迈克尔逊干涉仪的调整与应用实验要点

合集下载

实验一迈克尔逊干涉仪的调整及应用

实验一迈克尔逊干涉仪的调整及应用

实验一迈克尔逊干涉仪的调整及应用一、实验目的1. 了解迈克尔逊干涉仪的原理及结构。

2. 学会迈克尔逊干涉仪的调整,基本掌握其使用方法。

3. 观察各种干涉现象,了解它们的形成条件。

二、实验仪器1. WSM-200型迈克尔逊干涉仪一台2. HNL-55700多束光纤激光源一台三、实验原理3.1 迈克耳孙干涉仪的构造图1为迈克尔逊干涉仪的结构示意图。

图1 迈克尔逊干涉仪的结构示意图仪器包括两套调节机构,第一套调节机构是调节反光镜1的位置。

旋转大转轮和微调转轮经转轴控制反光镜1在导轨上平移;第二套调节机构是调节反光镜1和反光镜2的法线方向。

通过调节反光镜1、2后面的调节螺钉以及反光镜2的两个方向拉杆来控制反光镜的空间方位。

在仪器的中部和中部偏右处,分别固定安装着分光镜和补偿片,其位置对仪器的性能有重要影响,切勿变动。

在补偿片的右侧是反射镜2,它的位置不可前后移动,但其空间方位是可调的。

反射镜1和反射镜2是通过金属弹簧片以及调节螺钉与支架弹性连接的,调节反射镜支架上的三颗调节螺钉,改变弹簧片的压力,从而改变反射镜面在空间的方位。

显然,调节螺丝钉过紧或太松,都是不利于调节反射镜方位的错误操作。

反射镜1在导轨上的位置坐标值,由读数装置读出。

该装置共有三组读数机构:第一组位于左侧的直尺C1,刻度线以mm为单位,可准确读到毫米位;第二组位于正面上方的读数窗C2,刻度线以0.01mm为单位,可准确读出0.1和0.01毫米两位;第三组位于右侧的微动转轮的标尺C3,刻度线以0.0001mm为单位,可准确读0.001和0.0001毫米两位,再估读一位到0.00001毫米。

实际测量时,分别从C1、C2各读得2位数字、从C3读得3位(包括1位估读)数字,组成一个7位的测量数据,如图2所示。

可见仪器对位移量的测定精度可达十万分之一毫米,是一种图2 关于M1位置读数值的组成方法非常精密的仪器。

务必精细操作,否则很容易造成仪器的损坏!3.2 迈克耳孙干涉仪的原理迈克尔逊干涉仪是利用分振幅法产生的双光束干涉,其光路图如图3所示。

迈克尔逊干涉仪的调整与应用实验要点

迈克尔逊干涉仪的调整与应用实验要点

要点(1)实验前请认真阅读“实验须知”、“实验内容”及本要点:测波长的同学需每冒出(或缩进)50环,读一次M镜的位置,至少连续测18组,将数据填入表格,并观察其实验现象。

测线膨胀系数的同学可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。

注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。

(2)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件)让老师检查数据是否合格。

(3)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或参考值,详见附录1 数据记录要求),将原始数据与仪器使用登记本一并让老师签字,并了解如何处理所测数据(详见附录2 数据处理要求)及逐差法相关知识(附录3 逐差法处理实验数据);(4)在预习报告后根据实际实验加上实验内容、实验步骤;(5)重新对仪器进行调节,熟悉调节要点,并观察相应的实验现象,掌握迈克尔逊干涉仪及线膨胀系数测定仪的调节与使用;(6)掌握迈克尔逊干涉仪仿真实验的使用,并利用其进行复习及进行实验,注意“迈克尔逊干涉仪(仿真实验演示).swf”文件(可以回去再做)。

