巧解时针与分针的夹角问题
如何巧求时针与分针的夹角

如何巧求时针与分针的夹角
在(北师大版)七年级的上册讲角的计算与度量,在八年级的上册讲旋转那一节的时候,我们可能要遇到求时针与分针的夹角,如m点n分,时针与分针的夹角是多少年来度这一类问题,如何求时针与分针的夹角是这一节的一个难点,
我是试着从以下去突破这个难点的:因为时针转一圈是360度,而时针转一圈是12个小时,那每个小时时针转30度,一个小时是60分所以时针每分钟转0.5度,分针转一圈是360度,分针转一圈是60分钟,那分针每分钟转6度。
m点n分时针与分针的夹角就可以这样来求:
∣300m+0.50n-60n∣=∣300m-5.50n∣如何计算出的绝对值小于或等于1800,就是时针与分针的夹角,如果绝对值大于180度,则用360度减去绝对值才是时针与分针的夹角。
例如:6点20分时针与分针的夹角是多少?
∣300×6-5.50×20∣=700
如9:10时针与分针的夹角
∣300×9-5.50×10∣=2150此时时针与分针的夹角为:3600-2150=1450。
知识拓展:钟表上的角度问题

钟表上的角度问题在学习过程中,我们常会遇到与钟表上的角度有关的数学问题,部分学生在解决这类问题时感到困难大,若能仅从时针、分针转动所成的角度入手解决则较容易.我们知道,时针、分针转动一周都经过12大格或60小格.因此,每小时时针转动30°,每分钟分针转动6°.这样我们可以分别计算时针、分针转动的角度,然后求解.下面就常见的类型加以说明.一、求时针、分针的夹角.例1在5点整时,时针与分针所成的夹角是多少度解:5点整时,时针转过了30°×5=150°,分针转过为0°,其度差为150°-0°=150°∴时针与分针的夹角是150°.例26点40分时,时针与分针的夹角是多少度解:6点40分时,时针转过了(66040)×30°=200°,分针转过了40×6°=240°,其度差为240°-200°=40°,∴时针与分针的夹角是40°.例31点54分时,时针与分针的夹角是多少度解:1点54分时,时针转过了(16054)×30°=57°,分针转过了54×6°=324°,其度差为324°-57°=267°,(大于180°)∴时针与分针的夹角是360°-267°=93°.二、求时针与分针的重合时间.例412点后,时针与分针何时首次重合解:时针与分针重合其度差为0°,若设时y 分时针与分针重合,则时针转了︒⨯+30)60(y x ,分针转了6y 度,则有 30(60y )-6y=0.整理得y=1160,当=1时,得y=1160.∴时针与分针首次重合为1时1160分. 例5在3点至4点间,时针与分针何时重合解:设3点y 分时,时针与分针重合,则时针转过(360y )×30度,分针转过6y 度,∴06)603(30=-+⋅y y 。
初一数学时针与分针夹角问题

初一数学时针与分针夹角问题
我们要计算时针和分针在某个时间点上的夹角。
首先,我们需要了解时钟上时针和分针是如何移动的,以及它们之间的相对速度。
假设分针和12点钟方向的夹角为 M 度,时针和12点钟方向的夹角为 H 度。
根据时钟的工作原理,我们可以得到以下信息:
1. 分针每分钟走6度(因为360度/60分钟 = 6度/分钟)。
2. 时针每小时走30度(因为360度/12小时 = 30度/小时),并且每分钟会额外走度(因为30度/60分钟 = 度/分钟)。
所以,在t分钟时:
M = 6 × t
H = 30 × (小时数) + × t
我们要找的是 H 和 M 的差,即 H - M,这就是时针和分针的夹角。
165。
七年级上册数学钟面问题

七年级上册数学钟面问题一、时针与分针的夹角问题。
1. 3点整时,时针与分针的夹角是多少度?- 解析:钟面一圈为360°,钟面被分成12个大格,所以每一个大格的角度为360÷12 = 30^∘。
3点整时,时针指向3,分针指向12,中间有3个大格,所以夹角为3×30 = 90^∘。
2. 4点30分时,时针与分针的夹角是多少度?- 解析:分针走30分钟,转了半圈,即180^∘。
时针每小时走一个大格,即30^∘,那么半小时时针走了30÷2=15^∘。
4点时,时针与分针夹角为4×30 = 120^∘,4点30分时,夹角为180 - (120 + 15)=45^∘。
3. 9点15分时,时针与分针的夹角是多少度?- 解析:分针15分钟转了15×6 = 90^∘(因为分针每分钟转6^∘)。
时针每小时转30^∘,15分钟是(15)/(60)=(1)/(4)小时,时针9点15分转了9×30+(1)/(4)×30 = 270 + 7.5=277.5^∘。
所以夹角为277.5 - 90=187.5^∘。
4. 5点20分时,时针与分针的夹角是多少度?- 解析:分针20分钟转了20×6 = 120^∘。
时针每小时转30^∘,20分钟是(1)/(3)小时,时针5点20分转了5×30+(1)/(3)×30=150 + 10 = 160^∘。
所以夹角为160 - 120 = 40^∘。
5. 2点40分时,时针与分针的夹角是多少度?- 解析:分针40分钟转了40×6 = 240^∘。
时针每小时转30^∘,40分钟是(2)/(3)小时,时针2点40分转了2×30+(2)/(3)×30 = 60+20 = 80^∘。
所以夹角为240 - 80 = 160^∘。
二、时针与分针重合问题。
6. 时针与分针在12点整重合,下一次重合是什么时间?- 解析:分针每分钟转6^∘,时针每分钟转0.5^∘。
钟表问题时针与分针夹角的公式技巧

