几何综合题(题型概述)

合集下载

九年级数学几何综合题

九年级数学几何综合题

中考数学专题复习之十五:几何综合题【中考题特点】:几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。

解这类几何综合题,应该注意以下几点: (1)注意观察、分析图形,把复杂的图形分解成几个基本图形,或通过添加辅助线补全或构造基本图形;(2)灵活运用数学思想与方法.【范例讲析】:例1:已知:如图,直线PA 交⊙O 于A 、E 两点,PA 的垂线DC 切⊙O 于点C ,过A 点作⊙O 的直径AB 。

(1)求证:AC 平分 DAB ;(2)若DC =4,DA =2,求⊙O 的直径。

例2:已知:如图,以Rt △ABC 的斜边AB 为直 径作⊙O ,D 是⊙O 上的点,且有AC=CD 。

过点C 作⊙O 的切线,与BD 的延长线交于点E ,连结CD 。

(1)试判断BE 与CE 是否互相垂直?请说明理由;(2)若CD=52,tan ∠DCE=21,求⊙O 的半径长。

例3:如图矩形ABCD 中,过A ,B 两点的⊙O 切CD 于E ,交BC 于F ,AH ⊥BE 于H ,连结EF 。

(1) 求证:∠CEF =∠BAH (2) 若BC =2CE =6,求BF 的长。

例4:如图,AB 是⊙O 的直径,点C 在BA 的延长线上,CA=AO ,点D 在⊙O 上, ∠ABD=30°.⑴求证:CD 是⊙O 的切线;⑵若点P 在直线AB 上,⊙P 与⊙O 外切于点B ,与直线CD 相切于点E ,设⊙O 与⊙P 的半径分别为r 与R ,求Rr的值.例5:已知直线L 与⊙O 相切于点A ,直径AB=6,点P 在L 上移动,连接OP 交⊙O 于点C ,连接BC 并延长BC 交直线L 于点D. (1)若AP=4,求线段PC 的长;(2)若ΔPAO 与ΔBAD 相似,求∠APO 的度数和四边形OADC 的面积。

(答案要求保留根号) 例6:如图1:⊙O 的直径为AB ,过半径OA 的中点G 作弦CE ⊥AB ,在⋂CB 上取一点D ,分别作直线CD 、ED 交直线AB 于点F 、M 。

高考解析几何大题题型归纳

高考解析几何大题题型归纳

高考解析几何大题题型归纳
高考解析几何大题主要分为以下几类:
1. 平面向量问题:涉及向量加减、点积(数量积)、叉积(向量积)及其性质,例如线段长度、平行四边形面积、点到直线距离等等。

2. 空间几何问题:涉及空间中点、线、面的位置关系、相交情况、垂直或平行关系、大小关系等问题,例如两平面夹角、直线与平面的交点、平面方程等。

3. 三角形问题:涉及三角形内部、外部、垂心、垂足、中线、中心、外心、内心等概念,例如三角形的外接圆、内切圆、垂心定理等。

4. 圆锥曲线问题:涉及圆、椭圆、抛物线、双曲线等曲线的定义、性质、焦点、方程、参数等问题,例如椭圆离心率、抛物线焦点、双曲线渐近线等。

5. 空间向量问题:涉及空间中平行六面体、四面体的体积、重心、外接球、内切球等问题。

以上是高考解析几何大题的主要题型归纳,但具体涉及哪些内容还是要根据题目的情况来确定的。

初中数学中考几何综合题

初中数学中考几何综合题

中考数学复习--几何综合题Ⅰ、综合问题精讲:几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点:⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.⑵ 掌握常规的证题方法和思路.⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数学思想方法伯数形结合、分类讨论等).Ⅱ、典型例题剖析【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长.解:(1)证明:连接OD ,AD . AC 是直径,∴ AD⊥BC. ⊿ABC 中,AB =AC ,∴ ∠B=∠C,∠BAD=∠DAC.又∠BED 是圆内接四边形ACDE 的外角,∴∠C =∠BED .故∠B =∠BED ,即DE =DB .点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径,即∠DAC =∠BAD =∠ODA .故OD ⊥DF ,DF 是⊙O 的切线.(2)设BF =x ,BE =2BF =2x .又 BD =CD =21BC =6, 根据BE AB BD BC ⋅=⋅,2(214)612x x ⋅+=⨯.化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).则 BF 的长为2.点拨:过半径的外端且垂直于半径的直线才是切线,所以要证明一条直线是否是此圆的切线,应满足这两个条件才行.【例2】(重庆,10分)如图,在△ABC 中,点E 在BC 上,点D在AE 上,已知∠ABD =∠ACD,∠BDE =∠CDE .求证:BD =CD 。

【复习专题】中考数学复习:几何综合题

【复习专题】中考数学复习:几何综合题

几何综合题(旋转为主的题型)一、知识梳理二、教学重、难点三、作业完成情况四、典题探究例1 已知:如图,点P 是线段AB 上的动点,分别以AP 、BP 为边向线段AB 的同侧作正△APC和正△BPD ,AD 和BC 交于点M.(1)当△APC 和△BPD 面积之和最小时,直接写出AP : PB 的值和∠AMC 的度数; (2)将点P 在线段AB 上随意固定,再把△BPD 按顺时针方向绕点P 旋转一个角度α,当α<60°时,旋转过程中,∠AMC 的度数是否发生变化?证明你的结论.(3)在第(2)小题给出的旋转过程中,若限定60°<α<120°,∠AMC 的大小是否会发生变化?若变化,请写出∠AMC 的度数变化范围;若不变化,请写出∠AMC 的度数.例2 探究:(1)如图1,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,试判断BE 、DF 与EF 三条线段之间的数量关系,直接写出判断结果: ;(2)如图2,若把(1)问中的条件变为“在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF=21∠BAD ”,则(1)问中的结论是否仍然成立?若成立,请给出证明,若不成立,请说明理由;(3)在(2)问中,若将△AEF 绕点A 逆时针旋转,当点分别E 、F 运动到BC 、CD 延长线上时, 如图3所示,其它条件不变,则(1)问中的结论是否发生变化?若变化,请给出结论并予以证明..例3 已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中BA =BC ,DA =DE ,联结EC ,取EC 的中点M ,联结BM 和DM .(1)如图1,如果点D 、E 分别在边AC 、AB 上,那么BM 、DM 的数量关系与位置关系是 ;(2)将图1中的△ADE 绕点A 旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.DCB AEMMEABCD图1 图2例4 在ABCD 中,A DBC ∠=∠,过点D 作DE DF =,且EDF ABD =∠,连接EF ,EC ,N 、P 分别为EC ,BC 的中点,连接NP . (1)如图1,若点E 在DP 上,EF 与DC 交于点M ,试探究线段NP 与线段NM 的数量关系及ABD ∠与MNP ∠满足的等量关系,请直接写出你的结论;(2)如图2,若点M 在线段EF 上,当点M 在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M 的位置,并证明(1)中的结论.五、演练方阵A 档(巩固专练)1.(1)如图1,△ABC 和△CDE 都是等边三角形,且B 、C 、D 三点共线,联结AD 、BE相交于点P ,求证: BE = AD .(2)如图2,在△BCD 中,∠BCD <120°,分别以BC 、CD 和BD 为边在△BCD 外部作等边三角形ABC 、等边三角形CDE 和等边三角形BDF ,联结AD 、BE 和CF 交于点P ,下列结论中正确的是 (只填序号即可)①AD=BE=CF ;②∠BEC=∠ADC ;③∠DPE=∠EPC=∠CPA =60°; (3)如图2,在(2)的条件下,求证:PB+PC+PD=BE .2. 已知:2AD =,4BD =,以AB 为一边作等边三角形ABC .使C 、D 两点落在直线AB 的两侧. (1)如图,当∠ADB=60°时,求AB 及CD 的长;(2)当∠ADB 变化,且其它条件不变时,求CD 的 最大值,及相应∠ADB 的大小.3. 如图,△ABC 中,∠ACB=90°,AD=AC,AB=AN,连结CD 、BN,CD 的延长线交BN 于点F . (1)当∠ADN 等于多少度时,∠ACE=∠EBF,并说明理由;(2)在(1)的条件下,设∠ABC=α,∠CAD =β,试探索α、β满足什么关系时,△ACE ≌△FBE ,并说明理由.4. 在△ABC 中,AB =4,BC =6,∠ACB =30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连接AA 1,CC 1.若△CBC 1的面积为3,求△ABA 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应点是点P 1,直接写出线段EP 1长度的最大值与最小值.图2AFAB 图1C 1C BA 1A图2A 1C 1ABC图1图3A5. 问题1:如图1,在等腰梯形ABCD 中,AD ∥BC ,AB =BC =CD ,点M ,N 分别在AD ,CD 上,若∠MBN =12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请直接写出你的猜想,不用证明;问题2:如图2,在四边形ABCD 中,AB =BC ,∠ABC +∠ADC =180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN =12∠ABC 仍然成立,请你进一步探究线段MN ,AM ,CN 又有怎样的数量关系?写出你的猜想,并给予证明.6. 如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动.(1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 __; (2)如图2,当11D D A 、、三点共线时,请直接写出11CD DD = _________; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是______________,请借助图3证明你的猜想.B 档(提升精练)1. 如图,△ABC 中,∠90ACB =︒, 2=AC ,以AC 为边向右侧作等边三角形ACD . (1)如图24-1,将线段AB 绕点A 逆时针旋转︒60,得到线段1AB ,联结1DB ,则与1DB 长度相等的线段为 (直接写出结论);(2)如图24-2,若P 是线段BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,求ADQ ∠的度数; (3)画图并探究:若P 是直线BC 上任意一点(不与点C 重合),点P 绕点A 逆时针旋转︒60得到点Q ,是否存在点P ,使得以 A 、 C 、 Q 、 D 为顶点的四边形是梯形,若存在,请指出点P 的位置,并求出PC 的长;若不存在,请说明理由.2. 如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边上,此时BD=CF ,BD ⊥CF 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF 成立吗? 若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G . ①求证:BD ⊥CF ; ②当AB=4,AD=时,求线段BG 的长.3. 已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB .(1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ; (2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点.请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.4. 在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC ,求OE OF的值.5. 如图1,四边形ABCD ,将顶点为A 的角绕着顶点A 顺时针旋转,若角的一条边与DC 的延长线交于点F ,角的另一条边与CB 的延长线交于点E ,连接EF . (1)若四边形ABCD 为正方形,当∠EAF=45°时,有EF=DF -BE .请你思考如何证明这个结论(只思考,不必写出证明过程);(2)如图2,如果在四边形ABCD 中,AB=AD ,∠ABC=∠ADC=90°,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论); (3)如图3,如果四边形ABCD 中,AB=AD ,∠ABC 与∠ADC 互补,当∠EAF=21∠BAD 时,EF 与DF 、BE 之间有怎样的数量关系?请写出它们之间的关系式并给予证明.(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF 的周长(直接写出结果即可).C 档(跨越导练)1. 已知:正方形ABCD 中,45MAN ∠=,绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N . (1)如图1,当M A N ∠绕点A 旋转到BM DN =时,有BM DN MN +=.当M A N ∠ 绕点A 旋转到BM DN ≠时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间有怎样的等量关系?请写出你的猜想,并证明.2. 如图,已知四边形ABCD 是正方形,对角线ACBD 相交于O .(1) 如图1,设 E 、F 分别是AD 、AB 上的点,且∠EOF =90°,线段AF 、BF 和EF 之间存在一定的数量关系.请你用等式直接写出这个数量关系;(2)如图2,设 E 、F 分别是AB 上不同的两个点,且∠EOF =45°,请你用等式表示线段AE 、BF 和EF 之间的数量关系,并证明.3. 问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE 是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.4. 在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。

