2017-2018学年七年级数学下期中考试卷及答案
2017-2018学年海南省保亭县七年级(下)期中数学试卷(解析版)

2017-2018学年海南省保亭县七年级(下)期中数学试卷一、选择题(本大题共14小题,共42.0分)1.下列图形中,∠1与∠2是对顶角的是()A. B.C. D.2.在平面直角坐标系中,点(1,-3)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在实数0、π、227、√3、-√9中,无理数的个数有()A. 1个B. 2个C. 3个D. 4个4.下列现象中属于平移的是()A. 升降电梯从一楼升到五楼B. 闹钟的钟摆运动C. 树叶从树上随风飘落D. 方向盘的转动5.16的算术平方根是()A. ±4B. −4C. 4D. ±86.下列计算正确的是()A. √9=±3B. −√643=−4C. √(−0.2)2=−0.2D. ±√1649=477.如图所示,直线a,b被直线c所截,∠1与∠2是()A. 同位角B. 内错角C. 同旁内角D. 邻补角8.下列命题中是真命题的是()A. 同位角都相等B. 内错角都相等C. 同旁内角都互补D. 对顶角都相等9.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A. (−3,0)B. (−1,6)C. (−3,−6)D. (−1,0)10.如图,如果∠1+∠2=180°,那么()A. ∠2+∠4=180∘B. ∠3+∠4=180∘C. ∠3=∠4D. ∠1=∠311.下列说法中错误的是()A. 原点的坐标是(0,0)B. x轴上的所有点的纵坐标都相等C. y轴上的所有点的横坐标都相等D. 点(0,−1)在第四象限12. 如图,在△ABC 中,AD 是高,AE 是∠BAC 的平分线,AF 是BC 边上的中线,则下列线段中,最短的是( )A. ABB. AEC. ADD. AF13. 估计与√6最接近的两个整数是( ) A. 2和3 B. 4和5 C. 5和7 D. 35和3614. 已知点A (2,-2),B (-1,-2),则直线AB 与x 轴的位置关系是( )A. 相交B. 平行C. 相互垂直D. 不能确定二、填空题(本大题共4小题,共16.0分)15. ±√49= ______ ;√−273= ______ ;|-√7|= ______ ;π-3.14的相反数是______ . 16. 如图,写出判断AB ∥CD 的条件是______ .(填一个即可)17. 已知|a -2|+√5+b =0,则a = ______ ,b = ______ .18. 点P (3,5)到x 轴的距离有个单位长度,到y 轴的距离有______ 个单位长度.三、计算题(本大题共1小题,共8.0分)19. 计算.(1)|√−83|-√81(2)√3(√3+3)-2√3.四、解答题(本大题共5小题,共54.0分)20. 求下列各式中x 的值.(1)9x 2=121(2)(x +1)3=27.21. 根据下列语句画出图形.(1)点P 到直线AB 的距离是2cm ,过点P 作AB 的垂线,垂足为D ;(2)如图,过点P作AB的平行线交BC于点E,并写出图中所有相等的角.22.已知长方体冰箱的容积为480立方分米,它的长、宽、高的比是5:4:3,则它的长、宽、高分别为多少分米?23.完成下面的证明(下划线内补全证明过程,括号内填写推理的依据).(1)如图1,AB∥CD,∠B+∠D=180°,求证:CB∥DE证明:∵AB∥CD(已知)∴∠B= ______∵∠B+∠D=180°(已知)∴∠C+∠D=180°(等量代换)∴ ______ ∥ ______(2)如图2,已知DE∥AC,∠A=∠DEF,请证明∠B=∠FEC.证明:∵DE∥AC(已知)∴∠A= ______∵∠A=∠DEF(已知)∴∠DEF=∠ ______ (等量代换)∴AB∥ ______∴∠ ______ =∠ ______ .24.如图所示,△A′B′C′是△ABC经过平移得到的,A(-4,-1),B(-5,-4),C(-1,-3),△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请写出三角形ABC平移的过程;(2)分别写出点A′,B′,C′的坐标;(3)求△A′B′C′的面积.答案和解析1.【答案】B【解析】解:由有一个公共顶点,一个角的两边的反向延长线是另一个角的两边,得B中的图形∠1与∠2是对顶角,故选B.根据对顶角的定义,可得答案.本题考查了对顶角,利用对顶角的定义是解题关键.2.【答案】D【解析】解:点(1,-3)在第四象限.故选D.根据各象限内点的坐标特征解答.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】B【解析】解:π、是无理数,故选:B.根据无理数的定义求解即可.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.【答案】A【解析】【分析】本题考查了图形的平移,平移的特点是只改变图形的位置,不改变图形的形状和大小,学生容易混淆图形的平移和旋转.根据平移的性质,对选项进行一一分析,即可得出答案.【解答】解:A.升降电梯从一楼升到五楼,符合平移的特点,是平移,故本选项符合题意;B.闹钟的钟摆运动是旋转,不是平移,故本选项不符合题意;C.树叶从树上随风飘落不符合平移的特点,不是平移,故本选项不符合题意;D.方向盘的转动是旋转,不是平移,故本选项不符合题意;故选A.5.【答案】C【解析】解:∵42=16,∴16的算术平方根是4.故选:C.根据算术平方根的定义求解即可求得答案.此题主要考查了算术平方根的定义,解决本题的关键是明确一个正数的算术平方根就是其正的平方根.6.【答案】B【解析】解:∵,故选项A错误,∵,故选项B正确,∵,故选项C错误,∵,故选项D错误,故选B.根据各个选项中的式子可以求得相应的结果,从而可以解答本题.本题考查立方根、平方根、算术平方根,解答本题的关键是明确它们各自的计算方法.7.【答案】A【解析】解:如图所示,∠1和∠2两个角都在两被截直线直线b和a同侧,并且在第三条直线c(截线)的同旁,故∠1和∠2是直线b、a被c所截而成的同位角.