如何计算时针与分针夹角的度数

合集下载

关于钟表指针夹角问题的公式解法

关于钟表指针夹角问题的公式解法
应用题中, 有一类是求某一时刻时针与分针的夹角为多少度, 或何时时针与 分针重合、垂直或成平角的问题.下面归纳一下指针夹角的计算公式. 一、首先要掌握两个定值 1、由于分针一小时旋转一周,所以分针的旋转速度为:360° /60min=6° /min;2、时针一 小时旋转一个大格,表盘有 12 个大格,每旋转一格指针将旋转 360° /12=30° ,所以时针的旋 转速度为:30° /60min=0.5° /min. 二、用类似行程应用题中追击问题的思考方法求夹角 求某时某分时分针与时针的夹角, 可以理解为从整点时 (分针指向 12, 时针指向整点) , 分针、时针同时旋转到所求时刻的角度及整点时两针相差的角度之差. 如求 3: 20 时, 时、 分针夹角的计算, 可以这样想: 3: 00 时分针在时针后面 90° (30° × 3) , 经过 20 分的旋转,分针追上时针(多旋转 90° )并超时针旋转的角度,即两指针的夹角.这 样就可以得到如下的算法 20× 6-3× 30-0.5× 20=5.5× 20-30× 3=20° 即“5.5 乘以分-30× 时” 由此可以推广到一般情况可以得出夹角公式. x 时 y 分时针与分针的夹角为: 5.5y-30x.为了便于说明,将 5.5y-30x 记为α . α 的几何意义是时针顺时针旋转到分针所在位置的角, 所以 α 可能为负角或绝对值大于 180° .所以,将上述公式修正为: x 时 y 分时针与分针的夹角为 β,1、计算 α=5.5y-30x,2、当 0° ≤|α|≤180° 时,β=|α|, 当 180° <|α|<360° 时,β=360° -|α|. (其中 x=0,1,„„,11,0≤y<60) 注意:计算 12 时某分的问题时,x 要取 0 时,而不取 12. 三、公式的应用 1、求 4:05 时针、分针的夹角. 解:|α|=|5× 5.5-4× 30|=92.5° ,所以,β=|α|=92.5° .即 4:05 时针、分针的夹角为 92.5° . 2、求 2:55 时针、分针的夹角. 解:|α|=|55× 5.5-2× 30|=242.5° ,所以,β=360° -|α|=117.5° .即 2:55 时针、分针的夹角为 117.5° . 3、在 7:00 至 8:00 之间,何时时针与分针互相垂直? 解:设 7 点 x 分时针与分针互相垂直,由题意可得:|5.5x-30× 7|=90 9 6 解得 x=21 ,x=54 11 11 或 360° -|5.5x-30× 7|=90 3 10 解得 x=87 ,x=-10 ,这两个解不符合题意均舍去. 11 11 9 6 即 7 时 21 分或 54 分时针与分针互相垂直. 11 11

时针和分针的夹角计算方法

时针和分针的夹角计算方法
时针和分针的夹角计算方法(分针和时针的追击问题)
知识预备: (1)普通钟表相当于圆,其时针或分针走一圈均相当于走过 360°; (2)钟表上的每一个大格(时针的一小时或分针的5分钟)对应 的角度是: 360°/12=30 °; (3)分针每走过1分钟时针走的角度应为: 360° /(12x60)=0.5°; (4)分针每走过1分钟分针走的角度应为:360°/60=6 ° 。
则时针与分针夹角的度数为:330° - 237.5° = 92.5°
例如,以7:55为例,介绍时针与分针夹角的计算பைடு நூலகம்法
以时针、分针均在12点时为起始点进行计算。 由于分针在时针前面,可以先算出分针走过的角度,再减去时针 走过的角度,即可求出时针与分针夹角的度数。
分针走过的角度为:55×6°=330°
时针走过的角度为:7x30°+55x0.5° = 237.5°(时针走了7大格,每格30°,然后分针 在走的同时,时针还在走,所以时针走的角度应该是7个大格再加上分针走55分钟时针 走的角度)

时针与分针夹角的度数及例题

时针与分针夹角的度数及例题

✿如何计算时针与分针夹角的度数一、知识预备(1)普通钟表相当于圆,其时针或分针走一圈均相当于走过360°角;(2)钟表上的每一个大格对应的角度是:︒=︒3012360;(3)时针每走过1分钟对应的角度应为:︒=⨯︒5.06012360;(4)分针每走过1分钟对应的角度应为:︒=︒660360。

二、计算举例例1. 如图1所示,当时间为7:55时,计算时针与分针夹角的度数(不考虑大于180°的角)。

解析:依据常识,我们应该以时针、分针均在12点时为起始点进行计算。

由于分针在时针前面,我们可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数。

分针走过的角度为:55×6°=330°时针走过的角度为:︒=︒⨯+︒⨯5.2375.055307则时针与分针夹角的度数为:︒=︒-︒5.925.237330例2. 如图2所示,当时间为7:15时,计算时针与分针夹角的度数(不考虑大于180°的角)。