几何综合(解析版)--中考数学抢分压轴题秘籍(全国通用)

几何综合(解析版)--中考数学抢分压轴题秘籍(全国通用)

几何综合--中考数学抢分秘籍(全国通用)几何综合问题在中考中以填空题和解答题的形式出现,考查难度较大.此类问题在中考中多考查面积平分、面积最值和几何变换的综合问题,一般要用到特殊三角形、特殊四边形、相似三角形、圆、锐角三角函数、勾股定理、图形变换的性质和二次函数的最值等相关知识,以及分类讨论、数形结合、转化与化归等数学思想.此类题型常涉及以下问题:①几何图形中的线段最值问题②探究图形面积的分割问题;③探究图形面积的最值问题.右图为几何综合问题中各题型的考查热度.题型1:线段最值问题①动点路径问题②“胡不归”问题③“将军饮马”问题④“造桥选址”问题解题模板:1.(2021秋•白云区校级月考)如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切,则点A到⊙O上的点的距离的最大值为()A.B.C.D.【分析】由题意画出符合题意的图形,当⊙O与BC,CD相切时,点A到⊙O上的点的距离取得最大值,利用勾股定理即可求得结论.【解答】解:由题意,当⊙O与BC,CD相切时,点A到⊙O上的点的距离取得最大值,如图,由对称性可知:圆心O在AC上.AC==4.∵BC与⊙O相切于点E,∴OE⊥EC.∵四边形ABCD是正方形,∴∠ACB=45°.∴△OEC为等腰直角三角形.∴OC=OE=.∴CG=OC﹣OG=﹣1.∴AG=AC﹣CG=4﹣(﹣1)=3+1.故选:C.【点评】本题主要考查了切线的性质,正方形的性质,直线和圆的位置关系,勾股定理,连接OE,利用切线的性质得到OE⊥EC是解题的关键.【变式1-1】(2020•遵义)如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A、C不重合),连接DE,作EF⊥DE交射线BA于点F,过点E作MN∥BC分别交CD、AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.【分析】(1)要证明EF=DE,只要证明△DME≌△ENF即可,然后根据题目中的条件和正方形的性质,可以得到△DME≌△ENF的条件,从而可以证明结论成立;(2)根据勾股定理和三角形相似,可以得到AG和CG、CE的长,然后即可得到GE的长.【解答】(1)证明:∵四边形ABCD是正方形,AC是对角线,∴∠ECM=45°,∵MN∥BC,∠BCM=90°,∴∠NMC+∠BCM=180°,∠MNB+∠B=180°,∴∠NMC=90°,∠MNB=90°,∴∠MEC=∠MCE=45°,∠DME=∠ENF=90°,∴MC=ME,∵CD=MN,∴DM=EN,∵DE⊥EF,∠EDM+∠DEM=90°,∴∠DEF=90°,∴∠DEM+∠FEN=90°,∴∠EDM=∠FEN,在△DME和△ENF中,∴△DME≌△ENF(ASA),∴EF=DE;(2)解:如图1所示,由(1)知,△DME≌△ENF,∴ME=NF,∵四边形MNBC是矩形,∴MC=BN,又∵ME=MC,AB=4,AF=2,∴BN=MC=NF=1,∵∠EMC=90°,∴CE=,∵AF∥CD,∴△DGC∽△FGA,∴,∴,∵AB=BC=4,∠B=90°,∴AC=4,∵AC=AG+GC,∴AG=,CG=,∴GE=GC﹣CE==;如图2所示,同理可得,FN=BN,∵AF=2,AB=4,∴AN=1,∵AB=BC=4,∠B=90°,∴AC=4,∵AF∥CD,∴△GAF∽△GCD,∴,即,解得,AG=4,∵AN=NE=1,∠ENA=90°,∴AE=,∴GE=GA+AE=5.综上所述:GE的长为:,5.【点评】本题考查正方形的性质、全等三角形的判定与性质、三角形相似,解答本题的关键是明确题意,利用数形结合的思想解答.2.(2022春•广陵区期末)如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=2,点P为线段BD上的一个动点,则MP+PB的最小值是4.【分析】过P点作PH⊥BC于H,过M点作MN⊥BC于N,如图,根据菱形的性质得到AB=BC,BO 平分∠ABC,AO⊥BD,再判断△ABC为等边三角形得到∠ABC=∠ACB=60°,则∠OBC=30°,所以PH=BP,则MP+PB=MP+PH,所以MP+PH的最小值为MN的长,然后利用含30度角的直角三角形三边的关系求出MN即可.【解答】解:过P点作PH⊥BC于H,过M点作MN⊥BC于N,如图,∵四边形ABCD为菱形,∴AB=BC,BO平分∠ABC,AO⊥BD,∵AB=AC=10,∴AB=AC=BC=10,∴△ABC为等边三角形,∴∠ABC=∠ACB=60°,∴∠OBC=30°,∴PH=BP,∴MP+PB=MP+PH,当M、P、H共线时,MP+PH的值最小,即MP+PH的最小值为MN的长,∵AM=2,∴CM=10﹣2=8,在Rt△MNC中,∵∠MCN=60°,∴CN=CM=4,∴MN=CN=4,即MP+PB的最小值为4.故答案为:.【点评】本题考查了胡不归问题:利用垂线段最短解决最短路径问题,把PB转化为PH是解决问题的关键.也考查了菱形的性质和等边三角形的性质.【变式2-1】(2021•郴州)如图,在△ABC中,AB=5,AC=4,sin A=,BD⊥AC交AC于点D.点P为线段BD上的动点,则PC+PB的最小值为.【分析】过点P作PE⊥AB于点E,过点C作CH⊥AB于点H,首先得出BD=4,AD=3,根据sin∠ABD=,得EP=,则PC+PB的最小值为PC+PE的最小值,即求CH的长,再通过等积法即可解决问题.【解答】解:过点P作PE⊥AB于点E,过点C作CH⊥AB于点H,∵BD⊥AC,∴∠ADB=90°,∵sin A==,AB=5,∴BD=4,由勾股定理得AD=,∴sin∠ABD=,∴EP=,∴PC+PB=PC+PE,即点C、P、E三点共线时,PC+PB最小,∴PC+PB的最小值为CH的长,=,∵S△ABC∴4×4=5×CH,∴CH=.∴PC+PB的最小值为.故答案为:.【点评】本题主要考查了锐角三角函数,垂线段最短、勾股定理等知识,将PC+PB的最小值转化为求CH的长,是解题的关键.3.(2022秋•朝阳区校级月考)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的纵坐标为.【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E (0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.【解答】解:∵∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,则,解得:,∴直线EC的解析式为y=x+2,解,得,∴P(,),故答案为:.【点评】本题考查了轴对称﹣最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.【变式3-1】(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x 轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为(﹣,0).【分析】在BC上截取BH=3,可证四边形BHEF是平行四边形,可得BF=EH,由对称性可得DE=D'E,则四边形BDEF的周长=EH+ED'+BD+EF,由EF和BD是定值,则当EH+D'E有最小值时,四边形BDEF 的周长有最小值,即当点E,点H,点D'共线时,EH+D'E有最小值,利用待定系数法可求HD'解析式,即可求解.【解答】解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).【点评】本题考查了轴对称﹣最短路线问题,坐标与图形,平行四边形的判定和性质,一次函数的性质等知识,确定点E的位置是解题的关键.4.如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是.【分析】根据题意得出作EF∥AC且EF=,连接DF交AC于M,在AC上截取MN=,此时四边形BMNE的周长最小,进而利用相似三角形的判定与性质得出答案.【解答】解:作EF∥AC且EF=,连接DF交AC于M,在AC上截取MN=,延长DF交BC于P,作FQ⊥BC于Q,作出点E关于AC的对称点E′,则CE′=CE=1,将MN平移至E′F′处,则四边形MNE′F′为平行四边形,则当BM+EN=BM+FM=BF′时四边形BMNE的周长最小,由∠FEQ=∠ACB=45°,可求得FQ=EQ=1,∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,∴=,∴=,解得:PQ=,∴PC=,由对称性可求得tan∠MBC=tan∠PDC==.故答案为.【点评】此题主要考查了正方形的性质以及相似三角形的判定与性质,得出M,N的位置是解题关键.【变式4-1】如图,已知四边形ABCD四个顶点的坐标为A(1,3),B(m,0),C(m+2,0),D(5,1),当四边形ABCD的周长最小时,m的值为.【分析】因为AD,BC的长度都是固定的,所以求出AB+CD的长度就行了.问题就是AB+CD什么时候最短.把D点向左平移2个单位到D′点;作D′关于x轴的对称点D″,连接AD″,交x轴于P,从而确定C点位置,此时AB+CD最短.设直线AD″的解析式为y=kx+b,待定系数法求直线解析式.即可求得m的值.【解答】解:将C点向左平移2单位与B重合,点D向左平移2单位到D′(3,1),作D′关于x轴的对称点D″,根据作法知点D″(3,﹣1),设直线AD″的解析式为y=kx+b,则,解得k=﹣2,b=5.∴直线AD″的解析式为y=﹣2x+5.当y=0时,x=,即B(,0),m=.故答案为:.【点评】考查了轴对称﹣最短路线问题,关键是熟悉关于x轴的对称点,两点之间线段最短等知识.题型2:面积平分问题解题模板:技巧精讲1:利用中线平分图形面积的方法2.利用对称性平分图形面积的方法5.(1)问题提出:如图(1),在直角△ABC中,∠C=90°,AC=8,BC=6,点D为AC上一点且AD=2,过点D作直线DE交△ABC于点E,使得△ABC被分成面积相等的两部分,则DE的长为2.(2)类比发现:如图(2),五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O(0,0),C (4,0),D(4,2)请你找出一条经过顶点A的直线,将五边形ABOCD分为面积相等的两部分,求出该直线对应的函数表达式.(3)如图(3),王叔叔家有一块四边形菜地ABCD,他打算过D点修一条笔直的小路把四边形菜地ABCD 分成面积相等的两部分,分别种植不同的农作物,已知AB=AD=200米,BC=DC=200米,∠BAD =90°过点D是否存在一条直线将四边形ABCD的面积平分?若存在,求出平分该四边形面积的线段长:若不存在,请说明理由.【分析】(1)如图1中,取AC的中点F,连接BF,BD,作FE∥BD交BC于E,连接DE交BF于O.证明DE平分△ABC的面积,利用平行线分线段成比例定理求出CE即可解决问题.(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,求出点M的坐标即可解决问题.(3)先求出四边形ABCD的面积,即可得出四边形ABQD的面积,从而求出QM,再用平行线分线段成比例定理求出BM,即可得出DM,最后用勾股定理即可.【解答】解:(1)如图1中,取AC的中点F,连接BF,BD,作FE∥BD交BC于E,连接DE交BF 于O.∵AF=FC,=S△BFC,∴S△AFB∵BD∥EF,=S△BDF,∴S△BDE=S△BOE,∴S△DFO=S四边形ABED,∴S△ECD∴DE平分△ABC的面积,∵AC=8,AD=2,∴AF=CF=4,DF=2,∵EF∥BD,∴=,∴=,∴CE=4,∴DE===2,故答案为2.(2)如图2中,连接AO、AC,作BE∥AO交x轴于E,DF∥AC交x轴于F,EF的中点为M,则直线AM平分五边形ABCOD的面积,∵直线AO的解析式为y=x,∴直线BE解析式为y=x+2,∴点E坐标(﹣,0),∵直线AC的解析式为y=﹣4x+16,∴直线DF的解析式为y=﹣4x+18,∴点F坐标为(,0)∴EF的中点M坐标为(,0),∴直线AM的解析式为:y=x﹣4.(3)如图3中,连接BD,AC交于点O.在BC上取一点Q,过Q作QM⊥BD,∵AB=AD=200、BC=CD=200,∴AC是BD的垂直平分线,在Rt△ABD中,BD=AB=200,∴DO=BO=OA=100,在Rt△BCO中,OC==300,=S△ABD+S△CBD=BD×(AO+CO)=×200×(100+300)=80000,∴S四边形ABCD∵在一条过点D的直线将筝形ABCD的面积二等分,=S四边形ABCD=40000,∴S四边形ABQD=×BD×OA=20000,∵S△ABD=BD×QM=×200×QM=100QM=S四边形ABQD﹣S△ABD=20000,∴S△QBD∴QM=100,∵QM∥CO.∴=,∴=,∴BM=,∴DM=BD﹣BM=,在Rt△MQD中,DQ===.【点评】此题是一次函数综合题,主要考查了等腰三角形的性质,三角形的中线,几何作图,勾股定理,等积问题等知识,解题的关键是把多边形转化为三角形是解决问题的关键,记住三角形的中线把三角形分成面积相等的两个三角形.【变式5-1】(2022•江北区模拟)新知学习:若一条线段把一个平面图形分成面积相等的两部分,我们把这条线段叫做该平面图形的二分线.解决问题:(1)①三角形的中线、高线、角平分线中,一定是三角形的二分线的是三角形的中线;②如图1,已知△ABC中,AD是BC边上的中线,点E,F分别在AB,DC上,连接EF,与AD交于=S△DGF,则EF是(填“是”或“不是”)△ABC的一条二分线.点G.若S△AEG(2)如图2,四边形ABCD中,CD平行于AB,点G是AD的中点,射线CG交射线BA于点E,取EB 的中点F,连接CF.求证:CF是四边形ABCD的二分线.(3)如图3,在△ABC中,AB=CB=CE=7,∠A=∠C,∠CBE=∠CEB,D,E分别是线段BC,AC上的点,且∠BED=∠A,EF是四边形ABDE的一条二分线,求DF的长.【分析】(1)①由平面图形的二分线定义可求解;②由面积的和差关系可得S△BEF=S△ABD=S△ABC,可得EF是△ABC的一条二分线;=S△CEF,由AB∥DC,G是AD的中点,证明△CDG≌△EAG,所(2)根据EB的中点F,所以S△CBF=S△CEF,所以S四边形AFCD=S△CBF,可得CF是四边形ABCD的二分线;以S四边形AFCD=S△DEC=S△ABE,可得S△HED=(3)延长CB使BH=CD,连接EH,通过全等三角形的判定可得S△BEHS四边形ABDE,即可得DF=DH=.【解答】解:(1)∵三角形的中线把三角形分成面积相等的两部分;∴三角形的中线是三角形的二分线,故答案为三角形的中线②∵AD是BC边上的中线=S△ACD=S△ABC,∴S△ABD=S△DGF,∵S△AEG+S△AEG=S四边形BDGE+S△DGF,∴S四边形BDGE=S△ABD=S△ABC,∴S△BEF∴EF是△ABC的一条二分线故答案为:是(2)∵EB的中点F,=S△CEF,∴S△CBF∵AB∥DC,∴∠E=∠DCG,∵G是AD的中点,∴DG=AG,在△CDG和△EAG中,∴△CDG≌△EAG(AAS),=S△DCG,∴S△AEG=S△CEF,∴S四边形AFCD=S△CBF,∴S四边形AFCD∴CF是四边形ABCD的二分线.(3)如图,延长CB使BH=CD,连接EH,AB=CB=CE=7,∠A=∠C,∠CBE=∠CEB,D,E分别是线段BC,AC上的点,且∠BED=∠A,∵BC=7∴BD+CD=7∴BD+BH=7=HD∵∠BED=∠A,∠BED+∠DEC=∠A+∠ABE∴∠ABE=∠CED,且AB=CE=7,∠A=∠C∴△ABE≌△CED(ASA)=S△EDC,∴AE=CD,BE=DE,∠AEB=∠EDC,S△ABE∴AE=BH,∵∠CBE=∠CEB∴∠AEB=∠EBH∴∠EBH=∠EDC,且BE=DE,BH=CD∴△BEH≌△DEC(SAS)、=S△DEC,∴S△BEH=S△DEC=S△ABE,∴S△BEH=S四边形ABDE,∴S△HED∵EF是四边形ABDE的一条二分线,=S四边形ABDE=S△HED,∴S△DEF∴DF=DH=【点评】本题是三角形综合题,考查了全等三角形的判定和性质,三角形中线的性质,平行线的性质,理解新定义是本题的关键.【变式5-2】(2021•西安一模)问题提出(1)如图①,在Rt△ABC中,∠A=90°,AB=3,AC=4,在BC上找一点D,使得AD将△ABC分成面积相等的两部分,作出线段AD,并求出AD的长度;问题探究(2)如图②,点A、B在直线a上,点M、N在直线b上,且a∥b,连接AN、BM交于点O,连接AM、BN,试判断△AOM与△BON的面积关系,并说明你的理由;解决问题(3)如图③,刘老伯有一个形状为筝形OACB的养鸡场,在平面直角坐标系中,O(0,0)、A(4,0)、B(0,4)、C(6,6),是否在边AC上存在一点P,使得过B、P两点修一道笔直的墙(墙的宽度不计),将这个养鸡场分成面积相等的两部分?