(7)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案(可以回去再做)。

(8)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等(可以回去再做)。

(9)完成相应实验后,请收拾好仪器,整理好桌面,关好计算机才能离开实验室。

迈克尔逊干涉仪的调整与使用

迈克尔逊干涉仪的调整与使用
迈克尔逊干涉仪的 调整和使用
物理实验中心
目录
一. 实 验 目 的 二. 实 验 原 理
1.仪器构造及光路 2.点光源产生的非定域干涉条纹 3.面光源产生的定域干涉条纹
三. 实 验 内 容 四. 读 数 方 法 五. 注 意 事 项
实验目的
了解迈克尔逊干涉仪的结构,学习调 节和使用方法。
利用点光源产生的同心圆环干涉条纹 测量单色光的波长。
则:
2 2d2 k2
那么可得:d d2 d1
1 2
2
1
1 2
k2
k1
1 2
k
由此可见,只要测出干涉仪中M1移动的距离∆d, 并数出相应的“吞吐”环数∆k,就可求出λ.
实验现象
面光源产生的定域干涉条纹
由面光源产生的在特定区域内存在着
的干涉现象,称为定域干涉。
d
1)等倾干涉
光程差为: AC BC AD
C
θ A
θ D
M1
B
M2'
1 2
2d 2d tan sin S
c os
面光源产生的等倾干涉
2d cos
当d一定时,光程差只决定于入(出)射角θ,干涉条纹 是一系列与不同倾角θ相对应的明暗相间的同心圆环条
纹,这种相同倾角的光所产生的干涉,称为等倾干涉。
2)等厚干涉
当M1、M2‘有一个很小的角度时, M1、M2‘之间形成楔形空气 薄层,就出现等厚干涉。这时“1”和“2”的光程差仍然可
主尺
粗动手轮读数窗口
微动手轮
最后读数为:33.52246mm
注意事项
转动微动手轮时,粗动手轮随之转动;但在转动 粗动手轮时,微动手轮并不随之转动,因此在读 数前必须调整零点。

迈克耳孙干涉仪的调整与使用技巧

迈克耳孙干涉仪的调整与使用技巧

迈克耳孙干涉仪的调整与使用技巧迈克耳孙干涉仪(Michelson interferometer)是一种常用的光学仪器,广泛应用于光学测量、干涉实验等领域。

正确的调整和使用迈克耳孙干涉仪对于获得准确的实验结果至关重要。

本文将介绍迈克耳孙干涉仪的调整方法以及使用技巧,帮助读者更好地理解和应用这一仪器。

1. 干涉仪的基本原理迈克耳孙干涉仪是利用光的干涉原理进行测量的仪器。

它由两束光线沿不同路径传播后再次叠加产生干涉,通过观察干涉图案的变化可以获得有关样品或光源的信息。

2. 调整干涉仪的步骤(1)准备工作在调整迈克耳孙干涉仪之前,首先要确保仪器和光源的完好和稳定。

检查干涉仪的光学元件是否清洁,光源是否稳定,确保能够获得高质量的干涉图案。

(2)调整光路通过调整迈克耳孙干涉仪的光路,使得两束光相干,达到干涉的条件。

具体步骤如下:- a. 调整分束镜迈克耳孙干涉仪的分束镜是将光分成两束的关键元件。

调整分束镜的位置和角度,使得两束光线的光程差尽量为零。

- b. 调整反射镜调整迈克耳孙干涉仪的反射镜位置和角度,使得两束光线重新叠加时能够产生明亮的干涉条纹。

通过微调反射镜的位置和角度,使得干涉图案更加清晰和明亮。

(3)干涉图案的观察与调整在调整好光路之后,需要观察干涉图案,并进行调整以获得最佳的观察效果。

根据实验需求,通过微调分束镜和反射镜的位置和角度,调整干涉图案的大小、亮度和清晰度。

3. 干涉仪的使用技巧(1)保持稳定在使用迈克耳孙干涉仪进行实验时,保持仪器和光源的稳定非常关键。

避免干涉仪受到外界震动或温度变化的干扰,以确保实验的准确性和可重复性。

(2)校正光程差干涉仪的光程差是影响干涉图案的重要因素。

在实验中,根据需要可以通过微调分束镜或者引入补偿片等方法,校正光程差以获得所需的干涉效果。

(3)避免散射和干涉损失在进行干涉实验时,需要注意避免光线的散射和干涉损失。

合理调整干涉仪的参数,选择合适的光源和滤波器,减少或者消除散射光和多次反射干涉,确保实验结果的准确性。

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是光学实验中一种重要的仪器,它的原理是基于干涉现象来测量长度、速度、折射率等物理量。

