2013年秋七年级(人教版)集体备课导学案:1.4有理数的乘除法(1)

合集下载

人教版七年级数学上册导学案:1.4有理数的乘除法

人教版七年级数学上册导学案:1.4有理数的乘除法

课题: 1.4.1 有理数的乘法知识技能1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;2.能运用法则进行有理数乘法运算;3.培养学生能用乘法解决简单的实际问题.重点难点重点:有理数的乘法法则难点:积的符号的确定导学过程预习导航阅读课本第 28 页至 30 页的部分,完成以下问题.收获和疑惑活动一【新课引入】请学生观察下列式子:(1)(+2)×(+3)=+6(2)(-2)×(+3)=-6(3)(+2)×(-3)=-6(4)(-2)×(-3)=+6可以得出什么结论?根据对有理数乘法的思考,总结填空:正数乘正数积为__正_ 数负数乘正数积为__负__数正数乘负数积为__负__数负数乘负数积为__正__数乘积的绝对值等于各乘数绝对值的__积__问题:当一个因数为0时,积是多少?学生回答:积为0师生归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

注意:1、上面的法则是对于只有两个因子相乘而言的。

2、做乘法的步骤是:先确定积的符号,再确定积的绝对值。

t预习导航活动二【探究新知】(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?(2) 商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少?〖探索2〗(1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少?(2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少?(3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化?〖探索3〗(1)2×3=__;(2)-2×3=__;(3)2×(-3)=___;(4)(-2)×(-3)=____;(5)3×0=_____;(6)-3×0=_____.〖法则归纳〗两数相乘,同号得______,异号得_______,并把________相乘.任何数同0相乘,都得______.活动三【讨论交流】1.我们归纳的有理数乘法法则是什么?2.乘积是1的两个数互为倒数吗?预习导航活动四【解决问题】例1:教材例1.解:【巩固练习】1.课本第 30 页练习第1题.2.计算:(1)-3×4; (2)(-112)×(-23);(3)-234×211(4)-199929×0.3.商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?活动五【小结】说说你学习本节课的收获.【作业设计】1.课本P30 练习1、2、3题2. 求下列各数的倒数(1)-3; (2)-15 ; (3)-212 .(4)已知|2x+3|+(y-23)²ºº²=0,求-xy.3.用正、负数分别表示提价与降价,提价记为正,降价记为负,若每件商品降价5元,售出60件后,与按原价销售同样数量的商品相比,销售额有何变化?课题: 1.4.2有理数的除法教学目标1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;2.了解倒数概念,会求给定有理数的倒数;3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法运算,培养学生的运算能力。

七年级数学上册1.4有理数的乘除法导学案(新版)新人教版

七年级数学上册1.4有理数的乘除法导学案(新版)新人教版

七年级数学上册1.4有理数的乘除法导学案(新版)新人教版第一篇:七年级数学上册 1.4 有理数的乘除法导学案 (新版)新人教版1-4有理数的乘除法(3)学习目标:1.会将有理数的除法转化成乘法2.会进行有理数的乘除混合运算3.会求有理数的倒数教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数教学难点:如何进行有理数除法的运算,求一个负数的倒数教学过程:一、复习引入:1、倒数的概念;2、说出下列各数对应的倒数:1、-33、-(-4.5)、|-|423、现实生活中,一周内的每天某时的气温之和可能是正数,可能是0,也可能是负数,如盐城市区某一周上午8时的气温记录如下:周日周一周二周三周四周五周六-3c -3c -2c -3c 0c -2c -1c 问:这周每天上午8时的平均气温是多少?二、探索新知:1、解:[(-3)+(-3)+(-2)+(-3)+0+(-2)+(-1)]÷7,即:(-14)÷7=?(除法是乘法的逆运算)什么乘以7等于-14?因为(-2)×7=-14,所以:(-14)÷7=-2 又因为:(-14)×000°°°°1=-2 71 7所以:(-14)÷7=(-14)×2、有理数除法法则除以一个不等于0的数等于乘以这个数的倒数;0除以任何一个不等于0的数都等于0 有此可见:“除以一个数,等于乘以这个数的倒数”,在引进负数以后同样成立。