若存在,请求出直线BP的表达式;若不存在,请说明理由.【分析】(1)当点D是BC的中点时,AD将△ABC分成面积相等的两部分,根据直角三角形斜边中线等于斜边的一般,可求出AD的长度;(2)根据同底等高的三角形面积相等,再减去相等的部分,就可以得出△AOM与△BON的面积相等;(3)连接AB,过点O作AB的平行线,交CA的延长线于点F,交OA于点G,则△OBG的面积等于△AFG的面积,则四边形OACB的面积转化为△BCF的面积,取CF的中点P,求出点P的坐标,即可求出直线BP的表达式.【解答】解:(1)如图①,取BC边的中点D,连接AD,则线段AD即为所求.在Rt△ABC中,∠BAC=90°,AB=3,AC=4,∴BC=,∵点D为BC的中点,∴AD=BC=.=S△BON,理由如下:(2)S△AOM=S△ABM﹣S△AOB,S△BON=S△ABN﹣S△AOB,由图可知,S△AOM如图②,过点M作MD⊥AB于点D,过点N作NE⊥AB于点E,∴MD∥NE,∠MDE=90°,又∵MN∥DE,∴四边形MDEN是矩形,∴MD=NE,=,S△ABN=,∵S△ABM=S△ABN,∴S△ABM=S△BON.∴S△AOM(3)存在,直线BP的表达式为:y=x+4.如图③,连接AB,过点O作OF∥AB,交CA的延长线于点F,交OA于点G,=S△AFG,由(2)的结论可知,S△OBG=S△BCF,∴S四边形OACB取CF的中点P,作直线BP,直线BP即为所求.∵A(4,0),B(0,4),C(6,6),∴线段AB所在直线表达式为:y=﹣x+4,线段AC所在直线的表达式为:y=3x﹣12,∴直线OF的表达式为:y=﹣x,联立,解得,∴F(3,﹣3),∵点P是CF的中点,∴P(,),∴直线BP的表达式为:y=x+4.【点评】主要考查了勾股定理,中点的性质,面积转化以及待定系数法求一次函数表达式等内容,熟练掌握勾股定理的内容,中点性质的应用,作出辅助线,进行面积的转化是解答本题的关键.题型3:面积最值问题6.(2019•无锡)如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为8.得到BM=CM=2,易证△AMB∽△CGB,求得GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG,EH=DG=8﹣x,所以S△BDE===,当x=4时,△BDE面积的最大值为8.【解答】解:过点C作CG⊥BA于点G,作EH⊥AB于点H,作AM⊥BC于点M.∵AB=AC=5,BC=4,∴△AMB∽△CGB,∴,∴GB=8,设BD=x,则DG=8﹣x,∵ED=DC,∠EHD=∠DGC,∠HED=∠GDC,∴△EDH≌△DCG(AAS),∴EH=DG=8﹣x,===,∴S△BDE当x=4时,△BDE面积的最大值为8.故答案为8.【点评】本题考查了正方形,熟练运用正方形的性质与相似三角形的判定与性质以及全等三角形的判定与性质是解题的关键.;【变式6-1】(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC;(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC(3)如图③,四边形ABCD,AC=m,BD=n,对角线AC交于O点,他们所成锐角为β,求四边形ABCD .的面积S四边形ABCD【分析】(1)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(2)过A作AM⊥BC于M,解直角三角形求出AM,再根据三角形面积公式求出即可;(3)过A作AE⊥BD于E,过C作CF⊥BD于F,解直角三角形求出AE、CF,根据三角形面积公式求出即可.【解答】解:(1)如图①,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=60°,AC=4,∴AM=AC×sin60°=4×=2,∵BC=6,=×BC×AM=×6×2=6;∴△ABC的面积S△ABC(2)如图②,过A作AM⊥BC于M,则∠AMC=90°,∵∠C=α,AC=b,∴AM=AC×sinα=b×sinα=b sinα,∵BC=a,=×BC×AM=×a×b sinα=ab sinα;∴△ABC的面积S△ABC(3)如图3,过A作AE⊥BD于E,过C作CF⊥BD于F,BD=n,OA+OC=m,∵AC、BD夹角为β,∴AE=OA•sinβ,CF=OC•sinβ,=S△ABD+S△BDC∴S四边形ABCD=BD•AE+BD•CF=BD•(AE+CF)=BD•(OA•sinβ+OC•sinβ)=BD•AC•sinβ=mn sinβ.=mn sinβ.即四边形ABCD的面积S四边形ABCD【点评】本题考查了解直角三角形,三角形的面积的应用,此题比较难,解题时关键要找对思路,即原四边形的高已经发生了变化,只要把高求出来,一切将迎刃而解.【变式6-2】如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB﹣BC向终点C运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E运动的速度为每秒1个单位,运动的时间为x秒.(1)如图1,当点E在AB上时,求证:点G在直线BC上;(2)设正方形ABCD与正方形DEFG重叠部分的面积为S,求S与x之间的函数关系式;(3)直接写出整个运动过程中,点F经过的路径长.【分析】(1)由正方形的性质得出AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,证出∠ADE=∠CDG,由SAS证明△ADE≌△CDG,得出∠DCG=∠DAE=90°,证出∠DCG+∠DCB=180°,即可得出结论;(2)分情况讨论:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,则AC∥EK∥AD,证明△ADE∽△BEH,由相似三角形的性质得出=,求出BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积,即可得出结果;②当点E在BC边上时,S=△DEC的面积=4﹣x;(3)由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;由勾股定理求出BD,即可得出结果.【解答】(1)证明:∵四边形ABCD与四边形DEFG都是正方形,∴AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠DCG=∠DAE=90°,∵∠DCB=90°,∴∠DCG+∠DCB=180°,∴点G在直线BC上;(2)解:①当点E在AB边上时,过点E作EK∥AD,交CD于点K,如图1所示:则AC∥EK∥AD,∴∠HEK=∠EHB,∠DEK=∠EDA,∵∠EHB+∠BEH=90°,∠EDA+∠AED=90°,∠HEK+∠DEK=90°,∴∠EDA=∠BEH,∠AED=∠EHB,∴△ADE∽△BEH,∴=,即=,∴BH=,S=正方形ABCD的面积﹣△ADE的面积﹣△BEH的面积=2×2﹣×2×x﹣×(2﹣x)×=;②当点E在BC边上时,S=△DEC的面积=×2×(4﹣x)=4﹣x;(3)解:由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图2所示:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∵BD===2,∴BF+FG=2BD=4,∴点F运动的路径长为4.【点评】本题是四边形综合题目,考查了正方形的性质、平行线的判定与性质、三角形面积的计算、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解决问题的关键.1.如图,在边长为6的菱形ABCD中,∠BCD=60°,连接BD,点E、F分别是边AB、BC上的动点,且AE=BF,连接DE、DP、EF.(1)如图①,当点E是边AB的中点时,求∠EDF的度数;(2)如图②,当点E是边AB上任意一点时,∠EDF的度数是否发生改变?若不改变,请证明;若发生改变,请说明理由;(3)若点P是线段BD上一动点,求PF+DP的最小值.【分析】(1)由菱形的性质可得AB=BC=CD=AD=6,∠BCD=∠BAD=60°,可证△ABD,△BCD 是等边三角形,由等边三角形的性质可证DE=DF,∠EDF=60°,可得结论;(2)证明△ADE≌△BDF(SAS),根据全等三角形的性质得∠ADE=∠BDF,由角的和差即可得∠EDF =∠ADB=60°;(3)过点P作PG⊥AD于点G,连接PF,过点F作FG′⊥AD于点G′,交BD于点P′,可得GP=DP•sin60°=DP,则PF+DP=PF+GP,当点F、P、G三点共銭,且FG⊥AD时,PF+GP有最小值,最小值为FG′的长,过点D作DH⊥BC于点H,则DH=FG',PF+DP的最小值即为DH的长,由△BDC是等边三角形可得DH=CD•sin60°=3,即可求得PF+DP的最小值.【解答】解:(1)∵四边形ABCD是菱形,边长为6,∴AB=BC=CD=AD=6,∠BCD=∠BAD=60°,∴△ABD,△BCD是等边三角形,∵点E是边AB的中点,AE=BF,∴点F是边BC的中点,∴∠ADE=∠BDE=∠BDF=∠CDF=30°,∴∠EDF=∠BDE+∠BDF=60°;(2)∠EDF的度数不改变,证明:△ABD,△BCD是等边三角形,∴AD=BD,∠DAB=∠DBC=60°,∵AE=BF,∴△ADE≌△BDF(SAS),∴∠ADE=∠BDF,∴∠EDF=∠ADB=60°;(3)如图,过点P作PG⊥AD于点G,连接PF,过点F作FG′⊥AD于点G′,交BD于点P′,∵∠ADB=60°,∴GP=DP•sin60°=DP,∴PF+DP=PF+GP,∴当点F、P、G三点共銭,且FG⊥AD时,PF+GP有最小值,最小值为FG′的长,过点D作DH⊥BC于点H,∵四边形ABCD是菱形,∴DH=FG',∴PF+DP的最小值即为DH的长,∵DH⊥BC,△BDC是等边三角形,∴DH=CD•sin60°=3,∴PF+DP的最小值为3.【点评】本题考查了四边形的综合应用,掌握菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,最短路径等知识,添加恰当辅助线构造构造在直角三角形是解本题的关键.2.(2022•连云港)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形,点P、M、N分别在线段BE、BC、CE上运动,求PM+PN的最小值.【分析】(1)先证明四边形DBCE是平行四边形,再由BE⊥DC,得四边形DBCE是菱形;(2)作N关于BE的对称点N',过D作DH⊥BC于H,由菱形的对称性知,点N关于BE的对称点N'在DE上,可得PM+PN=PM+PN',即知MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,可得DH=DB•sin∠DBC=,即可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DE=AD,∴DE=BC,∵E在AD的延长线上,∴DE∥BC,∴四边形DBCE是平行四边形,∵BE⊥DC,∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,∴PM+PN=PM+PN',∴当P、M、N'共线时,PM+PN'=MN'=PM+PN,∵DE∥BC,∴MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,∴DH=DB•sin∠DBC=2×=,∴PM+PN的最小值为.【点评】本题考查平行四边形性质及应用,涉及菱形的判定,等边三角形性质及应用,对称变换等,解题的关键是掌握解决“将军饮马”模型的方法.3.(2014•海南)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式;(2)首先求出四边形MEFP面积的表达式,然后利用二次函数的性质求出最值及点P坐标;(3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x 轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.【解答】方法一:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.方法二:(1)略.(2)连接MF,过点P作x轴垂线,交MF于点H,有最大值时,四边形MEFP面积最大.显然当S△PMF当a=1时,E(1,0),F(2,0),∵M(0,1),∴l MF:y=﹣x+1,设P(t,﹣t2+4t+5),H(t,﹣t+1),=(P Y﹣H Y)(F X﹣M X),∴S△PMF=(﹣t2+4t+5+t﹣1)(2﹣0)=﹣t2+t+4,∴S△PMF最大值为,∴当t=时,S△PMF=EF×MY=×1×1=,∵S△MEF的最大值为+=,∴S四边形MEFP∴P(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,∴﹣x2+4x+5=0,解得:x=2±,∵点P在第一象限,∴P(2+,3),PM、EF长度固定,当ME+PF最小时,PMEF的周长取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),∵四边形MEFM1为平行四边形,∴ME=M1F,作点M1关于x轴的对称点M2,则M2(1,﹣1),∴M2F=M1F=ME,当且仅当P,F,M2三点共线时,此时ME+PF=PM2最小,∵P(2+,3),M2(1,﹣1),F(a+1,0),∴K PF=K M1F,∴,∴a=.【点评】本题是二次函数综合题,第(1)问考查了待定系数法;第(2)问考查了图形面积计算以及二次函数的最值;第(3)问主要考查了轴对称﹣最短路线的性质.试题计算量偏大,注意认真计算.4.(2021•靖江市校级一模)如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,若AE=2,则求EF的长.(请从“线段的长度或线段的位置关系”的方向设计条件及问题,并解答)【分析】过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB=6,∠B=60°,可得BG=3,AG=3=EH,由题意可得,FH=FC﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.【解答】若AE=2.则求EF的长.解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3=EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,EF经过菱形对角线交点,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得:EF===2.【点评】本题考查了菱形的性质,勾股定理,矩形的性质,解决本题的关键是掌握菱形的性质.5.(2012•新密市自主招生)如图,菱形ABCD的边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,且AE+CF=4,则△DEF面积的最大值为.【分析】首先过点F作FG⊥AD,交AD的延长线于点G,由菱形ABCD的边长为4,∠BAD=60°,即=DE•FG)=﹣(x﹣2)2+,可求得AD=CD=4,∠FDG=60°,然后设AE=x,即可得S△DEF然后根据二次函数的性质,即可求得答案.【解答】解:过点F作FG⊥AD,交AD的延长线于点G,∵菱形ABCD边长为4,∠BAD=60°,∴AD=CD=4,∠ADC=180°﹣∠BAD=120°,∴∠FDG=180°﹣∠ADB=60°,设AE=x,∵AE+CF=4,∴CF=4﹣x;∴DE=AD﹣AE=4﹣x,DF=CD﹣CF=4﹣(4﹣x)=x,在Rt△DFG中,FG=DF•sin∠GDF=x,=DE•FG=×(4﹣x)×x=﹣x2+x=﹣(x2﹣4x)=﹣(x﹣2)2+,∴S△DEF∴当x=2时,△DEF面积的最大,最大值为.故答案为:.【点评】此题考查了菱形的性质、三角函数的性质以及二次函数的最值问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与函数思想的应用.6.(2022•杭州模拟)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为等腰直角三角形,连接BD,BB′与CE的数量关系是BB'=CE.(2)当0°<α<360°且a≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点E,C,D,B′为顶点的四边形是平行四边形时,请直接写出BE与B′E的数量关系.。