因此,正确地调节和使用迈克尔逊干涉仪对于实验结果的准确性和可靠性至关重要。

一、调节步骤1、粗调:首先调整干涉仪的粗调旋钮,使干涉条纹大致对称。

2、细调:然后调整干涉仪的细调旋钮,使干涉条纹更加清晰、对称。

具体步骤如下:(1)将光源对准干涉仪的入射缝,调整干涉仪的三个脚螺旋,使干涉条纹出现在视野中。

(2)调节干涉仪的粗调旋钮,使干涉条纹大致对称。

(3)调节干涉仪的细调旋钮,使干涉条纹更加清晰、对称。

可以通过观察干涉条纹的移动方向和距离来判断调节是否正确。

(4)重复以上步骤,直到干涉条纹完全对称、清晰。

二、使用注意事项1、保持干涉仪的清洁,避免灰尘和污垢进入干涉仪内部。

2、在调节过程中,要轻拿轻放,避免损坏干涉仪的精密部件。

3、在使用过程中,要避免过度调节粗调旋钮和细调旋钮,以免损坏干涉仪的调节机构。

4、在记录实验数据时,要保证记录的准确性和完整性。

5、在实验结束后,要将干涉仪恢复到初始状态,以便下一次使用。

正确地调节和使用迈克尔逊干涉仪需要耐心和细心。

只有掌握了正确的调节方法,才能更好地发挥其作用,提高实验的准确性和可靠性。

迈克尔逊干涉仪法测定玻璃折射率迈克尔逊干涉仪是一种精密的光学仪器,其原理基于干涉现象,能够用于测量微小的长度变化和折射率。

本文将介绍如何使用迈克尔逊干涉仪法测定玻璃的折射率。

一、实验原理折射率是光学材料的一个重要参数,它反映了光在材料中传播速度的改变。

迈克尔逊干涉仪法利用干涉现象来测量折射率。

当光线通过不同介质时,其速度和波长都会发生变化,这就导致了光程差的产生。

通过测量光程差,我们可以计算出介质的折射率。

二、实验步骤1、准备实验器材:迈克尔逊干涉仪、单色光源(如激光)、测量尺、待测玻璃片。

2、将单色光源通过分束器分为两束相干光束,一束直接照射到参考镜,另一束经过待测玻璃片后照射到测量镜。

迈克尔逊干涉仪的调节和使用实验报告

迈克尔逊干涉仪的调节和使用实验报告

迈克尔逊干涉仪的调节和使用实验报告一、仪器调节1.调整镜面平行度:首先放置迈克尔逊干涉仪的光源,然后用手将光源移动,调整反射平面镜的角度,使光线在迈克尔逊干涉仪的整个光路中都能自由传播。

2.调整分束镜:使用一张透明的玻璃片将光线分束,再观察平行光束通过分束镜后是否能刚好落在平面镜的表面上,如果不能,则需要调整分束镜的位置,直到两束光线都能够平行而且刚好敲在平面镜上。

