有限元作业
有限元的大作业报告示例

1.题目概况
矩形板尺寸如下图1,板厚为5mm。
材料弹性模量为
松比μ= 0.27 。
施加约束和载荷并讨论:
图
1 计算简图
1.1基本数据
E = 2⨯105N/mm2,泊
序号载荷约束备注42 向下集中载荷F=800N, 作用于cd 边3/4 处(近d) c d 点简支
1.2分析任务/分析工况
讨论板上开孔、切槽等对于应力分布的影响。
(载荷约束组合不变)。
提示:各种圆孔,椭圆孔随大小、形状、数量,分布位置变化引起的应力分布变化;各种形状,大小的切槽及不同位置引起应力分布的变化等,选择二至三种情况讨论,并思考其与机械零部件的构型的相对应关系。
2.模型建立
2.1单元选择及其分析
由于平板长宽分别为300x100,故可取网格单元大小为1。
如图:
2.2模型建立及网格划分
模型按单元为1 划分后的网格大小如图所示:
2.3载荷处理
向下集中载荷F=800N, 作用于cd 边3/4 处(近d) c d 点简支
3.计算分析
3.1位移分布及其分析
(1)位移分布如图:。
现代设计方法(关于有限元)作业

《现代设计方法》作业关于有限元法的研究学院:机械工程学院专业:机械制造及其自动化0.有限元法有限元法分析起源于50年代初杆系结构矩阵的分析。
随后,Clough于1960年第一次提出了“有限元法”的概念。
其基本思想是利用结构离散化的概念,将连续介质体或复杂结构体划分成许多有限大小的子区域的集合体,每一个子区域称为单元(或元素),单元的集合称为网格,实际的连续介质体(或结构体)可以看成是这些单元在它们的节点上相互连接而组成的等效集合体;通过对每个单元力学特性的分析,再将各个单元的特性矩阵组集成可以建立整体结构的力学方程式,即力学计算模型;按照所选用计算程序的要求,输入所需的数据和信息,运用计算机进行求解。
当前,有限元方法/理论已经发展的相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。
然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。
有限元法分析一般包括四个步骤:物理模型的简化、数学模型的程序化、计算模型的数值化和计算结果的分析。
每一个步骤在操作过程中都或多或少地引入了误差,这些误差的累积最终可能会对计算结果造成灾难性的影响,进而蒙蔽我们的认识和判断。
1.受内压空心圆筒的轴对称有限元分析例图1.1所示为一无限长的受内压的轴对称圆筒,该圆筒置于内径为120mm的刚性圆孔中,试求圆筒内径处的位移。
结构的材料参数为:200=,0.3E GPaμ=。
图1 结构图对该问题进行有限元分析的过程如下。
(1)结构的离散化与编号由于该圆筒为无限长,取出中间一段(20mm高),采用两个三角形轴对称单元,如图1.2所示。
对该系统进行离散,单元编号及结点编号如图1.3所示,有关结点和单元的信息见表1.1。
图1.2 有限元模型图1.3 节点位移编号及单元编号表1.1 单元编号及结点编号单元编号结 点 编 号 ①②1 2 3 2 3 4结构的结点位移列阵为11223344[]T r r r r u w u w u w u w δ= (1.1) 结构的结点外载列阵12[000000]T r r F F F = (1.2)1r F 和2r F 为由内压作用而等效在结点1和结点2上的载荷,其大小为1122240202//502622r r r h p F N F N ππ-⨯⨯⨯==== (1. 3) 约束的支反力矩阵123344[00T z z r z r z R R R R R R R = ] (1.4)其中1z R 和2z R 为结点1和结点2在Z 方向的约束支反力,(3r R ,3z R )和(4r R ,4z R )为结点3和结点4在r 方向和Z 方向的约束支反力。
有限元大作业

1.推导有限元计算格式,理解有限元原理:建立图示受拉直杆在自重(设单位长度重度为q ,截面积为A )和外力P 作用下的拉伸问题的微分方程,并分别利用不同的原理(变分求极值(最小势能或虚功原理)、加权残值法)推导有限元计算格式(取两个单元)。