第48课 几何型综合问题

第48课 几何型综合问题

【例 1】 (2013·常德 )已知两个共一个顶点的等腰Rt△ABC、 Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连 接MB、ME. (1)如图1,当CB与CE在同一直线上时,求证:MB∥CF; (2)如图1,若CB=a,CE=2a,求BM、ME的长; (3)如图2,当∠BCE=45°时,求证:BM=ME.
答图2a
第 48 课 几何型综合问题
解法二:
如答图 1b 所示,延长 BM 交EF 于D ,
∵CB =a,CE =2a,
∴BE =CE -CB =2a-a=a,
∵△ ABM ≌△ FDM ,
∴BM =DM , 又∵△ BED 是等腰直角三角形,
答图1b
∴△ BEM 是等腰直角三角形,
第 48 课 几何型综合问题
的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结
论错误的是
( )
A.∠C=2∠A
B.BD平分∠ABC
C.S△BCD=S△BOD D.点D为线段AC的黄金分割点
B .∵OD 是AB 的垂直平分线, ∴AD =BD , ∴∠A =∠ABD =36°, ∴∠DBC =72°-36°=36°=∠ABD , ∴BD 是∠ABC 的角平分线,正确,故本选项错误;
第 48 课 几何型综合问题
助学微博
四个注意 解几何型综合题,还应注意以下几点: (1)注意数形结合,多角度、全方位观察图形,挖掘隐
含条件,寻找数量关系和相等关系; (2)注意推理和计算相结合,力求解题过程的规范化; (3)注意掌握常规的证题思路,常规的辅助线添法; (4)注意灵活地运用数学的思想方法.
第 48 课 几何型综合问题
基础自测
2.(2013·乌鲁木齐 )如图,半圆O与等腰直角三角形两腰CA、 CB分别切于D、E两点,直径FG在AB上,

几何综合题


角形、 四边形、 圆为背景, 全等、 似为 以 相 载体, 探究相关图形的形状、 位置和大小.