钟表问题时针与分针夹角的公式技巧1.时针和分针夹角的公式是:夹角= |(时针角度-分针角度)|(The formula for the angle between the hour and minute hands is: Angle = |(hour hand angle - minute hand angle)|)2.时针和分针的夹角可以用几何公式来计算。
(The angle between the hour and minute hands can be calculated using a geometric formula.)3.在钟表上,时针每分钟走30°,分针每分钟走6°。
(On a clock, the hour hand moves 30° per minute, and the minute hand moves 6° per minute.)4.如果要计算12点钟时,时针和分针的夹角,可用30° x 60 - 0° = 180°。
(To calculate the angle between the hour and minute hands at 12 o'clock, use 30° x 60 - 0° = 180°.)5.当时间是3点钟时,时针和分针夹角的计算公式是:|90° - 90°| = 0°。
(When the time is 3 o'clock, the calculation formula for the angle between the hour and minute hands is: |90° - 90°| = 0°.)6.在6点钟时,时针和分针的夹角为:|180° - 0°| = 180°。
关于时针问题

1、1:20分时针与分针的夹角是多少度?2、2:15分时针与分针的夹角是多少度?解:假设从6:00开始算起,时针从6开始,分针从12开始,平均时针0.5度每分钟,分针6度每分钟,所以时针和分针的夹角是180-20×6+20×0.5=70度(180度是因为6:00的时候时针和分针夹角180度)同理:1点35度时针和分针的夹角是35×6-35×0.5-30=1 62.5度(30度是因为1:00的时候时针和分针夹角30度)中午2时15分,钟表上时针与分针的夹角是多少度?考点:钟面角.分析:钟表上共有12个大格,每一个大格的度数是360°÷12=30°,再根据2时15分是时针与分钟夹角为34个大格,计算出角度即可.解答:解:钟表上每一个大格都是30°,2时15分是时针与分钟夹角为34个大格,则夹角为30°×34=22.5°.点评:此题主要考查了钟面角,计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.3、5点20分时,时针与分针的夹角为40°.考点:钟面角.分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出5点20分时针和分针之间相差的大格数,用大格数乘30°即可.解答:解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上5时20分钟时,时针与分针的夹角可以看成时针转过5时0.5°×20=10°,分针在数字4上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴5时20分钟时分针与时针的夹角1×30°+10°=40°.故在5点20分,时针和分针的夹角为40°.故答案为:40°.点评:本题考查了钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.4、9时15分时针和分针的夹角是多少度?考点:角的度量.专题:文字叙述题.分析:由题意知,时针每小时走30°,一刻钟走7.5度;分针每小时走360°,一刻钟走90°;当9点整时,时针、分针的夹角是90°,当9点15分时,时针和分针的夹角,可用分针和时针的速度差加上90即可求得.解答:解:当时间为9点整时,时针、分针的夹角是90°;当9点15分时,时针走了7.5°,分针正好走了90°,此时时针和分针的夹角是:90°-7.5°+90°=172.5°;答:此时时针与分针的夹角是172.5°.点评:解答此题要注意时针、分针都在移动,只是速度不一样,可以理解为行程问题来解答.5、3点36分时,时针与分针形成的夹角是多少度?考点:时间与钟面.分析:从12时起,时针、分针转过的角度,求出它们的差.解答:解:时针转过的角度:3×(360°÷12)+36÷60×(360°÷12),=90°+18°,=108°;分针转过的角度:36÷60×360°=216°,时针、分针走过的角度差:216°-108°=108°;答:时针、分针的夹角是108°.点评:找出时分针转过的角度,求出它们的差.6、钟表上7点20分,时针与分针的夹角为()A.120°B.110°C.100°D.90°考点:钟面角.专题:计算题.分析:时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上7点20分,时针与分针的夹角相隔3个数字.