3.调整反射镜:迈克尔逊干涉仪中的反射镜有一个活动镜面,需要调整其位置,使两束光线在平面镜上反射时能够准确地再次合成一束光线,从而形成干涉现象。

4.调整干涉条纹:最后,可以在观察屏幕上是否能够清晰地看到干涉条纹,在实验过程中可以适当调整光源的位置或者调整反射镜的倾斜角度,以获得更好的干涉效果。

二、实验使用1.实验准备:首先设置好迈克尔逊干涉仪,并确保调节好仪器,使光线能够正常穿过仪器。

2.实验操作:将待测光源置于迈克尔逊干涉仪的一个光路中,调整干涉仪中的反射镜位置,使干涉条纹清晰。

然后,改变待测光源的位置,测量干涉条纹的移动量,利用已知的反射器间距和探测器移动的距离,可以计算得到光的速度。

3.数据处理:使用测得的数据和已知的仪器参数,进行计算和分析。

根据测得的干涉条纹移动量和已知的反射器间距,利用干涉仪的原理和公式,计算得到光的速度。

5.讨论和结论:根据实验结果,对实验中的不确定因素进行讨论,并得出结论。

如果实验结果与理论值一致,说明测量方法正确并且仪器使用正常;如果存在差异,可以分析差异的原因,并进一步完善实验方法或改善仪器使用的条件。

总之,迈克尔逊干涉仪是一种常见的用于测量干涉现象的仪器,通过调节和使用可以进行光速测量、薄膜厚度测量等实验。

在进行实验操作时,需要注意仪器的准确调节和数据的准确处理,以确保实验结果的可靠性。

实验八迈克尔逊干涉仪的调节和使用

实验八迈克尔逊干涉仪的调节和使用

实验八迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是一种典型的用分振幅法产生双光束以实现干涉的精密光学仪器.通过调整该干涉仪,可以产生等倾条纹,也可以产生等厚条纹和非定域条纹,还可以用来研究普通光源的时间相干性.相干光源的获取除用激光外,在实验室中一般是将普通钠光源采用分振幅法使其在空间经不同路径会合后产生干涉.·实验目的1.了解迈克尔逊干涉仪的结构及特点、学会调节和使用方法;2.调出面光源的等倾条纹,观察其特点,掌握条纹随动臂的变化规律;测量钠D双线的平均波长及波长差,加深对时间相干性的理解;3.调出点光源非定域条纹,并测量激光源的波长;了解观察复色白光的零级等厚条纹和面光源的等厚干涉条纹.(选做)·实验仪器迈克尔逊干涉仪,钠灯,毛玻璃屏,扩束镜,孔屏,激光光源等.图8-1为迈克尔逊干涉仪实物图.图8-2是迈克尔逊干涉仪的光路示意图,图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M2是固定的;M1由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(粗读和细读两组刻度盘组合而成)读出,仪器前方粗动手轮最小分格为10-2mm,右侧微动手轮的最小分格为10-4mm,可估读至10-5mm.在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板G1,它的后表面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光1和透射光2,故G1又称为分光板.G2也是平行平面玻璃板,与G1平行放置,厚度和折射率均与G1相同.由于它补偿了光线1和2因穿越G1次数不同而产生的光程差,故称为补偿板.从扩展光源S射来的光在G1处分成两部分,反射光1经G1反射后向着M1前进,透射光2透过G1向着M2前进,这两束光分别在M1、M2上反射后逆着各自的入射方向返回,最后都达到E处.因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹.由M 2反射回来的光在分光板G 1的第二面上反射时,如同平面镜反射一样,使M 2在M 1附近形成M 2的虚像M 2′,因而光在迈克尔逊干涉仪中自M 1和M 2的反射相当于自M 1和M 2′的反射.由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的.当M 1和M 2′平行时(此时M 2和M 1严格互相垂直),将观察到环形的等倾干涉条纹.一般情况下,M 2和M 1形成一空气劈尖,因此将观察到近似平行的干涉条纹(等厚干涉条纹).图8-1 实物照片 图8-2迈克尔逊干涉仪光路图·实验原理一、单色光波长的测定用波长为λ的单色光照明时,迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光程差,而由M 1和M 2反射的两列相干光波的光程差为:(8-1)i d cos 2=Δ其中i 为反射光1在平面镜M 2上的入射角.对于第k 条纹,则有λj i d j =cos 2 (8-2)当M 1和M 2′ 的间距逐渐增大时,对任一级干涉条纹,例如d j 级,必定是以减少的值来满足(8-2)式的,故该干涉条纹间距向变大(值变小)的方向移动,即向外扩展.这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距增加j i cos j i j i cos d 2/λ时,就有一个条纹涌出.反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每向中心陷入一个条纹,间距d 的改变必为d2/λ.因此,当 M 1镜移动时,若有N 个条纹陷入中心,则表明M 1相对于M 2移近了2λNd =Δ (8-3)反之,若有N 个条纹从中心涌出来时,则表明M 1相对于M 2移远了同样的距离.如果精确地测出M 2移动的距离d Δ,则可由(8-3)式计算出入射光波的波长. 二、测量钠光的双线波长差钠光D 线两条谱线的波长分别为0.5891=λnm 和6.5892=λnm ,移动M 1,当光程差满足两列光波1和2的光程差恰为1λ的整数倍,而同时又为2λ的半整数倍,即:2211)21(λλ+=j j (8-4)这时1λ光波生成亮环的地方,恰好是2λ光波生成暗环的地方.如果两列光波的强度相等,则在此处干涉条纹的视见度应为零(即条纹消失).那么干涉场中相邻的2次视见度为零时,光程差的变化应为:21)1(λλ+==Δj j L (j 为较大整数) (8-5)由此得LjΔ==−21221λλλλλ (8-6)于是LLΔ=Δ=−=Δ22121λλλλλλ (8-7)式中为1λ、2λ的平均波长.