几何综合题
B 的 长 . 后 根 据 相 似 、 股 定 理 和 F 然 勾
(0 O 2 1四川 成 者 ) 图 1 如
昕 示 , BC 接 于 网 0, △A 内 AB为 直 径 ,
G 9 o 以 = 0_所
连结AD, 别交C BC 点尸, . 分 E, 于 Q () 证 : i求 点陧 △ C 的外 心. Q ( ) a LAB =4 , F 8求 C 2  ̄tn C  ̄ C =, Q
的长.
≤《
() 为 点 c是 弧 AD的 1因
LDA B G,袄 以 Rt = AAF  ̄Rt GF . P- A B
( ) @tn 2 a LAB =3 c 8 知 C 可

: ,得 Ac :

局 部 入 手 . 整 体 思 维 . 在 掌 握通 再 即
音 c0易 R ABR A B=. 知t tQ , 1 △c AC
性 通法 的 同时 , 应 只形 成 一个 一个 不
枷{ , 47 T 谨 辅峙
( ) 为 AB O O的 直 径 , 以 3因 是 所
ADB= 0 .所 以 L DAB 4日D= 0 9 o 十 9 。
弦C ELAB于 点F, 是 弧AD的 中 点 , C
连 结B D并 延 长交 E 的 延 长 线 于 点 G, C
又C J F_ AB. 以 厶 4 ( 所 B
的难 度 , 强 探 索 性训 练 , 成 为 几 加 将 何综 合题命 题 的新 趋势.
值 得一提 的是 , 在近 两年 的各地
压轴 题 型

立体几何大题题型总结

立体几何大题题型总结
立体几何大题包括以下几种题型:
1. 体积计算题:给定一个几何体的形状和尺寸,求其体积。

2. 表面积计算题:给定一个几何体的形状和尺寸,求其表面积。

3. 三视图综合题:给定一个几何体的三视图,通过推理和计算求出其体积和表面积。

4. 截面综合题:给定一个几何体的各个截面的形状和尺寸,通过推理和计算求出其体积和表面积。

5. 相似几何体综合题:给定多个几何体的形状和尺寸,在它们之间应用相似性质,求出它们各自的体积和表面积。

6. 空间几何关系题:给定多个几何体之间的位置关系,例如相切、相交、包含等,求出它们各自的体积和表面积。

7. 作图求解题:通过构造一些几何形状,例如放射形、圆锥、圆台等,求出特定几何体的体积和表面积。

8. 混合几何体综合题:将以上多种题型进行综合,考查学生的综合运用能力。

初中数学几何图形综合题

初中数学几何图形综合题必胜中学2018—01-30 15:15:15题型专项几何图形综合题【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质。

一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等。

【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题。

这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活。

解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决。

【提醒】几何论证型综合题以知识上的综合性引人注目。

值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势。

为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题。

类型1操作探究题1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA.①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.解:(1)证明:由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°.∴∠BAC=∠BAD=45°.∵∠ACB=90°,∴∠ABC=45°.∴AC=BC。