问题1、计算:(1)36÷(-9)(2)(48)÷(-6)12)÷(-)236(4)0.25÷(-0.5)(5)(-24)÷(-6)7(2)0÷(-8)(3)(-(6)(-32)÷4×(-8)(7)17×(-6)÷5 ★1、能整除时,将商的符号确定后,直接将绝对值相除;2、不能整除时,将除数变为它的倒数,再用乘法;3、有乘除混合运算时,注意运算顺序。

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。

本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。

通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。

二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。

但是,对于除法运算,学生可能还存在一些困惑和误解。

因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。

三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。

2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。

四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。

2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。

2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。

3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。

六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。

2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。

人教版七年级数学上册《一章 有理数 1.4 有理数的乘除法 1.4 有理数的乘除法(通用)》优质课教案_1

人教版七年级数学上册《一章 有理数  1.4 有理数的乘除法  1.4 有理数的乘除法(通用)》优质课教案_1

1.4.1 有理数的乘法(3)教学目标:一、知识与能力理解有理数除法法则,会进行有理数的除法运算,会求有理数的倒数;学生初步会用已有知识解决新问题。

观察、归纳、推断等方法获得数学猜想。

三、情感态度与价值观体验数学活动充满探索性和创造性。

教学重点:会进行有理数的除法运算;会求有理数的倒数教学难点:理解商的符号及其绝对值与除数和被除数的关系。

教具准备:多媒体课件教学过程:课前展示请同学说一说什么是倒数?并很快说出下列说的倒数教师强调:注意0没有倒数,继续学习新内容“有理数的除法”回顾引入在小学我们学习过除法是乘法的逆运算,前几节课我们学习了有理数的乘法,今天我们继续学习它的逆运算“1.4.2有理数除法”探究新知请看大屏幕,你会填空吗?()(4)8⨯-=()(4)8⨯-=-()(4)0⨯-=请根据这3个乘法算式,写出3个除法算式这是我们前面所学的内容,请直接说出他们的结果1841414⨯⨯⨯(-)=(-8)(-)=0(-)= 学生回答计算结果。

请同学仔细观察后两组算式,从中你有什么发现?由此可 以得出什么结论?学生汇报。

总结有理数除法法则:除以一个不为0的数,等于乘这个 数的倒数,用字母表示成1,(0)a b a b b÷=⋅≠。

例5:(1)(36)913694-÷=-⨯- 123(2)()155125()()25345-÷-=-⨯-=继续观察两组算式,与有理数乘法运算法则对比得出两数 相除的符号法则:两数相除,同号得正,异号得负,并把绝 对值相相除,0除以任何一个不等于0的数,都得0. 例5:计算(1)(36)9(369)4-÷=-÷=- 123(2)()155********-÷-=⨯= 强调:有理数的除法要分情况灵活选择法则,若是整数与 整数相除,一般采用“同号得正,异号得负,并把绝对值 相除”,如果有了分数,则采用“除以一个不为0的数等于 乘这个数的倒数”,再约分。