对于视场中心来说,设M 1镜在相继2次视见度为零时移动距离为,则光程差的变化d ΔL Δ应等于2,所以d ΔdΔ=Δ22λλ (8-8)对钠光λ=589.3 nm ,如果测出在相继2次视见度最小时,M 1镜移动的距离Δd ,就可以由(8-8)式求得钠光D 双线的波长差.三、点光源的非定域干涉图8-3 点光源非定域干涉激光器发出的光,经短焦距凸透镜L会聚于S点.S点可看做一点光源,经G1(G1未画)、M1、M2′的反射,也等效于沿轴向分布的2个虚光源S1′、S2′所产生的干涉.因S1′、S2′发出的球面波在相遇空间处处相干,所以观察屏E放在不同位置上,则可看到不同形状的干涉条纹,故称为非定域干涉.当E垂直于轴线时(见图8-3),屏上出现同心圆形条纹,光程差的改变依赖倾角和膜厚两个因素,在圆环中心处,光程差最大,条纹级次最高,中心环的变化规律与等倾条纹计算公式(8-3)式相同,此处不再赘述.·实验内容与步骤一、等倾干涉现象的观察及钠光D双线平均波长的测定1.点燃钠光灯,使之经过装有叉丝的毛玻璃屏照射分光板G1,且叉丝与分光板G1、平面镜M2等高共轴.转动粗调手轮,使M2镜距分光板G1的中心与M1镜距分光板G1的中心大致相等.2. 眼睛透过G1直视M1镜,可看到3个叉丝像.细心调节M1镜后面的 3 个调节螺钉,使两个叉丝像重合,如果难以重合,可略微调节一下M2镜后的3个螺钉.当两个叉丝像完全重合时,将看到有明暗相间的干涉环,再细调平面镜后的螺钉,使条纹成圆形.若干涉环模糊,可轻轻转动前方粗调手轮,使M1镜移动一下位置,干涉环就会出现.3.再仔细调节M2镜的2个拉簧螺丝,直到把干涉环中心调到视场中央,并且使干涉环中心随观察者的眼睛左右、上下移动而移动,但干涉环不发生“涌出”或“陷入”现象,这时观察到的干涉条纹才是严格的等倾干涉.4.测钠光D双线的平均波长λ.先调仪器零点,方法是:将微调手轮沿某一方向(如顺时针方向)旋至零,同时注意观察读数窗刻度轮旋转方向;保持刻度轮旋向不变,转动粗调手轮,让读数窗口基准线对准某一刻度,使读数窗中的刻度轮与微调手轮的刻度轮相互配合.5.始终沿原调零方向,细心转动微调手轮,观察并记录每“涌出”或“陷入”50个干涉环时,M1镜位置,连续记录6次.6.用逐差法求出钠光D双线的平均波长,并与标准值进行比较.二、测定钠光D双线的波长差1.以钠光为光源调出等倾干涉条纹.2.用粗调手轮移动M1镜,使视场中心的视见度最小,记录M1镜的位置;沿原方向继续移动M1镜,使视场中心的视见度由最小到最大直至又为最小,再记录M1镜位置.3.实际实验中因为视见度模糊区很宽,难以准确测得,故可利用拓展量程法去减小单次测量的随机误差.读出连续共6个视见度最小时M1镜的位置差,求出这5个间隔的平均值为Δd,代入(8-8)式计算D双线的波长差.三、选做内容1.点光源非定域干涉现象观察方法步骤仿照等倾条纹自拟.2.观察等厚干涉和白光干涉条纹在等倾干涉基础上,移动M1镜,使干涉环由细密变粗疏,直到整个视场条纹变成等轴双曲线形状时,说明M2与M2′接近重合.细心调节水平式垂直拉簧螺丝,使M1与M2′有一很小夹角,视场中便出现等厚干涉条纹,观察和记录条纹的形状、特点.用白炽灯照明毛玻璃(钠光灯不熄灭),缓慢地旋转微动手轮,M1与M2′达到“零光程”时,在M1与M2′的交线附近就会出现彩色条纹.此时可挡住钠光,再极小心地旋转微调手轮找到中央条纹,记录观察到的条纹形状和颜色分布.·实验数据测量1.钠黄光平均波长测量数据表条纹计数n10 50 100 150 200 250 动镜位置d1 (mm)条纹计数n2300 350 400 450 500 550 动镜位置d2 (mm)Δd=| d2- d1| (mm)2.钠黄双线波长差测量数据记录表条纹消失次数 1 2 3 4 5 6 动镜位置d (mm)·实验注意事项1.迈克尔逊干涉仪系精密光学仪器,使用时应注意防尘、防震;不能触摸光学元件光学表面;不要对着仪器说话、咳嗽等;测量时动作要轻、要缓,尽量使身体部位离开实验台面,以防震动.2.实验前和实验中调节旋转手轮时,应密切关注M1的位置,不能顶靠前端的仪器主体,以免挤压损伤仪器.3.测量时微动手轮要保持单方向转动,不要中途反转,以免引起回程误差. ·历史渊源与应用前景迈克尔逊干涉仪是1881年由美国物理学家迈克尔逊和莫雷为研究“以太”漂移而设计制造的精密光学仪器.历史上,迈克尔逊-莫雷实验结果否定了“以太”的存在,为爱因斯坦建立狭义相对论奠定了基础.迈克尔逊和莫雷因在这方面的杰出成就获得了1883年诺贝尔物理学奖.光谱线精细结构的研究和用光波标定标准米尺等实验都首先在这台干涉仪上完成.迈克尔逊干涉仪是历史上最著名的经典干涉仪,其基本原理已经被推广到许多方面,以它为基础研制成各种形式的精密仪器,广泛地应用于计量技术和科学研究中.20世纪60年代激光出现以后,良好的光源拓展了它的应用领域.用它不仅可以观察光的等厚、等倾干涉现象,精密地测定光波波长、微小长度、光源的相干长度等,还可以测量气体、液体的折射率.·与中学物理的衔接见实验七牛顿环干涉·自主学习因为分振幅薄膜干涉一般难以将二束相干光的光路分开,使真正的光学测量无法实现.本实验的构思亮点:首次将相干光引向两条相互垂直的光路通过,为待测物加入一侧光路去改变光程差创造了良好条件,是高精度不接触无损检测的经典仪器模型.操作难点:叉丝像重合的判断;等倾条纹视场的消除,白光等厚条纹的获得.1.实验中毛玻璃起什么作用?为什么观察钠光等倾干涉条纹时要用通过毛玻璃的光束照明?2.光源毛玻璃屏上的叉丝经M1M2成的像为什么是3个?3.干涉仪中的G1G2各起什么作用?用激光源照明时,没有G2能否产生干涉条纹?4.观察钠灯的等倾干涉现象时,上下左右动眼睛,发现已没有泡冒出或陷进去,且圆心在视野中央,但改变M1、M2之间的距离时,发现圆环的中心偏离视野中心,试分析原因?5.用钠光做光源时,干涉条纹为什么会出现视见度为零的现象?6.当M1、M2之间的距离增大时,可观察到中心条纹“陷入”还是“冒出”?7.已知什么量?哪个是待测量?如何控制变量?关注仪器的分度值及单位,按要求处理实验数据,完成实验报告.8.本实验还有哪些操作难点?针对操作难点,摸索并掌握正确的调节的方法.·实验探究与设计1.调节钠光的干涉条纹时,如确认两个叉丝像已重合,但条纹并未出现,试分析可能产生的原因,写出解决方案.2.尝试设计测量透明薄膜厚度或折射率的实验方案,并完成实验.。