【中考冲刺】2020中考数学题型专项(十二)几何综合题

题型专项(十二)几何综合题几何综合题是近年来中考的热点题型,2019年云南中考(全省统考)第23题,2018年云南中考第23题,2018年昆明中考第23题,2017年云南中考(全省统考)第23题,都是几何综合题作为压轴题.几何综合题通常把三角形、四边形、圆、方程和函数等知识综合起来,辅以平移、旋转、轴对称等变换,或实践操作探究,或类比探究,对有关数学问题进行证明和计算,考查同学们应用所学数学知识解决综合问题的能力.题目往往综合性较强,计算量较大,很容易造成同学们丢分,复习时应予以重视.类型1 与“三点定圆”有关的几何综合题【例1】 (2019·云南T23·12分)如图,AB 是⊙C 的直径,M ,D 两点在AB 的延长线上,E 是⊙C 上的点,且DE 2=DB ·DA.延长AE 至F ,使AE =EF ,设BF =10,cos ∠BED =45.(1)求证:△DEB ∽△DAE ;【思路点拨】 由∠D =∠D ,DE 2=DB ·DA ,根据“两边对应成比例且夹角相等,两三角形相似”,证得△DEB ∽△DAE.证明:∵DE 2=DB ·DA , ∴DE DA =DBDE.1分 又∵∠BDE =∠EDA , ∴△DEB ∽△DAE.3分 (2)求DA ,DE 的长;【思路点拨】 先利用圆周角定理的推论、线段垂直平分线的性质、三角函数的概念等,求出AB ,AE ,BE 的长,然后根据△DEB ∽△DAE 得出对应边成比例而列出关于DA ,DE 的方程组求解.解:∵AB 是⊙O 的直径,E 是⊙C 上的点, ∴∠AEB =90°,即BE ⊥AF.又∵AE =BF ,BF =10,∴AB =BF =10. ∵△DEB ∽△DAE ,cos ∠BED =45,∴∠EAD =∠BED ,cos ∠EAD =cos ∠BED =45.在Rt △ABE 中,由AB =10,cos ∠EAD =45,得AE =AB ·cos ∠EAD =8, ∴BE =AB 2-AE 2=6.5分 ∵△DEB ∽△DAE , ∴DE DA =DB DE =EB AE =68=34. ∵DB =DA -AB =DA -10,∴⎩⎪⎨⎪⎧DE DA =34,DA -10DE =34,解得⎩⎪⎨⎪⎧DA =1607,DE =1207.经检验,⎩⎪⎨⎪⎧DA =1607,DE =1207是⎩⎪⎨⎪⎧DE DA =34,DA -10DE =34的解.∴⎩⎪⎨⎪⎧DA =1607,DE =1207.8分【一题多解】 解法2:∵AB 是⊙C 的直径,E 是⊙C 上的点, ∴∠AEB =90°,即BE ⊥AF. 又∵AE =EF ,BF =10, ∴AB =BF =10.∵△DEB ∽△DAE ,cos ∠BED =45,∴∠EAD =∠BED.∴cos ∠EAD =cos ∠BED =45.在Rt △ABE 中,由AB =10,cos ∠EAD =45,得AE =AB ·cos ∠EAD =8,BE =AB 2-AE 2=6.连接CE ,设ED 与BF 交于点G.∵∠DBF =∠A +∠AFB =2∠A ,∠DCE =2∠A , ∴∠DBF =∠DCE.∴BF ∥CE.∵∠CED =∠CEB +∠BED =∠CEB +∠A =∠CEB +∠AEC =90°,∴∠BGE =∠CED =90°. 在Rt △BEG 中,sin ∠BED =sin ∠EAD =BG BE =BE AB =610=35,∴BG =185.∵BF ∥CE ,∴△DBG ∽△DCE.∴BG CE =DB DC ,即1855=DB DB +5.解得DB =907. 经检验,DB =907是1855=DBDB +5的解.∴DA =907+10=1607.∴DE 2=907×1607.∴DE =1207.(3)若点F 在B ,E ,M 三点确定的圆上,求MD 的长.【思路点拨】 由于点F 在B ,E ,M 三点确定的圆上,所以F ,B ,E ,M 四点共圆,而∠BEF =90°,所以可知B ,E ,F 三点在以BF 为直径的圆上,所以M 也在以BF 为直径的圆上.要求MD 的长,由于MD =AD -AM ,需先求AM ,这可通过解Rt △AMF 得出.解:连接FM.∵BE ⊥AF ,即∠BEF =90°,∴BF 是B ,E ,F 三点确定的圆的直径.∵点F 在B ,E ,M 三点确定的圆上,即四点F ,E ,B ,M 在同一个圆上. ∴点M 在以BF 为直径的圆上. ∴FM ⊥AB.10分在Rt △AMF 中,由cos ∠FAM =AMAF,得AM =AF ·cos ∠FAM =2AE ·cos ∠EAB =2×8×45=645.11分∴MD =DA -AM =1607-645=35235.∴MD =35235.12分(1)求线段长度的方法有:①将线段放到直角三角形中利用勾股定理和三角函数概念求解;②将线段放到相似三角形中求解;③通过设未知量构造方程(组)求解.(2)“三点定圆”问题:①不在同一直线上的三点确定一个圆,圆心为顺次连接三点所形成的三角形三边垂直平分线的交点.锐角三角形外接圆的圆心在三角形内部,直角三角形外接圆的圆心在斜边中点处,钝角三角形外接圆的圆心在三角形外部;②解决“三点定圆”问题,通常先根据已知三点确定圆的圆心和直径(或半径),再由第四点也在该圆上用圆周角定理及其推论,以及其他知识解决问题.1.(2018·云南)如图,在▱ABCD 中,点E 是CD 的中点,点F 是BC 边上的点,AF =AD +FC ,▱ABCD 的面积为S ,由A ,E ,F 三点确定的圆的周长为l.(1)若△ABE 的面积为30,直接写出S 的值; (2)求证:AE 平分∠DAF ;(3)若AE =BE ,AB =4,AD =5,求l 的值.解:(1)S =60.(2)证明:延长AE 与BC 的延长线交于点H. ∵四边形ABCD 是平行四边形,∴AD ∥BC.∴∠ADE =∠HCE ,∠DAE =∠CHE. ∵点E 为CD 的中点,∴CE =ED. ∴△ADE ≌△HCE (AAS ).∴AD =HC ,AE =HE.∴AD +FC =HC +FC ,即AF =FH. ∴∠FAE =∠CHE. 又∵∠DAE =∠CHE ,∴∠DAE =∠FAE.∴AE 平分∠DAF. (3)连接EF. ∵AE =BE ,AE =HE , ∴AE =BE =HE.∴∠BAE =∠ABE ,∠HBE =∠BHE. ∵∠DAE =∠CHE ,∴∠BAE +∠DAE =∠ABE +∠HBE ,即∠DAB =∠CBA. ∵∠DAB +∠CBA =180°.∴∠CBA =90°.∴AB 2+BF 2=AF 2,即16+(5-FC )2=(FC +AD )2=(FC +5)2,解得FC =45.∴AF =FC +AD =45+5=295.∵AE =HE ,AF =FH ,∴FE ⊥AH. ∴AF 是△AEF 的外接圆的直径. ∴△AEF 的外接圆的周长l =29π5. 2.如图,在矩形ABCD 中,AB =4,BC =8,E ,F 分别为AD ,BC 边上的点,将矩形ABCD 沿EF 折叠,使点A 落在BC 边的点G 处,点B 落在点H 处,AG 与EF 交于点O.(1)如图1,求证:以A ,F ,G ,E 为顶点的四边形是菱形;(2)如图2,当△ABG 的外接圆与CD 相切于点P 时,求证:点P 是CD 的中点; (3)如图2,在(2)的条件下,求AGEF的值.解:(1)证明:连接AF.由折叠性质可知,OA =OG ,EA =EG ,FA =FG ,∠AOE =∠GOF =90°. ∵四边形ABCD 是矩形, ∴AD ∥BC.∴∠AEO =∠GFO. 在△AEO 和△GFO 中, ⎩⎪⎨⎪⎧∠AEO =GFO ,∠AOE =∠GOF =90°,OA =OG ,∴△AEO ≌△GFO (AAS ).∴EA =FG. ∴EA =EG =FA =FG.∴四边形AFGE 是菱形. (2)证明:连接OP.∵四边形ABCD 是矩形, ∴∠B =∠D =∠C =90°.∵OA =OG ,∴点O 是Rt △ABG 的外接圆圆心. ∵⊙O 与CD 相切于点P ,∴OP ⊥CD. ∴ED ∥OP ∥FC.∴OE OF =PD PC .∵△AEO ≌△GFO ,∴OE =OF. ∴PD =PC ,即点P 是CD 的中点.(3)延长PO 交AB 于点Q ,则AQ =QB =12AB =2,∠AQO =90°.设⊙O 的半径为x ,则OG =OA =OP =x ,OQ =8-x. 在Rt △AQO 中,AQ 2+OQ 2=OA 2, ∴22+(8-x )2=x 2.解得x =174.∴OA =OG =OP =174,AG =172,OQ =154.∵OP ∥FC ,∴∠AOQ =∠FGO.又∵∠AQO =∠FOG =90°,∴△AQO ∽△FOG.∴AQ OF =OQ OG .∴2OF =154174,解得OF =3415. ∴EF =6815.∴AG EF =158.3.【发现】如图1,∠ACB =∠ADB =90°,那么点D 在经过A ,B ,C 三点的圆上.【思考】如图2,如果∠ACB =∠ADB =α(α≠90°)(点C ,D 在AB 的同侧),那么点D 还在经过A ,B ,C 三点的⊙O 上吗?我们知道,如果点D 不在经过A ,B ,C 三点的圆上,那么点D 要么在⊙O 外,要么在⊙O 内,以下该同学的想法说明了点D 不在⊙O 外.请结合图4证明点D 也不在⊙O 内.【结论】综上可得结论,如果∠ACB =∠ADB =α(点C ,D 在AB 的同侧),那么点D 在经过A ,B ,C 三点的圆上,即A ,B ,C ,D 四点共圆.【应用】利用上述结论解决问题:如图5,已知△ABC 中,∠C =90°,将△ACB 绕点A 顺时针旋转α(α为锐角)得△ADE ,连接BE ,CD ,延长CD 交BE 于点F.(1)用含α的代数式表示∠ACD 的度数; (2)求证:点B ,C ,A ,F 四点共圆; (3)求证:点F 为BE 的中点.解:【思考】证明:如图,假设点D 在⊙O 内,延长AD 交⊙O 于点E ,连接BE ,则∠AEB =∠ACB ,∵∠ADB 是△BDE 的外角,∴∠ADB >∠AEB. ∴∠ADB >∠ACB ,这与条件∠ACB =∠ADB 矛盾.∴点D 也不在⊙O 内.∴点D 即不在⊙O 内,也不在⊙O 外,点D 在⊙O 上. 【应用】(1)由题意可知,AC =AD ,∠CAD =α, ∴∠ACD =90°-12α.(2)证明:∵AB =AE ,∠BAE =α, ∴∠ABE =90°-12α.∴∠ACD =∠ABE.∴B ,C ,A ,F 四点共圆.(3)证明:∵B ,C ,A ,F 四点共圆, ∴∠BFA +∠BCA =180°.又∵∠ACB =90°,∴∠BFA =90°.∴AF ⊥BE. ∵AB =AE ,∴BF =EF ,即点F 为BE 的中点.类型2 与图形变换有关的几何综合题【例2】 (2019·昆明模拟)在矩形ABCD 中,AB =8,P 是AB 边上一点,把△PBC 沿直线PC 折叠,顶点B 的对应点是点G ,CG 交AD 于点E ,且BE ∥PG ,BE 交PC 于点F.(1)如图1,若点E 是AD 的中点,求证:△AEB ≌△DEC ;【思路点拨】 由AB =DC ,∠A =∠D =90°,AE =DE ,即可证明△AEB ≌△DEC. 【自主解答】 证明:∵四边形ABCD 为矩形, ∴AB =DC ,∠A =∠D. 又∵E 为AD 的中点, ∴AE =DE.∴△AEB ≌△DEC (SAS ).(2)如图2,请判断△PBF 的形状,并说明理由;【思路点拨】 结论:△PBF 为等腰三角形,证明∠BPF =∠BFP. 【自主解答】 解:△PBF 为等腰三角形.理由如下: 在矩形ABCD 中,∠ABC =90°, ∵△BPC 沿PC 折叠得到△GPC , ∴∠BPF =∠GPF .∵BE ∥PG , ∴∠GPF =∠BFP. ∴∠BPF =∠BFP. ∴BP =BF.∴△PBF 为等腰三角形.(3)如图2,①当AD =20时,求BP 的长;②当BP =5时,求BE ·EF 的值.【思路点拨】 ①根据△ABE ∽△DEC 得出比例式,列方程求出AE ,DE 的长,继而求出CE ,BE 的长,再由△ECF ∽△GCP 得出比例式,列方程求出BP 的长.②连接FG ,证出△GEF ∽△EAB ,得出比例式EF GF =ABBE ,从而把求BE ·EF转化为求AB ·GF.【自主解答】 解:①∵BE ∥PG ,∴∠BEC =∠PGC =90°. ∴∠AEB +∠CED =90°.∵∠AEB +∠ABE =90°,∴∠CED =∠ABE. 又∵∠A =∠D =90°,∴△ABE ∽△DEC. ∴AB AE =DE DC. 设AE =x ,则DE =20-x.∴8x =20-x8.解得x 1=4,x 2=16.经检验,x 1=4和x 2=16是原方程的解. ∵P 在AB 上,当P 与A 重合时AE 最大为11.6. 当G 在AD 上时,G 与E 重合,AE 最小为20-421, ∴AE =4,DE =16. ∴CE =85,BE =4 5. 由折叠的性质得,BP =PG , ∴BP =BF =PG.∵BE ∥PG ,∴△ECF ∽△GCP. ∴EF PG =ECGC. 设BP =BF =PG =y ,∴45-y y =8520.∴y =205-40.∴BP =205-40. ②连接FG ,∵BF ∥PG ,BF =PG ,∴四边形BFGP 为平行四边形. ∴BP =GF ,BP ∥GF. ∴∠GFE =∠ABE.又∵∠GEF =∠BAE =90, ∴△GEF ∽△EAB.∴EF GF =ABBE.∴BE ·EF =AB ·GF =AB ·BP =8×5=40.与图形变换有关的几何综合题,常涉及特殊三角形和特殊四边形的判定,线段之间的数量关系和位置关系探究,图形之间的关系探究等,解决这类问题,首先应熟练掌握图形的平移、旋转及轴对称的性质,明确图形变换前后哪些是不变的量,哪些是变化的量,然后用全等、相似、解直角三角形、方程和函数等数学模型求解.1.(2018·昆明T23·12分)如图1,在矩形ABCD 中,P 为CD 边上一点(DP<CP ),∠APB =90°.将△ADP 沿AP 翻折得到△AD ′P ,PD ′的延长线交边AB 于点M ,过点B 作BN ∥MP 交DC 于点N.(1)求证:AD 2=DP ·PC ;(2)请判断四边形PMBN 的形状,并说明理由;(3)如图2,连接AC ,分别交PM ,PB 于点E ,F.若DP AD =12,求EFAE的值.解:(1)证明:在矩形ABCD 中, ∵AD =BC ,∠C =∠D =90°, ∴∠DAP +∠APD =90°. ∵∠APB =90°, ∴∠CPB +∠APD =90°. ∴∠DAP =∠CPB.∴△ADP ∽△PCB.∴AD PC =DPCB .∴AD ·CB =DP ·PC. ∵AD =BC ,∴AD 2=DP ·PC.(2)四边形PMBN 为菱形,理由如下: 在矩形ABCD 中,CD ∥AB. ∵BN ∥PM ,∴四边形PMBN 为平行四边形. ∵△ADP 沿AP 翻折得到△AD ′P.∴∠APD =∠APM.∵CD ∥AB ,∴∠APD =∠PAM. ∴∠APM =∠PAM.∵∠APB =90°,∴∠PAM +∠PBA =90°, ∠APM +∠BPM =90°. ∴∠PBA =∠BPM. ∴PM =MB.∴四边形PMBN 为菱形. (3)解法一: ∵∠APM =∠PAM.∴PM =AM.∵PM =MB ,∴AM =MB. ∵四边形ABCD 为矩形, ∴CD ∥AB 且CD =AB. 设DP =a ,则AD =2DP =2a , 由AD 2=DP ·PC ,得PC =4a , ∴DC =AB =5a.∴MA =MB =5a2.