1.4有理数的乘除法导学案

1.4有理数的乘除法导学案

1.4有理数的乘除法第1课时 有理数的乘法法则主备人: 杨世友出示目标:1.了解有理数乘法的实际意义.2.理解有理数的乘法法则.3.能熟练的进行有理数乘法运算.预习导学:自学指导看书第29、30、31、32页的内容,亲历有理数的乘法法则的推导过程,掌握有理数的乘法法则,并进行两个有理数的乘法运算.有理数的乘法法则:______________________________________________________________________________.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定__________,再计算__________.乘积为1的两个数互为__________.如-3的倒数是_____,0.5的倒数是_____,-221的倒数是_____. 看书第31、32页的内容,体会几个不等于零的有理数相乘,积的符号的确定方法: 几个不为0的数相乘,积的符号由_____的个数决定.当负因数的个数是_____时,积为正;负因数的个数是_____时,积为负.几个数相乘,如果其中有一个因数是0,积等于_____.自学反馈:1.计算:(-141)×(-54)=1,(+3)×(-2)=-6, 0×(-4)=0,132×(-151)=-2, (-15)×(-31)=5,-│-3│×(-2)=6. 2.计算:(-2)×(-3)×(-5)=-30,(-732)×3×(-231)=1, (-9.89)×(-6.2)×(-26)×(-30.7)×0=0.教师点拨:(1)运用乘法法则,先确定积的符号,再把绝对值相乘;(2)0没有倒数. 合作探究:活动1:小组讨论1.计算:(+5)×(+3)=15,(+5)×(-3)=-15,(-5)×(+3)=-15,(-5)×(-3)=15,(+6)×0=0,6×(-4)=-24,(-6)×4=-24,(-6)×(-4)=24.2.计算:(-1121)×158×(-32)×(-241)=-1151,41×(-16)×(-54)×(-141)×8×(-0.25)=8. 活动2:活学活用1.计算:(1)(-5)×0.2=-1;(2)(-8)×(-0.25)=2;(3)(-321)×(-72)=1; (4)0.1×(-0.01)=-0.001;(5)(-59)×0.01×0=0;(6)(-2)×(-5)×(+65)×(-30)=-250; (7)321×(-74)+(-52)×(-343)=-21. 2.a×(-65)=1则a= -56.一个有理数的倒数的绝对值是7,则这个有理数是±71. 3.判断对错:(1)两数相乘,若积为正数,则这两个因数都是正数.(×)(2)两数相乘,若积为负数,则这两个数异号.(√)(3)两个数的积为0,则两个数都是0.(×)(4)互为相反的数之积一定是负数.(×)(5)正数的倒数是正数,负数的倒数是负数.(√)课堂小结:1.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2.倒数:乘积是1的两个数互为倒数.(负倒数:乘积为-1)3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.当堂训练:第2课时 有理数的乘法运算律主备人: 杨世友出示目标:1.进一步应用乘法法则进行有理数的乘法运算.2.能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用.3.培养学生通过观察、思考找到合理解决问题的能力.预习导学:自学指导看书第33、34页的内容,学习乘法交换律、结合律和分配律,通过探究,体验由特殊到一般研究问题的演绎思想;通过应用,感受利用运算律优化解题过程,养成观察思考的良好习惯.知识探究乘法的交换律文字表达:______________________________.乘法的交换律字母表达:______________________________.乘法的结合律文字表达:___________________________________.乘法的结合律字母表达:___________________________________.乘法的分配律文字表达:___________________________________.乘法的分配律字母表达:___________________________________.自学反馈:1.计算:(-3)×65×(-59)×(-41)×(-8)×(-1). 解:-92.计算:(1)-43×(8-34-1514); (2)191918×(-15). 解:(1)-4103;(2)-299194. 教师点拨:运用运算律进行简便运算.合作探究:活动1:小组讨论计算:1.(-0.5)×(-163)×(-8)×131; 解:-12.(-10565)×12; 解: -12703.(-43+165-87)×(-24); 解: -5 4.371×(371-731)×227×2221; 解: -45.(32-94+275)×27-1171×8+171×8. 解:3活动2:活学活用1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是(D)A.(-3)×4-3×2-3×3B.(-3)×(-4)-3×2-3×3C.(-3)×(-4)+3×2-3×3D.(-3)×(-4)-3×2+3×32.在运用分配律计算3.96×(-99)时,下列变形较合理的是(C)A.(3+0.96)×(-99)B.(4-0.04)×(-99)C.3.96×(-100+1)D.3.96×(-90-9)3.对于算式2007×(-8)+(-2007)×(-18),逆用分配律写成积的形式是(C)A.2007×(-8-18)B.-2007×(-8-18)C.2007×(-8+18)D.-2007×(-8+18)4.计算1375×163最简便的方法是(D) A.(13+75)×163 B.(14-72)×163 C.(10+375)×163 D.(16-272)×163 5.(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;(2)(143-87-121)×171; (3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27). 解:(1)-10;(2)2119;(3)250. 课堂小结:1.有理数乘法交换律2.有理数乘法结合律3.有理数乘法分配律当堂训练:1.4.2有理数的除法第1课时 有理数的除法法则主备人: 杨世友出示目标1.理解除法的意义,掌握有理数的除法法则.2.能熟练进行有理数的除法运算.3.感受转化、归纳的数学思想.预习导学:自学指导看书学习第35、36页的内容,掌握有理数除法法则,能够化简分数.知识探究1.有理数除法法则____________________________________________________.2.两数相除,____得正,____得负,并把绝对值____.0除以任何________的数仍得0. 自学反馈计算:(1)(-36)÷9=-4;(2)(-2512)÷(-53)=54; (3)2.25÷(-1.5)=-23. 教师点拨:在做除法运算时:先定符号,再算绝对值.若算式中有小数、带分数,一般情况下化成真分数和假分数进行计算.合作探究:活动1:小组讨论1.化简下列分数:(1)312-=-4; (2)=--1245415. 2.计算:(1)(-12575)÷(-5)=2571; (2)-2.5÷85×(-41)=1. 教师点拨:乘除混合运算要先,然后,最后.活动2:活学活用1.计算:(1)-0.125÷(-83); (2)(-251)÷1011; (3)-121÷43×(-0.2)×143÷1.4×(-53). 解:(1)31;(2)-2;(3)-103.2.两个不为零的有理数的和等于0,那么它们的商是(B)A.正数B.-1C.0D.±13.两个不为0的数相除,如果交换它们的位置,商不变,那么(D)A.两数相等B.两数互为相反数C.两数互为倒数D.两数相等或互为相反数课堂小结:1.法则1:a÷b=a·b1.2.法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得0.3.化简分数. 当堂训练:第2课时 有理数的四则混合运算主备人: 杨世友出示目标:1.能熟练地进行有理数的乘除混合运算,能用简便方法计算.2.能熟练地掌握有理数加减乘除混合运算的顺序,并能准确计算.3.能解决有理数加减乘除混合运算应用题.4.了解用计算器进行有理数的加减乘除运算.预习导学:自学指导看书学习第37、38页的内容,掌握有理数乘除混合运算法则,能够解决具体问题. 知识探究有理数加减乘除混合运算法则:________________________________________________________________________. 自学反馈计算:(1)6-(-12)÷(-3);(2)3×(-4)+(-28)÷7;(3)(-48)÷8-(-25)×(-6);(4)42×(-32)+(-43)÷(-0.25). 解:(1)2;(2)-16;(3)-156;(4)-25.教师点拨:在做有理数的乘除混合运算时:①先将除法转化为乘法;②确定积(或商)的符号;③适时运用运算律;④若出现带分数可化为假分数,小数可化为分数计算;⑤注意运算顺序.合作探究:活动1:小组讨论1.计算:-54×(-241)÷(-421)×92=-6. 2.(-7)×(-5)-90÷(-15)=41.3.一架直升飞机从高度450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?解:210米活动2:活学活用1.计算:(1)(-6)÷(-23); (2)(-2476)÷(-6); (3)-141÷0.25÷(-16); (4)(-54)÷(-34)×0; (5)(-3)×(-21)-(-5)÷(-2);(6)∣-521∣÷(31-21)×(-111). 解:(1)4;(2)729;(3)165;(4)0;(5)-1;(6)3. 2.高度每增加1千米,气温大约降低6℃,今测量高空气球所在高度的温度为-7℃,地面温度为17℃,求气球的大约高度.解:4千米3.某探险队利用温度测量湖水的深度,他们利用仪器侧得湖面的温度是12℃,湖底的温度是5℃,已知该湖水温度每降低0.7℃,深度就增加30米,求该湖的深度.解:300米课堂小结:有理数加减乘除混合运算法则:无括号,先算乘除,后算加减;有括号先算括号里面的. 当堂训练:。