解答:解:钟表上7点20分,时针指向7,分针指向4,每相邻两个数字之间的夹角为30°,则3×30°+0.5°×20=100°.故选C.点评:本题考查的是钟表表盘与角度相关的特征.钟表表盘被分成12大格,每一大格又被分为5小格,故表盘共被分成60小格,每一小格所对角的度数为6°.分针转动一圈,时间为60分钟,则时针转1大格,即时针转动30°.也就是说,分针转动360°时,时针才转动30°,即分针每转动1°,时针才转动(112)度,逆过来同理.7.当时钟在12点20分时,分针与时针的夹角是110°.考点:角的概念及其分类;时、分、秒及其关系、单位换算与计算.专题:平面图形的认识与计算.分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.解答:解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分钟时,时针与分针的夹角可以看成时针转过12时0.5°×20=10°,分针在数字4上.因为钟表12个数字,每相邻两个数字之间的夹角为30°,所以12时20分钟时分针与时针的夹角4×30°-10°=110°.故答案为:110°.点评:本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.8.下午14点20分,时钟的时针与分针夹角的度数是()A.45°B.50°C.60°D.70°考点:钟面角.专题:计算题.分析:在下午14点20分,分针从数字12开始转了20×6°=120°,时针从数字2开始转了20×0.5°=10°,而两针开始转时相差2×30°,则这时时针与分针所成的角为120°-2×30°-10°=50°.解答:解:下午14点20分,分针从数字12开始转了20×6°=120°,时针从数字2开始转了20×0.5°=10°,所以这时时针与分针所成的角的度数为120°-2×30°-10°=50°.故选B.点评:本题考查了钟面角:钟面被分成12大格,每大格为30°;分针每分钟转6°,时针每分钟转0.5°.9. 2点40分,时针和分针的夹角是160°.考点:钟面角.专题:推理填空题.分析:钟表里,每一大格所对的圆心角是30°,每一小格所对的圆心角是6°,根据这个关系,画图计算.解答:解:∵时钟指示2时40分时,分针指到8,时针指到2与3之间,时针从2到这个位置经过了40分钟,时针每分钟转0.5°,因而转过20°,∴时针和分针所成的钝角是180°-20°=160°.故答案为:160°.点评:本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.10. 4时15分时针与分针的夹角.考点:钟面角.专题:计算题.分析:由于分针每分钟转6°,时针每分钟转0.5°,则4时15分时针转了15×6°,分针转了15×0.5°,而开始时它们相距4×30°,所以4时15分时针与分针的夹角=4×30°+15×0.5°-15×6°,然后进行角度计算.解答:解:4时15分时针与分针的夹角=4×30°+15×0.5°-15×6°=37.5゜.点评:本题考查了钟面角:钟面被分成12大格,每大格为30°;分针每分钟转6°,时针每分钟转0.5°.也考查了度分秒的换算11.上午11:20时针和分针所成的夹角是140°.考点:钟面角.专题:计算题.分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.解答:解:上午11:20时,时针指向11和12中间,分针指向4,钟表12个数字,每相邻两个数字之间的夹角为30°,23个格是20°,因此上午11:20时,分针与时针的夹角正好是30°×4+20°=140°.故答案为:140°.点评:本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形.。
4点10分分针与时针的夹角度数

4点10分分针与时针的夹角度数
分针和时针的夹角是一个经常被问到的数学问题。
要计算这个夹角,我们首先需要知道分针和时针分别指向的时间。
在这个问题中,时针指向4点,分针指向10分。
我们知道时针每走一小时(360度),分针每走一圈(360度),时针每分钟走(360/60=6度),分针每分钟走(360/60=6度)。
首先我们计算时针和分针各自相对12点方向的角度。
时针指向4点,所以相对12点方向,时针走过的角度为430=120度。
分针指向10分,相对12点方向,分针走过的角度为106=60度。
接下来我们计算两个指针之间的夹角。
由于时针和分针之间的夹角是随着时间变化的,我们需要计算它们之间的夹角差,即|120-60|=60度。
但是由于时针和分针之间的夹角是一个锐角,所以最终的夹角就是60度。
因此,4点10分时,时针和分针之间的夹角是60度。
从几何角度来看,我们可以利用三角函数来计算这个夹角,但
是这里我们使用了更直观的方法。
希望这个回答能够全面地解答你的问题。
时针与分针重合的公式(夹角公式)

