m。需坝顶或防浪墙顶高程为:126.04+Y=127.88m,是大于防浪墙顶标高127.70m的0.18m。

水库土石坝设计关键技术

水库土石坝设计关键技术 发表时间:2018-04-02T16:17:52.223Z 来源:《基层建设》2017年第34期作者:杜园龙张维[导读] 摘要:水库安全与人们的生活紧密相关,甚至同生命财产安全相连,土石坝的设计又与水库安全相关。 楚雄欣源水利电力勘察设计有限责任公司 摘要:水库安全与人们的生活紧密相关,甚至同生命财产安全相连,土石坝的设计又与水库安全相关。本文对水库土石坝的概况与存在的险情进行论述,并探讨水库土石坝设计的关键技术,旨在为水库土石坝的优化设计提出理论参考依据。 关键词:水库;土石坝;设计;关键技术 土石坝是我国现存最古老的一种坝型(如图1),具有较长的应用史,随着科学技术水平的提升,土石坝也因发展快、应用范围广等优势在世界坝工建设中占有一席之地。现今水库土石坝在设计过程中存在着严重的问题,致使水库土石坝的险情增加,增加溃坝的几率。因此,本文针对水库土石坝设计的关键技术进行简要分析。 图1 水库土石坝航拍图 一、水库土石坝存在的险情 (一)水库土石坝的渗漏 我国土石坝溃坝现象发生的主要原因为土石坝渗漏,分别为坝身渗漏,接触渗漏、坝基渗漏及绕坝渗漏等四种渗漏形式[1]。发生土石坝渗漏的主要原因可归为以下四点:第一,材质不过关。土石坝施工期间多是就地取材,同时部分土石坝所处位置的交通便利性较差。筑坝材料存在过多的杂质、水溶性较强等不过关现象,同时,碾压不充分等材料使用问题也是土石坝溃坝发生的主要原因之一。第二,坝身设计未过关,例如坝身厚度未达到标准,渗径较短等问题都会导致渗漏情况加剧。第三,排水系统不完全符合要求,土石坝具有排水棱体,但是由于部分设计存在问题,使排水体堵塞,从而致使排水体失效,甚至无排水体现象发生。第四,防水设施未过关,例如设计与要求不符合,截水槽尺寸不符合要求,碾压不实,致使和岸坡与截水槽结合不紧密,从而引发渗漏现象。 (二)水库土石坝的坝体裂缝与滑坡 水库土石坝裂缝产生的原因大致可分为四点:第一,清淤工作未能彻底进行;第二,坝基防渗措施未能达到设计效果;第三,泄洪操作失误;第四,结合部质量较差。水库土石坝坝体滑坡发生原因可归为:堪验设计工作不到位、建设工作未到位,碾压不到位等原因。 二、水库土石坝设计的关键技术 (一)对洪汛数据的复核 针对水库土石坝由于不规范建设,导致洪汛预测不准的情况,在设计与计算过程中应加强对洪汛数据的复核工作。首先,对实践监测的重视。充分利用水库当地的水文资料,同时对水库土石坝当地的水文数据进行实际的监测,了解当地的洪水汛期、暴雨量及年降水量等洪汛数据[2]。其次,在获取当地洪汛数据及水文资料后,要将所获取的资料利用相关的计算方法,求得水库土石坝的相关参数,并对求得的数据资料采取进一步调查与分析,保证所得数据科学合理。对于所补充的洪汛资料也要进行分析与论证,保证洪汛资料与实际调查的结果相吻合,符合科学合理的原则[3]。洪汛资料与流域特征对于数据资料具有较大的影响,因此,在进行资料与数据复核过程中,要避免发生系统性错误,同时及时发现错误并进行修正。要比较建筑物级别与所得数据进行对照,挑选合适的抗洪标准,同时严格按照国家指标对材料与质量进行确认,同时对洪水、洪量与洪峰流量等作为基础依据,对水库特征进行设计。 (二)抗震性能的提升 对于土石坝溃坝事件而言,地震灾害是重要原因之一,后果较为严重。因此,在土石坝设计中,抗震设计是重要内容之一。在进行地震性能设计时,要对当地的地质条件进行复核,通过对当地地质环境的实际检测,获取当地断层交汇带、地震带、密集缝隙区等地质资料,同时考虑河床的土质、缓坡、土层质量、架空、降沉等地质环境。同时,土石坝多为就地取材,因此,在设计过程中,也要对当地的土质石材的质量进行综合性考量,并且对水溶性岩石的含量进行分析[4]。除此之外,还需对土石坝的抗震性能进行分析,通过对条块水平地震惯性、动态分布系数、设计烈度等在进行拟静法时加以计算;利用动力法进行分析时要对震前坝体的初始状态、非显性应力等应变关系得出相关结论。在进行计算过程中,也需要对土石坝地震的永久性变形及残余变形加以考量。根据上述材料方法得到数据后,依据我国相关标准进行设计,同时,还需对建筑物的防震等级加以确定,严格复核审查相关数据资料,保证所获得数据运用的合理性。在设计过程中,也要对土体抗液化性能进行改善,避免存在较大液化性的土体,应用抗液化破坏的结构进行抗震设计。要从地基、坝高、水库防控设施、防渗体、坝轴线等多方面因素进行抗震考虑,注重抗震结构的合理性。 (三)土石坝防漏与排水设计 坝体渗漏主要是在坝基、坝肩及接触带出现渗漏,因此,为了确保坝体防漏、排水性能得到保障,要从以下几个方面进行设计:首先,要注重对当地土石质量的考察,在选材过程中要将易液化的土质避开,同时要综合性考虑当地的地质条件。在进行防渗墙设计时也要进行综合性的考虑设计,若坝体设计孔隙较大,可通过坝轴线设立防渗墙的方式达到防渗要求,进行防渗墙设计时,要从底部深入到二层基岩,选取防渗墙的最佳建材,灌浆是防渗墙最佳的制造方法[5]。其次,在设计时要保障上堵下排,多重结合,在进行设计过程中要在上下游、坝体采取统一的防渗漏措施,应用粘土铺盖结合开挖导渗沟的方式达到水平防渗,也可采用灌浆、充填等方式对坝体孔隙进行填补,保障防渗漏的效果更佳,在下游可通过排水棱体达到排水与防渗的作用。 (四)坝坡的防滑与固定 滑坡与滑坡性裂缝是土石坝溃坝事件发生的重要原因。因此,在进行土石坝设计过程中要对坝坡的加固加以重视。首先,要对当地的地理环境进行综合性的考虑衡量,根据当地的水文资料选择正确的坝型,在坝型选择过程中要注意自重、耗材、抗震性、温度等诸多要素。在选择坝型后,要利用不同坝型的独特优势使其可有效达成,如保障当地自然环境不会干扰施工,土石坝所用材料在当地均可获得。 (五)合理布置枢纽 为了保障枢纽布置的合理性要从以下四个方面着手:第一,坝址选择的正确性,使施工作业可顺利开展;第二,保证枢纽的全面性,可在诸多条件下正常运作;第三,相对费用的有效降低,在保障枢纽强度与稳定性的基础上,对运作成本有效合理规划,使维护、年运作费及总造价可有效降低,保障土石坝的安全性的同时,降低施工成本。