七年级数学上册第一章有理数1.4有理数的乘除法1.4.2有理数的除法第1课时有理数的除法法则导学案【人教版】

七年级数学上册第一章有理数1.4有理数的乘除法1.4.2有理数的除法第1课时有理数的除法法则导学案【人教版】

–36 ×(1/6)=
-12/25 ÷ (-3/5)=
(-12/25)×(-5/3)=
-72 ÷9=
-72×(1/9)=
问题 2:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗?
1.情景引入 (见幻灯片 3) 2.探究点 1 新 知讲授 (见幻灯片 413)
有理数除法法则(一):除以一个不等于 0 的数,等于乘这个数的
课堂探究
1、要点探究
探究点 1:有理数的除法及分数化简
问题 1:根据“除法是乘法的逆运算”填空:
(-4)×(-2)=8
8÷(-4)=
6×(-6)=-36
-36÷6=
(-3/5)×(4/5)= -12/25
-12/25 ÷(-3/5)=
-8÷9=-72 8÷(-4)=
-72÷9= 8×(-1/4)=
-36÷ 6=
学生在课前 完成自主学 习部分
一、知识链接 1.填一填:
原数
5
倒数
自主学习
9
7
0
8
-1
1 2
3
2.有理数的乘法法则:
两数相乘,同号________,异号_______,并把_________相乘.
一个数同 0 相乘,仍得________.
3.进行有理数乘法运算的步骤:
(1)确定_____________;
例 1 计算(1)(-36)÷ 9; (2)(- )÷(- ).
25
5
例 2 化简下列各式:
12
45
(1) ;(2)
3
12
3.探究点 2 新 知讲授 (见幻灯片 1415)
探究点 2:有理数的乘除混合运算
例 3 计算