手工求出端点的位移(自己给定参数值)。
设杆长为L ,截面面积为A(x),弹性模数为E,单位长重量q ,受拉杆x 处的位移为u(x)。
取微元dx 的力平衡,建立受拉杆位移所满足的微分方程()du x dx ε=,()du x E E dxσε== dx 上下截面内力与微元自重相等得()*()()*()A x dx x dx A x x dx qdx σσ++-+=-(()())dA x x q dxσ∴=- (())d duEA x q dx dx=- 0x L << ()0u x = 0x =()duEA x p dx= x L = 得解析解:2()2q x P u Lx x EA EA=-+将其分为两个单元,节点为1,2,3,得22382qL PL u EA EA=+232qL PL u EA EA=+有限元法:1)位移函数01u α= 2111u u l α-=得1211(1)x x u u u l l =-+ 令11(1)x N l =-21x N l = 11122122u u N u N u N N u⎧⎫⎪⎪⎡⎤=+=⎨⎬⎣⎦⎪⎪⎩⎭{}1u N d ⎡⎤=⎣⎦ 2)应变、应力表达{}{}111211du dN d d dx dx l l ε⎡⎤⎡⎤===-⎢⎥⎣⎦⎣⎦{}1B d ε⎡⎤=⎣⎦ {}1E E B d σε⎡⎤==⎣⎦ {}1S d σ⎡⎤=⎣⎦3)势能表示{}{}(){}{}(){}{}{}{}{}1111''112211''121112210111111111111111121221222T V ll T T T T T U W D dV F u F u qdx u u d B E d Adx F u F u ql EA EA ql l l d d d F d EA EA ql l l εε⎡⎤=-=-+-⎣⎦+⎡⎤=-+-⎣⎦⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦∏⎰⎰⎰4)单元平衡方程 a)最小势能原理110u ∂=∂∏120u ∂=∂∏111111212112112ql F u AE l u ql F ⎧⎫-⎪⎪⎧⎫⎡⎤-⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥-⎣⎦⎪⎪⎪⎪⎩⎭+⎪⎪⎩⎭b)虚位移原理{}(){}(){}TeTdd F qdx d δδδεσΩ+=Ω⎰⎰{}{}1B d σεδ⎡⎤=⎣⎦ {}1E E B d σεδ⎡⎤==⎣⎦{}(){}{}(){}111111TTT l d F d B E B d Adxδδ⎡⎤=⎣⎦⎰ 由虚位移任意性得,{}{}1111T lF B E B Adxd ⎡⎤=⎣⎦⎰ 积分得111111212112112ql F u AE l u ql F ⎧⎫-⎪⎪⎧⎫⎡⎤-⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥-⎣⎦⎪⎪⎪⎪⎩⎭+⎪⎪⎩⎭ 记为{}{}111k d F ⎡⎤=⎣⎦ 同理222212323112112ql F u AE l u ql F ⎧⎫-⎪⎪⎧⎫⎡⎤-⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥-⎣⎦⎪⎪⎪⎪⎩⎭+⎪⎪⎩⎭{}{}222k d F ⎡⎤=⎣⎦ {}{}ei i eF R =∑ 12220F F += 23F P =11111112211223222022202EAEAql F l l u ql ql EA EA EA EA u l l l l u ql EAEA P l l ⎡⎤⎧⎫-⎢⎥+⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢-+-⎥=+⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎩⎭⎪⎪+⎢⎥⎪⎪--⎢⎥⎩⎭⎣⎦可得:22382qL PLu EA EA=+232qL PL u EA EA=+与解析解结果一致。