迈克尔逊干涉仪的调整和使用实验报告

迈克尔逊干涉仪的调整和使用实验报告

迈克尔逊干涉仪的调整和使用实验报告迈克尔逊干涉仪的调整和使用实验报告引言:迈克尔逊干涉仪是一种重要的光学仪器,它可以用来测量光的干涉现象。

在本实验中,我们将对迈克尔逊干涉仪进行调整,并使用它来观察干涉条纹的产生和变化。

一、实验目的本实验的主要目的是熟悉迈克尔逊干涉仪的调整方法,了解干涉条纹的产生原理,并通过实验观察干涉条纹的变化。

二、实验器材1. 迈克尔逊干涉仪:包括光源、分束器、反射镜和接收屏等组成部分。

2. 平行光源:用于提供单色光源。

3. 反射镜:用于反射光线。

4. 接收屏:用于观察干涉条纹。

三、实验步骤1. 调整光源:将平行光源放置在适当位置,并调整其亮度,保证光线足够明亮。

2. 调整分束器:将分束器放置在适当位置,使得光线能够均匀地分成两束。

3. 调整反射镜:将反射镜放置在适当位置,使得其中一束光线经过反射后与另一束光线相遇。

4. 调整接收屏:将接收屏放置在适当位置,并调整其位置,使得干涉条纹能够清晰地显示出来。

5. 观察干涉条纹:调整各个部分的位置,观察干涉条纹的产生和变化,并记录下观察结果。

四、实验结果与分析通过实验观察,我们可以看到干涉条纹的产生和变化。

当两束光线相遇时,由于光的波动性,会形成干涉现象。

当两束光线相位差为整数倍的波长时,会产生明纹,而相位差为半整数倍的波长时,会产生暗纹。

通过调整反射镜和接收屏的位置,我们可以改变两束光线的光程差,从而观察到干涉条纹的变化。

在实验过程中,我们还观察到了干涉条纹的间距变化随光源波长的变化而变化。

根据迈克尔逊干涉仪的原理,当光源波长增大时,干涉条纹的间距也会增大;当光源波长减小时,干涉条纹的间距也会减小。

这是因为光的波长与干涉条纹的间距之间存在一个正比关系。

五、实验总结通过本次实验,我们学习了迈克尔逊干涉仪的调整方法,并通过观察干涉条纹的产生和变化,加深了对干涉现象的理解。

我们还发现了干涉条纹的间距与光源波长之间的关系。

这些实验结果对于进一步研究光的干涉现象和应用具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验要点实验前请认真阅读本要点:(1)听完课后,同学们结合仪器请仔细阅读教材的相关内容,特别是P189的干涉仪光路图(图5-61)、P191公式(5-123、5-124)的由来及应用、P193至P194的仪器说明与练习一。

测量固体试件的线膨胀系数还要阅读教材的P136与P138的实验内容1。

注:迈克尔逊干涉仪有仿真实验,同学们可以在实验之前用其进行预习。

仿真实验位于:桌面\大学物理仿真实验\大学物理仿真实验v2.0(第二部分),其中大学物理仿真实验v2.0(第二部分).exe为正式版,大学物理仿真实验示教版v2.0(第二部分).exe为示教版,同学们在使用之前可先看示教版。