人教新课标版七年级上数学第一章《有理数》导学案:1.4有理数的乘除法

人教新课标版七年级上数学第一章《有理数》导学案:1.4有理数的乘除法

第一章 有理数《有理数的乘法》导学案(1)N0:12班级 小组 姓名 小组评价_________教师评价_______ 一、学习目标1、经历探索有理数乘法法则的过程,发展学生观察、归纳、验证等能力;2、能运用法则进行简单的有理数的乘法运算;3、极度热情、投入学习。

二、自主学习1、阅读课本28-30的内容,回答问题:(1)正数乘正数积为 数;负数乘正数积为 数;正数乘负数积为 数;负数乘负数积为 数;乘积的绝对值等于各乘数绝对值的 (2)当有一个因数是0时,积是小结有理数乘法法则:两数相乘,同号得___,异号得___,并把_________相乘,任何数同0相乘,都得___例如(-5)⨯(-3) 同号两数相乘= +(53⨯) 得正,再把两数的绝对值相乘 =15又如(-7)⨯4=-(74⨯) =-28有理数乘法运算的步骤:做有理数乘法时,先确定积的 ,再确定积的 2、阅读课本29的内容,回答问题:乘积是1的两个数互为___数;乘积是-1的两个数互为 数。

例如3的倒数是31;65的倒数是56;-5的倒数是 ;3、自学检测(1)(5)6-⨯积的符号是 ,积的绝对值是,积是(3)(2)-⨯-积的符号是,积的绝对值是 ,积是(2)(-5)⨯2 =- = (-5)⨯(-2)= + =32×(-29)= - = 0.5 ⨯ (-32) = - = (3)-17的倒数是 ;511的倒数是 ; 3--的倒数是三、合作与探究 1、填空(1)若 ,且 ,则 a 0。

(2)若|a |=3, | b | =5,且 a 、b 异号,则a ·b = 。

(3)-21的倒数是 相反数是 ;35的倒数是 相反数是 (4)绝对值不大于4的所有负整数的积是 2、计算(1)(+6)⨯(-9) (2)23-⨯(-151) (3)-0.5⨯34(4)-5-⨯(-2) (5)-7⨯(-3)⨯(-4)四、达标检测1、下列结论正确的是( )A .两数之积为正,这两数同为正;B .两数之积为负,这两数为异号C .几个数相乘,积的符号由负因数的个数决定D .三数相乘,积为负,这三个数都是负数 2、一个有理数和它的相反数的积 ( )A .符号必为正B .符号必为负C .一定不大小0D .一定不小于0 3、计算:①-5⨯(-3)-12 ②(-4)⨯(6)-(-5)⨯8-0<⋅b a b a <4、计算:①-3×5=________ ②3×(-7)=________③-4×(-6)=_______ ④(-2)×(-3)×(-4)=________5、若a、b互为倒数,c、d互为相反数,则ab c d++=_________五、拓展提高在一个秘密俱乐部中,有一种特殊的算帐方式:a*b=3a-4b,聪明的小明通过计算2*(-4)发现了这一秘密,他是这样计算的:“解2*(-4)=3×2-4×(-4)=22”,假如规定:a*b=2a-3b-1,那么请你求2*(-3)和a*(-3)*(-4)。

人教版初中数学七年级上册1.4有理数的乘除法导学案设计(含答案)

人教版初中数学七年级上册1.4有理数的乘除法导学案设计(含答案)

人教版初中数学七年级上册1.4有理数的乘除法导学案一、【学习目标】1、经历探索有理数乘除法法则和运算律的过程,发展观察、归纳、猜测、验证等能力.2,能运用法则进行简单的有理数乘法和除法运算.3,培养学生的语言表达能力,通过合作学习调动学生学习的积极性,增强学习数学的自信。