∵CD ∥AB ,∴∠ABF =∠CPF ,∠BAF =∠PCF. ∴△BFA ∽△PFC. ∴AF CF =AB CP =5a 4a =54.∴AF AC =59. 同理△MEA ∽△PEC. ∴AE CE =AM CP =5a24a =58. ∴AE AC =513. ∴EF AC =AF AC -AE AC =59-513=20117. ∵EF AC ∶AE AC =EF AE , ∴EF AE =20117∶513=49. 解法二:图3如图3,过点F 作FG ∥PM 交MB 于点G.∵∠APM =∠PAM.∴PM =AM.∵PM =MB ,∴AM =MB.∵四边形ABCD 为矩形,∴CD ∥AB 且CD =AB.设DP =a ,则AD =2DP =2a ,由AD 2=DP ·PC ,得PC =4a ,∴DC =AB =5a.∴MA =MB =5a 2. ∵CD ∥AB ,∴∠CPF =∠ABF ,∠PCF =∠BAF.∴△PFC ∽△BFA.∴PF BF =CP AB =4a 5a =45. ∵FG ∥PM ,∴MG BG =PF BF =45. ∴MG MB =49. ∵AM =MB ,∴MG AM =49. ∵FG ∥PM ,∴EF AE =MG AM =49.2.(2019·曲靖麒麟区模拟)已知,正方形ABCD 中,∠MAN =45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB ,DC (或它们的延长线)于点M ,N ,AH ⊥MN 于点H.(1)如图1,当∠MAN 绕点A 旋转到BM =DN 时,请你直接写出AH 与AB 的数量关系:AH =AB ;(2)如图2,当∠MAN 绕点A 旋转到BM ≠DN 时,(1)中发现的AH 与AB 的数量关系还成立吗?如果不成立,请写出理由,如果成立,请证明;(3)如图3,已知∠MAN =45°,AH ⊥MN 于点H ,且MH =2,NH =3,求AH 的长.(可利用(2)得到的结论)解:(2)数量关系成立.理由如下:延长CB 至E ,使BE =DN.∵四边形ABCD 是正方形,∴AB =AD ,∠D =∠ABE =90°.在Rt △AEB 和Rt △AND 中,⎩⎪⎨⎪⎧AB =AD ,∠ABE =∠ADN ,BE =DN ,∴Rt △AEB ≌Rt △AND (SAS ).∴AE =AN ,∠EAB =∠NAD.∵∠DAN +∠BAM =45°,∴∠EAB +∠BAM =∠EAM =45°.∴∠EAM =∠NAM.在△AEM 和△ANM 中,⎩⎪⎨⎪⎧AE =AN ,∠EAM =∠NAM ,AM =AM ,∴△AEM ≌△ANM (SAS ).∴S △AEM =S △ANM ,EM =MN.∵AB ,AH 是△AEM 和△ANM 对应边上的高,∴AB =AH.(3)分别沿AM ,AN 翻折△AMH 和△ANH ,得到△ABM 和△AND ,∴BM =2,DN =3,AB =AH =AD ,∠B =∠D =90°.∵∠BAM =∠MAH ,∠HAN =∠DAN ,∴∠BAD =2∠MAH +2∠HAN =2∠MAN =90°.分别延长BM 和DN 相交于点C ,可得正方形ABCD ,∴AH =AB =BC =CD =AD.设AH =x ,则MC =x -2,NC =x -3,在Rt △MCN 中,由勾股定理,得MN 2=MC 2+NC 2,∴52=(x -2)2+(x -3)2.解得x 1=6,x 2=-1(不符合题意,舍去).∴AH =6.3.(2019·天津)在平面直角坐标系中,O 为原点,点A (6,0),点B 在y 轴的正半轴上,∠ABO =30°.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,OD =2.(1)如图1,求点E 的坐标;(2)将矩形CODE 沿x 轴向右平移,得到矩形C ′O ′D ′E ′,点C ,O ,D ,E 的对应点分别为C ′,O ′,D ′,E ′.设OO ′=t ,矩形C ′O ′D ′E ′与△ABO 重叠部分的面积为S.①如图2,当矩形C ′O ′D ′E ′与△ABO 重叠部分为五边形时,C ′E ′,E ′D ′分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围; ②当3≤S ≤53时,求t 的取值范围(直接写出结果即可).解:(1)∵点A (6,0),∴OA =6.∵OD =2,∴AD =OA -OD =6-2=4.∵四边形CODE 是矩形,∴CE ∥OD ,CE =OD =2,DE ∥OC.∴∠AED =∠ABO =30°.在Rt △AED 中,AE =2AD =8,ED =AE 2-AD 2=82-42=4 3.∴点E 的坐标为(2,43).(2)①由平移的性质得O ′D ′=2,E ′D ′=43,ME ′=OO ′=t ,D ′E ′∥O ′C ′∥OB ,∴∠E ′FM =∠ABO =30°.∴在Rt △MFE ′中,MF =2ME ′=2t ,FE ′=MF 2-ME ′2=(2t )2-t 2=3t.∴S △MFE ′=12ME ′·FE ′=12×t ×3t =3t 22. ∵S 矩形C ′O ′D ′E ′=O ′D ′·E ′D ′=2×43=83,∴S =S 矩形C ′O ′D ′E ′-S △MFE ′=83-3t 22. ∴S =-32t 2+83,其中t 的取值范围是0<t <2. ②当2≤t<4时,如图3所示,O ′A =6-t ,D ′A =6-t -2=4-t.∴O ′G =3(6-t ),D ′F =3(4-t ).∴S =12[3(6-t )+3(4-t )]×2=-23t +10 3. ∵-23<0,∴S 随t 增大而减小,∴23<S ≤6 3.∴令S =53,即-23t +103=5 3.解得t =52. ∴当52≤t<4时,23<S ≤53;当4≤t<6时,如图4所示,O ′A =OA -OO ′=6-t.∵∠AO ′F =90°,∠AFO ′=∠ABO =30°,∴O ′F =3O ′A =3(6-t ).∴S =12(6-t )×3(6-t )=32(t -6)2(4≤t<6). 又∵当4≤t<6时,S 随t 增大而减小,∴0<S ≤2 3. ∴令S =3,即32(t -6)2= 3. 解得t 1=6-2,t 2=6+2(舍去).∴t =6- 2.∴当4≤t ≤6-2时,3≤S ≤2 3.综上所述,当3≤S ≤53时,t 的取值范围为52≤t ≤6- 2.拓展类型 其他问题1.(2019·眉山)如图,正方形ABCD 中,AE 平分∠CAB ,交BC 于点E ,过点C 作CF ⊥AE ,交AE 的延长线于点G ,交AB 的延长线于点F.(1)求证:BE =BF ;(2)如图2,连接BG ,BD ,求证:BG 平分∠DBF ;(3)如图3,连接DG 交AC 于点M ,求AE DM的值.解:(1)证明:在正方形ABCD 中,∠ABC =90°,AB =BC ,∴∠EAB +∠AEB =90°.∵AG ⊥CF ,∴∠BCF +∠CEG =90°.又∵∠AEB =∠CEG ,∴∠EAB =∠BCF.在△ABE 和△CBF 中,⎩⎪⎨⎪⎧∠EAB =∠BCF ,AB =CB ,∠ABE =∠CBF ,∴△ABE ≌△CBF (ASA ).∴BE =BF.(2)∵AE 平分∠CAB ,CF ⊥AE 于G ,∴∠CAG =∠FAG =22.5°,∠AGC =∠AGF.在△AGC 和△AGF 中,⎩⎪⎨⎪⎧∠CAG =∠FAG ,AG =AG ,∠AGC =∠AGF ,∴△AGC ≌△AGF (ASA ).∴CG =GF ,∠ACG =∠AFG.又∵∠CBF =90°,∴GB =GC =GF ,∠GBF =∠GFB =90°-∠GAF =90°-22.5°=67.5°.∴∠DBG =180°-67.5°-45°=67.5°,即∠GBF =∠DBG.∴BG平分∠DBF.(3)连接BG.∵∠DCG=90°+22.5°=112.5°,∠ABG=180°-67.5°=112.5°,∴∠DCG=∠ABG.又∵DC=AB,CG=BG,∴△DCG≌△ABG(SAS).∴∠CDG=∠GAB=22.5°.∴∠CDG=∠CAE.又∵∠DCM=∠ACE=45°,∴△DCM∽△ACE.∴AEDM=ACDC= 2.2.(2019·红河弥勒市二模)问题背景:折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:将正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B′E的位置,得到折痕MN,B′E与AB交于点P,则P即为AB的三等分点,即AP∶PB=2∶1.解决问题(1)在图1中,若EF与MN交于点Q,连接CQ.求证:四边形EQCM是菱形;(2)设正方形边长为1,求线段MC的长度;(3)利用线段MC的长度,证明P点是AB的三等分点(即证明AP∶PB=2∶1).发现感悟若改变E点在正方形纸片ABCD的边AD上的位置,重复“问题背景”中操作2的折纸过程,请你根据上面得到的结论,思考并解决如下问题:(不写过程,直接回答)(4)如图2.若DE∶AE=2∶1,则AP∶PB=4∶1;(5)如图3,若DE∶AE=3∶1,则AP∶PB=6∶1;解:(1)证明:由折叠可得,CM=EM,CQ=EQ,∠CMQ=∠EMQ,四边形CDEF是矩形,∴CD ∥EF.∴∠CMQ =∠EQM.∴∠EQM =∠EMQ.∴ME =EQ.∴CM =ME =EQ =CQ.∴四边形EQCM 是菱形.(2)设CM =x ,则EM =x ,DM =1-x ,在Rt △DEM 中,由勾股定理得EM 2=ED 2+DM 2,即x 2=(12)2+(1-x )2.解得x =58.∴MC =58. (3)设正方形边长为1,由(2)得CM =58,则DM =38. ∵∠PEM =∠D =90°,∴∠AEP +∠DEM =90°,∠DEM +∠EMD =90°.∴∠AEP =∠DME.又∵∠A =∠D =90°,∴△AEP ∽△DME.∴AP AE =DE DM ,即AP 12=1238.解得AP =23. ∴PB =13.∴AP ∶PB =2∶1.3.(2019·昆明西山区二模)如图1,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm ,如果点P 由B 出发沿PA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2 cm/s ,连接PQ ,设运动的时间为t (单位:s )(0≤t ≤4),解答下列问题:(1)当t 为何值时,PQ ∥BC?(2)设△APQ 面积为S (单位:cm 2),当t 为何值时,S 取得最大值?并求出最大值;(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由;(4)如图2,把△AQP 沿AP 翻折,得到四边形AQPQ ′,那么是否存在某时刻t ,使四边形AQPQ ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.解:∵AB =10 cm ,AC =8 cm ,BC =6 cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角.(1)BP =AQ =2t ,则AP =10-2t.∵PQ ∥BC ,∴AP AB =AQ AC ,即10-2t 10=2t 8,解得t =209. ∴当t =209s 时,PQ ∥BC.答图1(2)如答图1所示,过点P 作PD ⊥AC 于点D.∴PD ∥BC.∴AP AB =PD BC ,即10-2t 10=PD 6,解得PD =6-65t. S =12×AQ ·PD =12×2t ×(6-65t ) =-65t 2+6t =-65(t -52)2+152. ∴当t =52 s 时,S 取得最大值,最大值为152cm 2. (3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则有S △AQP =12S △ABC ,而S △ABC =12AC ·BC =24, ∴此时S △AQP =12.由(2)可知,S △AQP =-65t 2+6t , ∴-65t 2+6t =12,化简得t 2-5t +10=0. ∵Δ=(-5)2-4×1×10=-15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.答图2(4)方法1,假设存在时刻t ,使四边形AQPQ ′为菱形,则有AQ =PQ =BP =2t.如答图2所示,过P 点作PD ⊥AC 于点D ,则有PD ∥BC ,∴AP AB =PD BC =AD AC ,即10-2t 10=PD 6=AD 8. 解得PD =6-65t ,AD =8-85t.∴QD =AD -AQ =8-85t -2t =8-185t. 在Rt △PQD 中,由勾股定理得QD 2+PD 2=PQ 2,即(8-185t )2+(6-65t )2=(2t )2, 化简得13t 2-90t +125=0,解得t 1=5,t 2=2513. ∵t =5 s 时,AQ =10 cm>AC ,不符合题意,舍去,∴t =2513s. 由(2)可知,S AQP =-65t 2+6t , ∴S 菱形AQPQ ′=2S △AQP =2×(-65t 2+6t )=2×[-65×(2513)2+6×2513]=2 400169(cm 2). ∴当t =2513 s 时,四边形AQPQ ′为菱形,此时菱形的面积为2 400169cm 2. (或连接QQ ′交AB 于N ,利用相似三角形的性质,求出QN ,菱形的面积等于△AQN 面积的4倍)答图3方法2,如答图3.过点Q 作QH ⊥AB 于H ,∵四边形AQPQ ′是菱形,∴AQ =PQ =2t.∴AH =12AP =12(10-2t )=5-t. ∵∠AHQ =∠ACB =90°,∠HAQ =∠CAB ,∴△AHQ ∽△ACB.∴AH AC =AQ AB =QH BC. ∴5-t 8=2t 10=QH 6. ∴t =2513,QH =3013. ∴S 菱形AQPQ ′=2S △AQP =2×12(10-2×2513)×3013=2 400169(cm 2). ∴当t =2513 s 时,四边形AQPQ ′为菱形,此时菱形的面积为2 400169cm 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何综合题【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用.【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等.【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决.【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势.为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.类型一以三角形为背景的综合题典例1(2014·江苏泰州)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF ∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.【技法梳理】(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.【解析】(1)∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE.∴AF=DE.