有限元分析大作业报告

有限元分析大作业报告一、引言有限元分析是工程领域中常用的数值模拟方法,通过将连续的物理问题离散为有限个子区域,然后利用数学方法求解,最终得到数值解。
有限元分析的快速发展和广泛应用,为工程领域提供了一种强大的工具。
本报告将介绍在大作业中所进行的有限元分析工作及结果。
二、有限元模型建立本次大作业的研究对象是工程结构的应力分析。
首先,通过对结构进行几何建模,确定了结构的尺寸和形状。
然后,将结构离散为有限个单元,每个单元又可以看作一个小的子区域。
接下来,为了求解结构的应力分布,需要为每个单元确定适当的单元类型和单元属性。
最后,根据结构的边界条件,建立整个有限元模型。
三、材料属性和加载条件在建立有限元模型的过程中,需要为材料和加载条件确定适当的参数。
本次大作业中,通过实验获得了结构材料的弹性模量、泊松比等参数,并将其输入到有限元模型中。
对于加载条件,我们选取了其中一种常见的加载方式,并将其施加到有限元模型中。
四、数值计算和结果分析为了求解结构的应力分布,需要进行数值计算。
在本次大作业中,我们选用了一种常见的有限元求解器进行计算。
通过输入模型的几何形状、材料属性和加载条件,求解器可以根据有限元方法进行计算,并得到结构的应力分布。
最后,我们通过对计算结果进行分析,得出了结论。
五、结果讨论和改进方法根据计算结果,我们可以对结构的应力分布进行分析和讨论。
根据分析结果,我们可以得出结论是否满足设计要求以及结构的强度情况。
同时,根据分析结果,我们还可以提出改进方法,针对结构的特点和问题进行相应的优化设计。
六、结论通过对工程结构进行有限元分析,我们得到了结构的应力分布,并根据分析结果进行了讨论和改进方法的提出。
有限元分析为工程领域提供了一种有效的数值模拟方法,可以帮助工程师进行结构设计和分析工作,提高设计效率和设计质量。
【1】XXX,XXXX。
【2】XXX,XXXX。
以上是本次大作业的有限元分析报告,总结了在建立有限元模型、确定材料属性和加载条件、数值计算和结果分析等方面的工作,并对计算结果进行讨论和改进方法的提出。
平面有限元法作业

连,这两个公共节点有共同的节点位移值,从而保证了两个相邻单元在其公共边界上位移的 连续性。故四节点矩形单元满足位移连续性条件。#
{ } 3-7:求以下受力单元的等效节点载荷 R 。已知:lij、lim、lmj 、
⎢⎣ 0 0 0
0 0.5 0
0
0 − 0.5 − 0.5 0 0.5 ⎥⎦12×12
利用矩阵的运算关系
[ ] [ ] [k]T =
B]T [D][B]tA T
= [B]T [D]T
[B]T
T
tA
由于 [D]是对称矩阵, [D]T = [D]
所以 [k]T = [B]T [D] [B]tA = [k],即 [k]为对称矩阵。#
3-5:图示平面等腰三角形单元,若 μ = 0.3 ,弹性模量为 E,厚度为 t,求形函数矩阵 [N ]、 应变矩阵 [B] 及单元刚度矩阵 [K ]。(补充题意:平面应力情况)
q、P,厚度 t,P 点作用在 jm 中点处,沿 x 方向,三角形分布 载荷垂直于 ij 边。
4
解:q 的单元 N/m2 ,设厚度为 t,如图示
Xi
=
−
1 3
qlij
t
cos
30°
=
−
3 6
qlij
t
Yi
=
−
1 3
qlij
t
sin
30°
=
−
1 6
qlij
t
等效节点载荷
X
j
=
−
1 6
qlijt cos30° +
第三章作业
有限元作业整理版

一、写出下图所示的三结点三角形单元的插值函数(形函数)Ni,Nj,Nm及插值函数矩阵[N],应变矩阵[B]。
二、如下图所示的三结点三角形单元,厚度为t,弹性模量是E,泊松比μ.试求:插值函数(形函数)矩阵[N],应变矩阵[B],应力矩阵[S],单元刚度矩阵[K]e.