时针与分针重合的公式(夹角公式)
在一个正常正在运行的时钟上,时针和分针每小时会打一次交叉。
即便这一事实可以
令人们很容易地观察到,但在数学上解释这一事实并不是太简单的事情。
因此,要解释时针与分针交叉的情况,我们可以使用角的性质来给出公式。
解决这一
问题的思路是,将时针与分针看作是夹角(伸缩内角),从而推导出二者交叉的具体公式。
给定时针和分针走过的弧( arc)长为 h1 和 h2,此时此刻(在每小时的分钟数),夹角的角度θ可以由下列公式推导:
θ = 360 * (h2 - h1) / 60
其中,h1 指的是时针走过的弧长,h2 指的是分针走过的弧长,该公式可以推导出时
针与分针的夹角关系。
可以看出,当h2-h1 = 0 时,θ = 0,即时针和分针呈重合状态;而当h2-h1 = 60 时,θ = 360,即时针和分针完全重合状态,也就是说此时此刻夹角角度θ 等于360°.
此外,从弧长h1和h2的推导公式可以得出以下结论:当h1为0时,h2也正好等于60;当h2 为0时,h1正好等于60,即时针和分针在一小时时间内形成一个重合的环状。
因此,可以看到,定义每小时时针和分针走过的弧长h1和h2,解释时针与分针之间
重合的情况有其独特的公式。
在这里,我们可以清楚地看到,在任何一个小时,夹角角度
θ 总是等于360°,即时针与分针每小时都会重合一次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)12:00时,时针和分针重合,至少经过多长时间会再 次出现时针和分针重合的现象?此时,时针和分针 各转动了多少度?
设至少经过x min时针与分针再次重合.
由题意,得6x-0.5x=360,
720 解得x= 11
.
720 360 ×0.5°= °, 11 11 720 4320 ×6°= °. 11 11 720 答:至少经过 11 min时针与分针再次重合,此 360 4320 时时针转动了 11 °,分针转动了 11 °.
x 由题意,得(12-1)× 60×30°=8×30°, 480 解得x= ; 11 480 y (12-1)× 60 ×30°-2×30°=180°,解得y=4 11 480 480 14时 11 分-8时 11 分=6(h).
.
答:他们去步行街进行公益服务共用了6 h.
返回
(3)“元旦”这一天,某中学七年级部分学生上午 8时多 集中在学校门口准备去步行街进行公益服务,临出 发时,组长一看时钟,时针与分针正好是重合的, 下午 2时多他们回到学校,进校门时,组长看见时 钟的时针与分针方向相反,正好成一条直线.你知 道他们去步行街进行公益服务共用了多长时间吗?
设上午8时x分时出发,下午2时y分回到学校.
返回
类型
2 利用角度求时间(方程思想)
3.如图,观察时钟,解答下列问题:
(1)在2时和3时之间什么时刻,时针和
分针的夹角为直角?
解:设从2时经过x min,分针与时针的夹角为直角. 依题意,(x-10-
300 解得x= 11 . 300 答:在2时 11 1 12
x)×6°=90°,
分时,时针和分针的夹角为直角.
min.
返回
ቤተ መጻሕፍቲ ባይዱ
4.同学们,日常生活中,我们几乎每天都要看钟表, 它的时针和分针像兄弟俩在赛跑,其中蕴涵着丰 富的数学知识. (1)如图①,上午8:00这一时刻, 时钟上分针与时针所夹的角 120° . 等于________
(2)请在图②中大致画出8:20这一时刻时针和分针 的位置,思考并回答:从上午8:00到8:20, 120° ,时针转过 时钟的分针转过的度数是________ 10° . 的度数是______ 画时针和分针略.
1 ×30°=100°, 3
分针从指向12开始转过的角度为20×6°=120°, 120°-100°=20°.
即3时20分时,时针与分针的夹角是20°.
返回
题型2 按动态时间求角度
2.小华是个数学迷,最近他在研究钟面角(时针与分针 组成的角)问题,他想和大家一起来讨论相关问题. 0.5 度. (1)分针每分钟转6度,时针每分钟转______ 30 (2)图①的钟面角为________ 度, 22.5 度. 图②的钟面角为________
(2)小明下午五点多有事外出时,看到墙上钟面的时 针和分针的夹角为90°,下午不到六点回家时, 发现时针与分针的夹角又为90°.小明外出多长
时间?
设小明外出y min,则时针走了0.5y度,分针走了6y度. 根据题意,得6y=90+0.5y+90, 解得y=
360 11
.
360 11
答:小明外出
第4章 几何图形初步
双休作业(十)
2 巧解时针与分针的夹角问题
1
2
3
4
类型
1 利用时间求角度
题型1 按固定时间求角度
1.(1)从上午11时到下午1时30分,这期间时针转过了
75° ;下午1:30,时针、分针的夹角是_____ 135° _____ .
(2)3时20分时,时针与分针的夹角是多少度? 时针每小时转30°,分针每分钟转6°. 时针从指向12开始转过的角度为3