二、【学习过程】学习任务一、探索有理数的乘法法则: 1、填空: 3×2= ; (-3)×2= ; 3×(-2)= ; (-3)×(-2)= 。

1、填空的答案:6 —6 —6 6观察发现:正数与正数相乘,仍然得正,负数与负数相乘,也得正;负数与正数相乘,正数与负数相乘,都得到负数。

由此得到有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。

注意:求两个有理数相乘的积,应该先确定积的符号,再确定积中除符号以外的绝对值。

学习任务二、寻找有理数乘法的运算律: 2、填空: (1)3×(-5)= , (-5)×3= ; (2)[(-3)×5] ×2= , (-3)×(5×2)= ;(3)30×(21—32+0.4)=30× = , 30×21+30×(—32)+30×0.4=15—20+ = 。

2、填空的答案:(1)-15 -15; (2)—30 —30;(3)3077 12 7。

从上面的这两组例子我们可以发现:(1)两个数相乘,交换因数的位置,积不变。

可表示成ab=ba ,这就是乘法的交换律。

(2)三个数相乘,先把前面两个数相乘,或者先把后面两个数相乘,积不变。

可表示成(ab)c=a(bc),这就是乘法的结合律。

(3)一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加。

可表示成a (b+c )=ab+ ac ,这就是乘法分配律。

学习任务三、探索有理数的除法法则:3、填空:(—6)÷(—2)= , (—6)×(—21)= ; 8÷(—2)= , 8×(—21)= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-4 有理数的乘除法(1)
第13学时
学习目标:1.了解有理数乘法的实际意义,理解有理数的乘法法则;
2. 能熟练地进行有理数的乘法运算.
学习难点:积的符号的确定
教学过程:
一、情境引入:
什么叫乘法运算?
求几个相同加数的和的运算。

如2+2+2+2+2=2×5;
(-2)+(-2)+(-2)+(-2)+(-2)=(-2)×5
像(-2)×5这样带有负数的式子怎么运算?
二、探究学习:
1、在水文观测中,常遇到水位上升与下降的问题,请根据日常生活经验,回答下列问题:
(1)如果水位每天上升4cm,那么3天后的水位比今天高还是低?高(或低)多少?
(2)如果水位每天上升4cm,那么3天前的水位比今天高还是低?高(或低)多少?
(3)如果水位每天下降4cm,那么3天后的水位比今天高还是低?高(或低)多少?
(4)如果水位每天下降4cm,那么3天前的水位比今天高还是低?高(或低)多少?
我们规定水位上升为正,水位下降为负;几天后为正,几天前为负;你能用正数或负数表示上述问题吗?你算的结果与经验一致吗?
3、两个有理数相乘,积的符号怎样确定?积的绝对值怎样确定?小组讨论,总结、归纳得出有理数乘法法则。

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与0相乘都得0。

问题1、计算(1)(- 4)×5;(2)(- 5)×(-7)
解:(1)(- 4)×5;(2)(- 5)×(-7)
= - (4 ×5) (异号得负,绝对值相乘) = + (5 ×7) (同号得正,绝对值相乘)
= - 20 = 35
注:计算时,先定符号,再把绝对值相乘,切勿与加法混淆。

练一练:
4、我们已经学会了两个有理数相乘,那多个有理数相乘又如何运算呢?
(-2)×3×4×5×6=-720
(-2)×(-3)×4×5×6=720
(-2)×(-3)×(-4)×5×6=-720
(-2)×(-3)×(-4)×(-5)×6=720
(-2)×(-3)×(-4)×(-5)×(-6)=-720
积的符号怎样确定?积的绝对值怎样确定?你发现规律了吗?
小组讨论,总结、归纳得:
多个有理数乘法法则:几个不等于0的数相乘,积的符号由负因数的个数来确定。

当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有一个因数为0时,积就为0。

问题2、计算:
(1)-4×12×()-0.5 (2)-37×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭
⎪⎫-724
练一练:
(1)-15×2.5×⎝ ⎛⎭
⎪⎫-716×()-8 (2)-35×⎝ ⎛⎭⎪⎫-56×()-6 【知识巩固】
1.填空
_______×(-2)=-6 ; (-3)×______=9 ;______×(-5)=0。

相关文档
最新文档