三、下图所示的三结点三角形单元在jm边作用有线性分布的面载荷(x方向),试求等效结点载荷向量.
四、如下图所示,一正方形平板,厚度为t,边长为a,弹性模量E,泊松比μ.划分为两个三角形单元.求:1,3点的位移.
五、下图所示矩形板,分成四个三结点三角形单元.要求:
(1)写出由单元刚度矩阵组装总体刚度矩阵的表达式;
(2)如1234就是一个矩形单元,试求此单元的单元刚度矩阵.。
有限元分析大作业

有限元大作业一题目要求:图1所示为一悬臂梁,在端部承受载荷,材料弹性模量为E,泊松比为1/3,悬臂梁的厚度(板厚)为t,若该粱被划分为两个单元,单元和节点编号如图所示,试按平面应力问题计算各个节点位移计支反力。
一、单元划分1.计算简图及单元划分如下所示:2.进行节点及单元编号节点i j m单元① 2 3 4② 3 2 13.节点坐标值节点号1 2 3 4坐标值X 2 2 0 0Y 1 0 1 0二、计算单元刚度矩阵1、计算每个单元面积△以及i b ,i c (m j i i ,,=) ①②单元的面积相等,即12121=⨯⨯=∆ 单元①的i b ,i c⎩⎨⎧=--==-=0)(1m j i m j i y x c y y b ⎩⎨⎧=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧-=--=-=-=2)(1j i mj i m y x c y y b 对平面应力问题,其表达式为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+∆-=s r s r sr s r s r s r s r s r b b uc c cb u b uc b c u c ub c c u b b u Et Krs 21212121)1(42 然后对单元①求解单元刚度子矩阵2==i r 2==i s []⎥⎦⎤⎢⎣⎡=3/1001329)1(22Et K 2==i r 3==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(23Et K2==i r 4==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(24Et K 3==j r 3==j s []⎥⎦⎤⎢⎣⎡=4003/4329)1(33Et K 3==j r 2==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(32Et K 3==j r 4==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(34Et K 4==m r 4==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)1(44Et K 4==m r 2==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(42Et K 4==m r 3==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(43Et K由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)1(Et K将单元①的单元刚度矩阵补零升阶变为单元刚度矩阵,其在总体刚度矩阵中的位置为:节点号→单元②的i b ,i c⎩⎨⎧=--=-=-=0)(1m j im j i y x c y y b ⎩⎨⎧-=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧=--==-=2)(1j i mj i m y x c y y b 然后对单元 求解单元刚度子矩阵:3==i r 3==i s []⎥⎦⎤⎢⎣⎡=3/1001329)2(33Et K 3==i r 2==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(32Et K 3==i r 1==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(31Et K 1 2 3 412[])1(22K[])1(23K[])1(24K3[])1(32K[])1(33K[])1(34K4[])1(42K[])1(43K[])1(44K2==j r 2==j s []⎥⎦⎤⎢⎣⎡=4003/4329)2(22Et K 2==j r 3==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(23Et K 2==j r 1==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(21Et K 1==m r 1==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)2(11Et K 1==m r 3==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(13Et K 1==m r 2==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(12Et K 由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)2(Et