重力坝稳定及应力计算

坝体强度承载能力极限状态 计算及坝体稳定承载能力极限状态计算(一)、基本资料 坝顶高程:1107.0 m 校核洪水位(P = 0.5 %)上游:1105.67 m 下游:1095.18 m 正常蓄水位上游:1105.5 m 下游:1094.89 m 死水位:1100.0 m 混凝土容重:24 KN/m3 坝前淤沙高程:1098.3 m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值:f `= 0.5 c `= 0.2 Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = 19.44 m/s 多年平均最大风速为:v 0 `= 12.9 m/s 吹程D = 1000 m

(二)、坝体断面 1、非溢流坝段标准剖面 (1)荷载作用的标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位1105.5m ,下游水位1094.89m ) ① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×10.75×8.6 /2 = 1109.4 KN W 3 = 9.81×(1094.5-1090)2×0.8 /2 = 79.46 KN ∑W = 3228.86 KN W 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?- W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?-

竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OW1 = 2040×4.3 = 8772 KN·m M OW2 = -1109.4×1.067 = -1183.7 KN·m M OW3 = -79.46×5.6 = -445 KN·m ∑M OW = 7143.3 KN·m ②静水压力(水平力) P1 = γH12 /2 = 9.81×(1105.5-1090)2 /2= -1178.4 KN P2 =γH22 /2 =9.81×(1094.89-1090)2 /2 = 117.3KN ∑P = -1061.1 KN P1作用点至O点的力臂为:(1105.5-1090)/3 = 5.167m P2作用点至O点的力臂为:(1094.89-1090)/3 = 1.63m 静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OP1 = 1178.4×5.167 = -6089 KN·m M OP2 = 117.3×1.63 = 191.2 KN·m ∑M OP = -5897.8 KN·m ③扬压力 扬压力示意图请见下页附图: H1 = 1105.5-1090 = 15.5 m H2 = 1094.89-1090 = 4.89 m (H1 -H1) = 15.5-4.89 = 10.61 m 计算扬压力如下: U1 = 9.81×13.6×4.89 = 652.4 KN U2 = 9.81 ×13.6×10.61 /2 = 707.8 KN ∑U = 1360.2 KN

相关文档
最新文档