解析:此题中分针在时针的后面,与上题有所不同,我们应该先算出时针走过的角度,再去减去分针走过的角度,即可求出时针与分针夹角的度数。

时针走过的角度为:︒=︒⨯+︒⨯5.2175.015307分针走过的角度为:︒=︒⨯90615则时针与分针夹角的度数为:︒=︒-︒5.127905.217三、总结规律从上述两例我们可以总结出规律如下:当分针在时针前面,可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数;当分针在时针后面,可以先算出时针走过的角度,再减去分针走过的角度,即可求出时针与分针夹角的度数。

用字母和公式表示:当时间为m 点n 分时,其时针与分针夹角的度数为:(1)分针在时针前面:)5.0n 30m (6n ︒⨯+︒⨯-︒⨯ (2)分针在时针后面:︒⨯-︒⨯+︒⨯6n )5.0n 30m (依据此公式可以求出任意时刻时针与分针夹角的度数,计算起来非常便捷。

初一数学时针与分针夹角问题

初一数学时针与分针夹角问题

初一数学时针与分针夹角问题
我们要计算时针和分针在某个时间点上的夹角。

首先,我们需要了解时钟上时针和分针是如何移动的,以及它们之间的相对速度。

假设分针和12点钟方向的夹角为 M 度,时针和12点钟方向的夹角为 H 度。

根据时钟的工作原理,我们可以得到以下信息:
1. 分针每分钟走6度(因为360度/60分钟 = 6度/分钟)。

2. 时针每小时走30度(因为360度/12小时 = 30度/小时),并且每分钟会额外走度(因为30度/60分钟 = 度/分钟)。

所以,在t分钟时:
M = 6 × t
H = 30 × (小时数) + × t
我们要找的是 H 和 M 的差,即 H - M,这就是时针和分针的夹角。

165。

钟表问题时针与分针夹角的公式技巧

钟表问题时针与分针夹角的公式技巧

钟表问题时针与分针夹角的公式技巧1.时针和分针夹角的公式是:夹角= |(时针角度-分针角度)|(The formula for the angle between the hour and minute hands is: Angle = |(hour hand angle - minute hand angle)|)2.时针和分针的夹角可以用几何公式来计算。

(The angle between the hour and minute hands can be calculated using a geometric formula.)3.在钟表上,时针每分钟走30°,分针每分钟走6°。

(On a clock, the hour hand moves 30° per minute, and the minute hand moves 6° per minute.)4.如果要计算12点钟时,时针和分针的夹角,可用30° x 60 - 0° = 180°。

(To calculate the angle between the hour and minute hands at 12 o'clock, use 30° x 60 - 0° = 180°.)5.当时间是3点钟时,时针和分针夹角的计算公式是:|90° - 90°| = 0°。

(When the time is 3 o'clock, the calculation formula for the angle between the hour and minute hands is: |90° - 90°| = 0°.)6.在6点钟时,时针和分针的夹角为:|180° - 0°| = 180°。

如何计算时针与分针夹角的度数

如何计算时针与分针夹角的度数

如何计算时针与分针夹角的度数<正>解决时针与分针的夹角问题的关键是搞清钟面上时针和分针每分钟转过的角度.分针每分钟(钟面上转过一小格)转过6°;时针每小时转过30°,时针每分钟转过0.5°.因此,对于m点n分时:时针转过的度数为m×30°+n× 0.5°,分针转过的度数为n×6°,所以时针与分针的夹角α=|m×30°+n×0.5°-n×6°|, 即α=| m×30°-n×5.5°|.若上式得到的角大于180°,则时针与分针的夹角应为360°减去上式得到的角,即360°-α.解决时针与分针的夹角问题的关键是搞清钟面上时针和分针每分钟转过的角度.分针每分钟(钟面上转过一小格)转过6°;时针每小时转过30°,时针每分钟转过0.5°.因此,对于m点n分时:时针转过的度数为m×30°+n× 0.5°,分针转过的度数为n×6°,所以时针与分针的夹角α=|m×30°+n×0.5°-n×6°|, 即α=| m×30°-n×5.5°|.若上式得到的角大于180°,则时针与分针的夹角应为360°减去上式得到的角,即360°-α.如何计算时针与分针夹角的度数在初中数学教学中,钟表问题经常出现,学生计算起来也比较难,尤其在计算时针与分针夹角度数的问题上,因其计算方法很多,一直困扰着很多教师的教学. 本文结合自己教学过程中的体会,总结出使这类计算问题更便捷的规律和方法,供各位同行参考.一、知识预备(1)普通钟表相当于圆,其时针或分针走一圈均相当于走过360°角;(2)钟表上的每一个大格(时针的1小时或分针的5分钟)对应的角度是:=30°;(3)时针每走过1分钟对应的角度应为:=0.5°;(4)分针每走过1分钟对应的角度应为:=6°.二、计算举例例1:如图1所示,当时间为7点55分时,计算时针与分针夹角的度数(不考虑大于180°的角).解析:依据常识,我们应该以时针、分针均在12点时为起始点进行计算.由于分针在时针前面,我们可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数.分针走过的角度为:55×6°=330°.时针走过的角度为:7×30°+55×0.5°=237.5°.设时间为x时y分,以12时0分开始为0度参考,分针的角度为y/60*360度=6y度;时针除考虑x外,也要考虑y,角度应是x/12*360度+y/60*1/12*360度=(30x+0.5y)度,所以夹角便是两者的差=6y-(30x+0.5y)度=(5.5y-30x)度。