K将单元②的单元刚度矩阵补零升阶变为单元贡献矩阵,其在总体刚度矩阵中的位置为:节点号→1 2 3 41 [])2(11K[])2(12K[])2(13K2 [])2(21K[])2(22K[])2(23K3 [])2(31K [])2(32K [])2(33K 4三、计算总体刚度矩阵总体刚度矩阵是由各单元的贡献矩阵迭加而成)2()1(][][][][K K K K e +==∑四、进行节点约束处理根据节点约束情况,在总刚矩阵中可采用划行划列处理约束的方法,由题目易知,节点3和4的已知水平位移和垂直位移都为零,划去其相对应的行和列,则总刚矩阵由8阶变为4阶,矩阵如下:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2/02/03/13043/203/73/23/443/23/133/43/23/43/43/73292211p p v u v u Et329][Et K =1 2 3 413/133/43/43/743/23/23/4----3/13/23/21----000243/23/23/4----3/13003/73/43/403/13/23/21----33/13/23/21----3/43/403/13003/743/23/23/4----40003/13/23/21----43/23/23/4----3/133/43/43/7化简⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------Et p Et p v u v u 3/1603/160130122072412213424472211 五、求解线性方程组方法:采用LU 分解法 1.求解矩阵[]U 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------75/10775/640075/6475/353007/767/27/7502447~7/877/87/7607/87/337/207/767/27/7502447~13012207241221342447⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----353/44900075/6475/353007/767/27/7502447~ 得到的[]U 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=353/44900075/6475/353007/767/27/7502447U 2.求解矩阵[]L 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----13012207241221342447353/44900075/6475/353007/767/27/75024471353/6475/767/20175/27/40017/40001 得到的[]L 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=13012207241221342447L3.进行求解⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=Et p Et p Et p y Et p Et p Ly 79425/850800225/323/1603/1603/160⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⇒=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡Et p Et p Et p v u v u y v u v u U 79425/850800225/323/160353/44900075/6475/353007/7675/27/750244722112211 解得Et p v /422.82-= Et p u /497.12-= Et p v /028.91-= Et p u /897.11=于是求得各节点的位移为:⎩⎨⎧-==Etp v Etp u /028.9/897.111 ⎩⎨⎧-=-=Etp v Etp u /422.8/497.122 ⎩⎨⎧==033v u ⎩⎨⎧==044v u 六、求解相应的支反力(运用静力学的平衡方程进行求解)3号节点和4号节点的支反力如下图所示:。
(完整word版)有限元分析大作业报告要点

有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。
该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。
二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。
因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。
(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。
(6)模型施加约束:约束采用的是对底面BC 全约束。
大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。
以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元作业
有限元分析大作业
学院:
班级:
姓名:
学号:
日期:
试题一(对应第二章)
如图所示,有一受轴向拉伸载荷2000P N =作用的变截面杆件,在0x =处,杆件截面积为2020A mm =,在180x L mm ==处,杆件截面积为
201
102
A mm =,杆件弹性模量为200GPa ,泊松比为0.3,试建立该杆件的有限元模型,并计算端部位移。
(在划分网格时,沿长度方向取三个等长度杆单元)
x
P
A 01
2
A L
解:计算分析
000
()(1)2(1)
2(1)
2x x x x A P
x A A x A L
P
x A L P x E EA L
σσσε===-
=
-==
-
[
]00
022()[ln(2)]ln 2ln(2)12x
x
x
x P dx PL PL u x dx L x L L x x EA EA EA L ε==
=--=--⎛⎫- ⎪⎝⎭
⎰⎰
() 1.386
0.1242mm PL
u L EA ==
数学建模:将其用二维模型进行降维处理,分为四个节点,三个等长度单元。
后处理
读出最大应力:1.750*10^2mpa
则计算得到右端部位移u(L)=0.12683 轴向位移随杆长变化图如下:
试题二(对应第三章)
一正方形平板,尺寸为40 mm×40 mm,厚度为2 mm,板中央有直径为d的圆孔如下图所示,板材弹性模量为200GPa,泊松比为0.3,在板的左端和右端分别施加20 MPa的拉力载荷.试建立该平板的有限元模型,并分别计算圆孔直
d=5,10,15,20和25mm时,平板开孔应力集中系数。
解:通过受力力分析,可知该问题属于平面应力问题由于结构和载荷对称,取1/4模型进行计算分析。
1.当d=5时,有限元建模如下:
由图读出σmax=48.09 σ0=σ*h*t/((h-d)*t)=20*40/35=160/7 Kt=σmax/σ0=2.104
2.当d=10时,同理可得:
由图读出σmax=62.93 σ0=σ*h*t/((h-d)*t)=20*40/30=80/3
Kt=σmax/σ0=2.360
3.当d=15时,同理可得:
由图读出σmax=81.78 σ0=σ*h*t/((h-d)*t)=20*40/25=32 Kt=σmax/σ0=2.556
4.当d=20时,同理可得:
由图读出σmax=117.2 σ0=σ*h*t/((h-d)*t)=20*40/20=40 Kt=σmax/σ0=2.93
5.当d=25时,同理可得:
由图读出σmax=194.0 σ0=σ*h*t/((h-d)*t)=20*40/15=160/3
Kt=σmax/σ0=3.6375
试题三(对应第六章)
如图所示平面桁架结构,两端均为固定铰链支座,试建立该平面桁架结构的有限元模型,并给出位移图,各杆内力值。
杆件弹性模量为200GPa,泊松比为0.3,各杆面积为0.001m2。
解:分析问题并建立模型
采用六节点9单元模型,每根杆一个单元,两个节点。
位移图如下:
受力分析
则可得,红色的对称应力最大杆,其应力值为:7.073*10^5;其它杆应力值:0
试题四(对应第三章)
图示一简化直齿轮轮齿截面,高h=60mm,厚度t=4mm,齿根宽b=60mm,齿顶宽c=25mm,齿顶作用力P1=1KN(如图中所示), P2=1KN (垂直截面向里);材料弹性模量为200GPa,泊松比为0.3,试采用不同单元分析轮齿上位移及应力分布,并指出最大应力位置。
解:采用四面体单元和六面体单元两种进行网格划分,然后将结果进行对比。
1.四面体单元分析:
由图可知,最大位移为:1.480mm;
由图可知,最大应力为:2.603*10^3mpa.
2.六面体单元,同理可得:
由图可知,最大位移:1.721mm;
由图可知,最大应力:2.925*10^3mpa;
由上面数据对比分析可知,四面体和六面体相比,位移和应力的单元结果都要小,但是两者最终的结果相差不大,应该接近正确值。
最大应力位置为,图中红色区域位置。
试题五(对应第四章)
图示为一圆桶,内径1R =300mm ,外径2R =500mm ,长度L=2000mm ,其内壁受均布压力100q MPa =,外壁固定;材料弹性模量为200GPa,泊松比为0.3,试采用不同单元(四面体和六面体单元)计算圆桶的位移及应力分布
应力和位移的表达式为:
径向正应力:22222
21
1111r r R q R R μμ
σμμ-++=-+-+,
切向(环向)正应力:2222
2
211111r R q R R θμμ
σμμ-+-=+-+,
剪应力:0r θτ= 径向位移
:2
2
22
2211111()r r r R u q E R R μ
μμ--=+-+
解:采用四面体单元和六面体单元两种进行网格划分,然后将结果进行对比。
1.四面体单元
由图可知,最大位移:4.521*10^-2mm;
由图可知,最大应力:1.144*10^2mpa;
2.六面体单元。
同理可得:
由图可知,最大位移:4.580*10^-2mm;最大应力:1.054*10^2mpa;由上面数据分析可知,两种网格单元的最终结果相差不大,应该接近正确值。
建议与体会:通过本次大作业,我对于有限元建模及abaqus有了初
步的了解,作业中遇到很多困难,但最终还是解决了而且收获了很多,从上面的的过程,我们不难看出,同一个问题可以有多种建模方式,而且最终的结果相差不大,网格单元精细的精度可能高一些,但处理过程比较复杂,而网格稀疏的精度可能差一点,但处理过程简单,所以在实际的生产中不一定有限元网格单元越小越好,只要在要求的范围内,越简单越好,所以我们要在要求允许的范围内,找出最优方案。