(2)实验内容1)掌握迈克尔逊干涉仪的调节方法,并记录位置改变时干涉条纹的变化,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。

2)根据逐差法的要求确定如何合理测量数据,规范记录实验数据及已知参数等。

3)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案。

4)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等。

(3)阅读F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)),了解需测量的数据要求(处理需用逐差法),确定如何进行数据测量。

根据需测量的数据,在实验仪器上进行预测量与观察相应的实验现象,即先测量一小部份数据,弄清测量的重点与难点,确定测量方法,然后进行正式测量。

(4)测波长与测线膨胀系数的主要调节方法是一样的,需掌握迈克尔逊干涉光路的调节方法,并了解干涉条纹的变化情况,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。

(一些问题详见附录4 疑难解答)测量He-Ne激光的波长的同学还要掌握如何正确使用读数结构(包括如何读数、校零、消空程等)。

测量固体试件的线膨胀系数的同学还要掌握如何正确进行控温(详见38的实验内容1)。

(5)测波长的同学(后十位同学)需每冒出(或缩进)50环,读一次M镜1的位置,至少连续测8组,将数据填入表格,并观察其实验现象。

测线膨胀系数的同学(前十位同学)可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。

注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。

(6)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件),不要关闭文件,让老师检查数据是否合格。

(7)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或参考值,详见附录1 数据记录要求),将原始数据与仪器使用登记本一并让老师签字,并了解如何处理所测数据(详见附录 2 数据处理要求)及逐差法相关知识(附录3 逐差法处理实验数据);(8)在预习报告后根据实际实验加上实验内容、实验步骤;(9)重新对仪器进行调节,熟悉调节要点,并观察相应的实验现象,掌握迈克尔逊干涉仪及线膨胀系数测定仪的调节与使用;(10)掌握迈克尔逊干涉仪仿真实验的使用,并利用其进行复习及进行实验,注意“迈克尔逊干涉仪(仿真实验演示).swf”文件(可以回去再做)。

(11)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案(可以回去再做)。

(12)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等(可以回去再做)。

(13)完成相应实验并数据通过后,请收拾好仪器,整理好桌面,关好计算机才能离开实验室,值日生请整理好实验室仪器并打扫卫生重才能离开实验室。

附录1 数据记录要求注:要求使用空白实验报告纸记录实验数据,不能使用铅笔,不能有涂改。

实验名称:实验地点:仪器号数:课号:实验时间:姓名:学号:一、迈克尔逊干涉仪测量He-Ne激光的波长(测量固体试件的线膨胀系数)1、记录已知参数,并记录相应的实验现象2、自拟表格记录所测量数据3、记录所测量数据的相应结果(结果、准确度、精确度等),用以参考。

二、拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,要求如下:1、简洁明了的实验原理、公式与实验现象2、根据1写出实验方案,要有关键的实验要点及相应实验现象说明3、确定实验方案的数据测量量,拟定数据记录表格4、利用仿真实验来验证实验方案三、(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等附录2 数据处理要求1、处理时需重列表格,用逐差法处理数据,要求有关键公式、步骤;2、处理结果与标准(或参考值)比较并作分析,正确表示实结果,并进行实验小结、讨论;3、(不作硬性要求,但要了解)求出结果的不确定度,逐差法的不确定度求解可参考《逐差法处理实验数据》部份。

附录3 逐差法处理实验数据当实验中、两物理量满足正比关系时,依次记录改变相同的量时的值:x1,x2…x n(或者当某一研究对象随实验条件周期性变化时,依次记录研究对象达到某一条件(如峰值、固定相位等)时的值x1,x2…x n:),的间隔周期的求解方法若由x1,x2…x n逐项逐差再求平均:其中只利用了和,难以发挥多次测量取平均以减小随机误差的作用,此时应采用隔项逐差法(简称逐差法)处理数据。

逐差法处理数据时,先把数据分为两组,然后第二组的与第一组相应的相减,如下表:n第一组第二组逐差处理结果不确定度分析n 为偶数时,每组个 对,和均含有,则方和根合成有可采用下式粗略估算不确定度n 为奇数时,可以任意舍掉第一个数据或最后一个数据或正中间的一个数据,再按以上方法处理。

但要注意舍掉正中间的数据时两组相应数据之间的实际间隔大小。

逐差法处理数据举例:外加砝码下,弹簧伸长到的位置记录如下表,可用逐差法求得每加一个1kg 的砝码时弹簧的平均伸长量(满足前提条件:弹簧在弹性范围内伸长,伸长量与外加力成正比),也可求得弹簧的倔强系数。