某一时刻分针与时针夹角的计算技巧

某一时刻分针与时针夹角的计算技巧

某一时刻分针与时针夹角的计算技巧(1)当分针在时针前面,可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数;(2)当分针在时针后面,可以先算出时针走过的角度,再减去分针走过的角度,即可求出时针与分针夹角的度数。

有时计算出的结果大于180°,再用360°减它即可。

用字母和公式表示:当时间为m点n分时,其时针与分针夹角的度数为:(1)分针在时针前面:(2)分针在时针后面:【例1】当时间为7:55时,计算时针与分针夹角的度数(不考虑大于180°的角)。

【解析】:依据常识,我们应该以时针、分针均在12点时为起始点进行计算。

由于分针在时针前面,我们可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数。

解:55×6°-(7×30°+55×0.5°)=330°-(210°+27.5°)=330°-237.5°=92.5°所以,时针与分针夹角的度数为92.5°。

【例2】当时间为7:15时,计算时针与分针夹角的度数(不考虑大于180°的角)。

【解析】:此题中分针在时针的后面,与上题有所不同,我们应该先算出时针走过的角度,再去减去分针走过的角度,即可求出时针与分针夹角的度数。

解:(7×30°+15×0.5°)-15×6°=(210°+7.5°)-90°=217.5°-90°=127.5°所以,时针与分针夹角的度数为127.5°。

【例3】求2时48分时时针与分针夹角的度数(不考虑大于180°的角)。

【解析】:本题中,我们知道分针在时针的前面,我们可以先算出分针走过的角度,再减去时针走过的角度,由于这样计算出的结果大于180°,所以再用360°减它即可求出时针与分针夹角的度数。

时针与分针夹角解题技巧

时针与分针夹角解题技巧

时针与分针夹角解题技巧
解决时针与分针夹角问题的技巧主要包括以下几点:
•理解时针和分针的速度。

分针每分钟走6°,而时针每小时走30°,即每分钟走0.5°。

•确定起始角度。

通常,以分针指向12点(即整时状态)作为计算起始点。

•应用基本几何原理。

使用大角度减小角度来计算时针和分针之间的夹角。

例如,要计算8点15分时时针和分针之间的夹角,可以假设时针在8点位置,分针在3点位置。

在这种情况下,时针和分针之间有150°的角。

考虑到分针每分钟走6°,而时针每分钟走0.5°,15分钟后,时针将额外移动7.5°,因此8点15分的实际夹角为157.5°。

综上所述,解决时针与分针夹角问题时,关键在于理解时针和分针的速度,选择正确的起始角度,并应用基本的几何原理进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何计算时针与分针夹角的度数
在初中数学学习中,钟表问题经常出现,计算起来也比较难,其中计算时针与分针夹角度数的问题就困扰着我们中学生。

其计算方法很多,但如何计算更便捷在实际学习过程中似乎缺少总结。

本文结合自己学习过程中的体会,总结其计算规律如下。

一、知识预备
(1)普通钟表相当于圆,其时针或分针走一圈均相当于走过360°角;
(2)钟表上的每一个大格(时针的一小时或分针的5分钟)对应的角度是:;
(3)时针每走过1分钟对应的角度应为:;
(4)分针每走过1分钟对应的角度应为:。

二、计算举例
例1. 如图1所示,当时间为7:55时,计算时针与分针夹角的度数(不考虑大于180°的角)。

解析:依据常识,我们应该以时针、分针均在12点时为起始点进行计算。

由于分针在时针前面,我们可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数。

分针走过的角度为:55×6°=330°
时针走过的角度为:
则时针与分针夹角的度数为:
例2. 如图2所示,当时间为7:15时,计算时针与分针夹角的度数(不考虑大于180°的角)。

解析:此题中分针在时针的后面,与上题有所不同,我们应该先算出时针走过的角度,再去减去分针走过的角度,即可求出时针与分针夹角的度数。

时针走过的角度为:
分针走过的角度为:
则时针与分针夹角的度数为:
三、总结规律
从上述两例我们可以总结出规律如下:当分针在时针前面,可以先算出分针走过的角度,再减去时针走过的角度,即可求出时针与分针夹角的度数;当分针在时针后面,可以先算出时针走过的角度,再减去分针走过的角度,即可求出时针与分针夹角的度数。

用字母和公式表示:
当时间为m点n分时,其时针与分针夹角的度数为:
(1)分针在时针前面:
(2)分针在时针后面:
依据此公式可以求出任意时刻时针与分针夹角的度数,计算起来非常便捷。

如果题目中涉及到秒,我们可以先把秒换算为分,再套用上述规律和公式进行计算即可。

相关文档
最新文档