∵BD是△ABC的角平分线,∴∠ABD=∠DBE.∴∠DBE=∠BDE.∴BE=DE.∴BE=AF.(2)过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°.∴DE=BE=2.∴四边形ADEF的面积为DE·DG=6.举一反三1.(2014·湖北武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm 的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.(1)(2)(第1题)【小结】此类题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.类型二以四边形为背景的综合题典例2(2014·安徽)如图(1),正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM ∥AB交AF于M,作PN∥CD交DE于点N.(1)①∠MPN= ;②求证:PM+PN=3a;(2)如图(2),点O是AD的中点,连接OM,ON,求证:OM=ON;(3)如图(3),点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.(1)(2)(3)【全解】(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°.∵PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°.∴∠MPN=180°-∠BPM-∠NPC=180°-60°-60°=60°.故答案为60°.②如图(1),作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,(1)(2)如图(2),连接OE.(2)∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN.又∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS).∴OM=ON.(3)如图(3),连接OE.(3)由(2)得,△OMA≌△ONE,∴∠MOA=∠EON.∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形.∴∠AFE=∠AOE=120°.∴∠MON=120°.∴∠GON=60°.∵∠GON=60°-∠EON,∠DON=60°-∠EON,∴∠GOE=∠DON.∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA).∴ON=OG.又∠GON=60°,∴△ONG是等边三角形.∴ON=NG.∵OM=ON,∠MOG=60°,∴△MOG是等边三角形.∴MG=GO=MO.∴MO=ON=NG=MG.∴四边形MONG是菱形.【技法梳理】(1)①运用∠MPN=180°-∠BPM-∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解;(2)连接OE,由△OMA≌△ONE证明;(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.举一反三2.(2014·山东烟台)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图(1),当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由.(2)如图(2),当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图(3),当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由.(4)如图(4),当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.(1)(2)(3)(4) (第2题)【小结】主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.类型三以圆为背景的综合题典例3(2014·江苏苏州)如图,已知l1⊥l2,☉O与l1,l2都相切,☉O的半径为2cm,矩形ABCD 的边AD,AB分别与l1,l2重合,AB=4cm,AD=4cm,若☉O与矩形ABCD沿l1同时向右移动,☉O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s),(1)如图,连接OA,AC,则∠OAC的度数为°;(2)如图,两个图形移动一段时间后,☉O到达☉O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【全解】(1)∵l1⊥l2,☉O与l1,l2都相切,∴∠OAD=45°.∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm.∴∠DAC=60°.∴∠OAC的度数为∠OAD+∠DAC=105°.(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设☉O1与l1的切点为点E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=.∴∠C1A1D1=60°.∴OO1=3t=2+6.(3)①当直线AC与☉O第一次相切时,设移动时间为t1,如图,此时☉O移动到☉O2的位置,矩形ABCD移动到A2B2C2D2的位置,设☉O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2.由(2)得,∠C2A2D2=60°,∴∠GA2F=120°.∴∠O2A2F=60°.在Rt△A2O2F中,O2F=2,②当直线AC与☉O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时为位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,【提醒】本题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.【技法梳理】(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1-OO1-2=t-2,求出t的值,进而得出OO1=3t得出答案即可;(3)①当直线AC与☉O第一次相切时,设移动时间为t1,②当直线AC与☉O第二次相切时,设移动时间为t2,分别求出即可.举一反三3. (2014·浙江宁波)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径.(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数表达式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.方案一方案二方案三方案四方案备用图方案备用图(第3题)【小结】本题考查了圆的基本性质及通过勾股定理、三角形相似等性质求解边长及分段函数的表示与性质讨论等内容,题目虽看似新颖不易找到思路,但仔细观察每一小问都是常规的基础考点,所以总体来说是一道质量很高的题目,值得认真练习.类型一2.(2014·浙江嘉兴)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB 上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是.(第2题)类型二3. (2014·广东珠海)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;.(第3题)4.(2014·浙江温州)如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.(第4题)类型三5. (2014·湖南怀化)如图,E是长方形ABCD的边AB上的点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设H是ED上一点,以EH为直径作☉O,DF与☉O相切于点G,若DH=OH=3,求图中阴影部分的面积(,≈1.73,π≈3.14).(第5题)6.(2014·黑龙江大庆)如图(1),已知等腰梯形ABCD的周长为48,面积为S,AB∥CD,∠ADC=60°,设AB=3x.(1)用x表示AD和CD;(2)用x表示S,并求S的最大值;(3)如图(2),当S取最大值时,等腰梯形ABCD的四个顶点都在☉O上,点E和点F分别是AB 和CD的中点,求☉O的半径R的值.(1)(2)(第6题)参考答案【真题精讲】(2)如图(1),过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,(第1题(1))∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°.∴△ACQ∽△CMP.(3)如图(2),仍有PM⊥BC于点M,PQ的中点设为点D,再作PE⊥AC于点E,DF⊥AC于点F,(第1题(2))∵∠ACB=90°,∴DF为梯形PECQ的中位线.∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立.∴D在过R的中位线上.∴PQ的中点在△ABC的一条中位线上.2. (1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF.由于∠CDF+∠ADF=90°.∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是.(3)成立.理由如下:由(1)同理可证AE=DF,∠DAE=∠CDF,如图(1),延长FD交AE于点G,(第2题(1))则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图(2):(第2题(2))由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC===,∴CP=OC-OP=-1.3. (1)方案一中的最大半径为1.分析如下:因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1.(2)如图(1),方案二中连接O1,O2,过O1作O1E⊥AB于E,方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为☉O与AB,BF的切点.方案二方案三(第3题)方案二:设半径为r.在Rt△O1O2E中,∵O1O2=2r,O1E=BC=2,O2E=AB-AO1-CO2=3-2r,∴(2r)2=22+(3-2r)2,比较知,方案三半径较大.(3)①∵EC=x,∴新拼图形水平方向跨度为3-x,竖直方向跨度为2+x.类似题(1),所截出圆的直径最大为3-x或2+x较小的.∴方案四时可取的圆桌面积最大.【课后精练】1.①②③④解析:①∵AB=AC,∴∠B=∠C.∵∠ADE=∠B,∴∠ADE=∠C.∴△ADE∽△ACD.故①结论正确.故③正确.④易证得△CDE∽△BAD,由②可知BC=16,设BD=y,CE=x,整理,得y2-16y+64=64-10x,即(y-8)2=64-10x,∴0<y<8,0<x<6.4.故④正确.2.①③⑤解析:①连接CD,如图(1)所示.(第2题(1))∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图(2)所示.(第2题(2))∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.③当AD=2时,连接OC,如图(3)所示.(第2题(3))∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴∠ECO=90°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB,AF,如图(4)所示.(第2题(4))∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴DB=4.∴AD=AB-DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图(5)中阴影部分.(第2题(5))∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.3. (1)∵四边形ABCD是正方形,∴AD∥BF.∵AE=CF,∴四边形ACFE是平行四边形.∴EF∥AC.(2)连接BG,(第3题)∵EF∥AC,∴∠F=∠ACB=45°.∵∠GCF=90°,∴∠CGF=∠F=45°.∴CG=CF.∵AE=CF,∴AE=CG.在△BAE与△BCG中,∴△BAE≌△BCG(SAS).∴BE=BG.∵BE=EG,∴△BEG是等边三角形.∴∠BEF=60°.(3)∵△BAE≌△BCG,∴∠ABE=∠CBG.∵∠BAC=∠F=45°,∴△AHB∽△FGB.(2)如图(1),连接CD交OP于点G,(第4题(1))在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG.∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图(2),当点M在CE边上时,(第4题(2))∵MF∥OC,∴△EMF∽△ECO.∴t=1.第二种情况:如图(3),当点N在DE边(第4题(3))∵NF∥PD,∴△EFN∽△EPD.(Ⅱ)当点C在BO的延长线上时,第一种情况:如图(4),当点M在DE边上时,(第4题(4))∵MF∥PD,∴EMF∽△EDP.第二种情况:如图(5),当点N在CE边上时,(第4题(5))∵NF∥OC,∴△EFN∽△EOC.5. (1)∵四边形ABCD是矩形,∴∠A=∠B=90°.∵EF⊥DE,∴∠DEF=90°.∴∠AED=90°-∠BEF=∠EFB.∵∠A=∠B,∠AED=∠EFB,∴△ADE∽△BEF.(2)∵DF与☉O相切于点G,∴OG⊥DG.∴∠DGO=90°.∵DH=OH=OG,∴∴图中阴影部分的面积约为6.2.6. (1)作AH⊥CD于点H,BG⊥CD于点G,如图(1),(第6题(1))则四边形AHGB为矩形,∴HG=AB=3x.∵四边形ABCD为等腰梯形,∴AD=BC,DH=CG.在Rt△ADH中,设DH=t,∵∠ADC=60°,∴∠DAH=30°.∴AD=2t,AH=t.∴BC=2t,CG=t.∵等腰梯形ABCD的周长为48,∴3x+2t+t+3x+t+2t=48,解得t=8-x.∴AD=2(8-x)=16-2x,CD=8-x+3x+8-x=16+x.(3)连接OA,OD,如图(2),(第6题(2))当x=2时,AB=6,CD=16+2=18,等腰梯形的高为×(8-2)=6,则AE=3,DF=9,∵点E和点F分别是AB和CD的中点,∴直线EF为等腰梯形ABCD的对称轴.∴EF垂直平分AB和CD,EF为等腰梯形ABCD的高,即EF=6.∴等腰梯形ABCD的外接圆的圆心O在EF上.设OE=a,则OF=6-a.在Rt△AOE中,∵OE2+AE2=OA2,∴a2+32=R2.在Rt△ODF中,∵OF2+DF2=OD2,∴(6-a)2+92=R2.∴a2+32=(6-a)2+92,解得a=5.∴R2=(5)2+32=84.∴R=2.。

相关文档
最新文档