已知测量时,估算(见下表)。

实验数据数 据 处 理1 1.00 2.00 7.902 2.00 4.01 7.923 3.00 6.057.80处理结果:4 4.00 7.957.875 5.00 9.906 6.00 11.937 7.00 13.85 8 8.00 15.82 逐差法提高了实验数据的利用率,减小了随机误差的影响,另外也可减小中仪器误差分量,因此是一种常用的数据处理方法。

有时为了适当加大逐差结果为个周期,但并不需要逐差出个数据,可以连续测量 n 个数据后,空出若干数据不记录,到时,再连续记录n 个数据,对所得两组数据进行逐差可得: ,不确定度可简化由:来估算。

严格地讲以上介绍的一次逐差法理论上适用于一次多项式的系数求解,要求自变量等间隔地变化。

有时在物理实验中可能会遇到用二次逐差法、三次逐差法求解二次多项式、三次多项式的系数等,可参考有关书籍作进一步的了解。

附录4 疑难解答1. 观察点光源非定域干涉时,屏上只看到一大片光斑,看不到干涉条纹,怎么办? 移走扩束镜,调节激光管方位,配合调M1、M2后螺钉,使由M1、M2反射的最亮光点能大致回到激光管中,此时入射光与分光板成45°角。

然后重新微调M1、M2后面的螺钉,使得屏上两排光点中最亮光点完全重合,重合的标准是最亮光点中出现细条纹(其它光点也有细条纹),如图所示。

再放上扩束镜,屏上必看到干涉条纹。

2.观察点光源非定域干涉时,屏上只看到干涉圆弧,没看到干涉圆环,怎么办?调节水平拉簧螺钉和垂直拉簧螺钉,使干涉条纹往变粗变稀方向移动,必可调出干涉圆环的圆心。

3.调节微调旋钮时,没看到圆环“冒出”或“缩进”,怎么办?原因:可能是微调旋钮与移动可动镜M1的精密丝杆之间出现了“滑丝”。

办法:可调节粗调大手轮,使M1重新移到一个粗调位置,再使微调手轮多转几圈,确保微动鼓轮螺帽与螺杆间无间隙(空程误差),转动微动鼓轮,必可看到圆环“冒出”或“缩进”现象。

每次正式测量读数前,为防止空程误差,也应使微动鼓轮多转几圈,看到圆环“冒”或“缩”时才往一个方向转动读数,中途中微动鼓轮不能反转。

圆环“冒出”、“缩进”现象4.如何对M1位置进行读数?该读数由三部分组成:①标尺读数,只读出整毫米数即可,不需估读;②粗调大手轮读数,直接由窗口读出毫米的百分位,也不需估读;③微动鼓轮读数,由微动鼓轮旁刻度读出,需要估读一位,把读数(格数)乘10-4即毫米数。

M1位置读数为上三读数和。

例:5.什么是定域干涉?什么是非定域干涉?干涉条纹是定域还是非定域的,取决于光源的大小。

如果是点光源,条纹是非定域的,在平面镜M1M2反射光波重叠区域内都能看到干涉条纹。

如果在扩束镜与分光板间放一毛玻璃,则点光源发出的球面波经毛玻璃散射成为扩展面光源,条纹则是定域干涉(等倾干涉条纹)。

6. 迈克尔逊干涉仪中补偿板、分光板的作用是什么?分光板是后表面镀有半反射银膜的玻璃板,激光入射后经半反射膜能分解为两束强度近似相等光线。

补偿板是折射率和厚度与分光板完全相同的玻璃板,使分光板分解的两束光再次相遇时在玻璃板中通过相同的光程,这样两光束的光程差就和在玻璃中的光程无关了。

7.当反射镜M1和M2不严格垂直时,在屏上观察到的干涉条纹分布具有什么特点?此时M1与M2'之间形成一楔形空气薄层,用平行光照射将产生等厚干涉条纹,即空气层厚度相同的点光程差相同构成同一级干涉条纹,这些条纹是一系列等间距的直条纹。

8.为什么不能用眼睛直接观察未扩束的激光束?因为没有扩束的激光能量集中,光强较大,直接射入眼内会使视网膜形成永久性的伤害。

9.在迈克尔逊干涉仪实验中,用激光作光源的调整过程中,看到的是两排光点还是两个光点?为什么?实验中看到的是两排光点,因为光线在玻璃板与平面镜之间有多次反射。

实验中只需调节两排光点中最亮光点即可。

10.实验中为什么用逐差法处理实验数据?本实验采用分组隔项逐差法,可以充分利用所测数据,更好的估算最佳值,更合理地估算测量误差及不确定度。

相关文档
最新文档