故选A.根据三线八角的概念,以及同位角的定义作答即可.本题考查了同位角、内错角、同旁内角的定义.在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角.8.【答案】D【解析】解:根据平行线的性质,知:A、B、C错误;D、正确.故选D.两直线平行,同位角相等,内错角相等,同旁内角都互补;对顶角相等.本题要根据平行线的性质和对顶角的性质,进行判断.9.【答案】A【解析】【分析】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.根据平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:根据题意,得点P(-2,-3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是-2-1=-3,纵坐标是-3+3=0,即新点的坐标为(-3,0).故选:A.10.【答案】C【解析】解:∵∠1+∠2=180°,∴AB∥CD,∴∠3=∠4.故选C.由“同旁内角互补,两直线平行”可得出AB∥CD,再根据“两直线平行,同位角相等”即可得出∠3=∠4,此题得解.本题考查了平行线的判定与性质,熟练掌握平行线的判定定理以及性质定理是解题的关键.11.【答案】D【解析】解:A、原点的坐标是(0,0),正确,故本选项不符合题意;B、x轴上的所有点的纵坐标都相等,正确,故本选项不符合题意;C、y轴上的所有点的横坐标都相等,正确,故本选项不符合题意;D、点(0,-1)在y轴上,故本选项符合题意.故选D.根据原点的定义,坐标轴上点的坐标特征以及第四象限内点的坐标特征对各选项分析判断即可得解.本题考查了点的坐标,熟记原点的定义以及坐标轴上点的坐标特征是解题的关键.12.【答案】C【解析】解:∵在△ABC中,AD是高,∴AD⊥BC,又∵在△ABC中,AE是∠BAC的平分线,AF是BC边上的中线,∴AD<AB,AD<AE,AD<AF,故选C.首先根据三角形的高的定义得出AD⊥BC,再根据垂线段最短求解即可.本题考查了三角形的角平分线、中线和高以及垂线段最短的性质,掌握定义与性质是解题的关键.13.【答案】A【解析】解:∵4<6<9,∴2<<3.故选A.由于4<6<9,根据算术平方根可得到2<<3.本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.14.【答案】B【解析】解:∵A(2,-2)、B(-1,-2),∴A、B两点到x轴的距离相等且在x轴的下方,∴AB∥x轴,故选B.由点A、B到x轴的距离相等可求得答案.本题主要考查坐标与图形的性质,掌握点的坐标到坐标轴的距离是解题的关键.15.【答案】±2;-3;√7;3.14-π3【解析】解:±=;=-3;|-|=;π-3.14的相反数是3.14-π,故答案为:,-3,,3.14-π.根据平方根的意义,立方根的意义,绝对值的性质,相反数的意义,可得答案.本题考查了实数的性质,利用负数的绝对值是它的相反数是解题关键,注意在一个数的前面加上负号就是这个数的相反数.16.【答案】∠1=∠2【解析】解:∠1=∠2(答案不唯一).要判断AB∥CD,要看它们的截线所构成的“三线八角”图中各角的位置关系,根据平行线的判定定理解答.本题考查平行线的判定定理,即内错角相等两直线平行;同位角相等两直线平行;同旁内角互补两直线平行.17.【答案】2;-5【解析】解:根据题意得a-2=0,且5+b=0,解得a=2,b=-5.故答案是:2,-5.根据非负数的性质:几个非负数相加和为0时,则其中的每一项都必须等于0,求出a、b的值.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.【答案】3【解析】解:点P(3,5)到x轴的距离有5个单位长度,到y轴的距离有3个单位长度.故答案为:5;3.根据点到x轴的距离等于纵坐标的长度,点到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,点到y轴的距离等于横坐标的长度是解题的关键.3|-√8119.【答案】解:(1)|√−8=2-9=-7(2)√3(√3+3)-2√3=3+3√3-2√3=3+√3【解析】(1)首先计算开方,然后计算减法,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用,注意乘法分配律的应用.20.【答案】解:(1)由题意得:x2=121,9∴x=±11;3(2)由题意可知x+1=3,解得x=2.【解析】本题主要考查的是立方根、平方根的定义,熟练掌握相关概念是解题的关键.(1)先求得x2的值,然后依据平方根的定义求解即可;(2)依据立方根的定义求解的x+1的值,然后解方程即可.21.【答案】解:(1)如图,PD为所作;(2)如图,EP为所作.【解析】(1)过P点作于D(2)过点P作AB的平行线交BC于点E.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.【答案】解:设长方体的长、宽、高分别是5x、4x、3x,由题意得,5x×4x×3x=480,解得,x=2,答:长方体的长、宽、高分别为10分米、8分米、6分米.【解析】根据长方体的体积公式列出方程,解方程即可.本题考查的是立方根的计算,掌握如果一个数的立方等于a,那么这个数叫做a的立方根是解题的关键.23.【答案】∠C;CB;DE;∠BDE;BDE;EF;B;FEC【解析】(1)证明:∵AB ∥CD (已知),∴∠B=∠C .∵∠B+∠D=180°(已知) ∴∠C+∠D=180°(等量代换) ∴CB ∥DE .故答案为:∠C ;CB ,DE ;(2)证明:∵DE ∥AC (已知),∴∠A=∠BDE .∵∠A=∠DEF (已知)∴∠DEF=∠BDE (等量代换)∴AB ∥EF ,∴∠B=∠FEC .故答案为:∠BDE ;BDE ;EF ;B ,FEC .(1)先根据平行线的性质得出∠B=∠C ,再由∠B+∠D=180°可得出∠C+∠D=180°,据此可得出结论;(2)先根据DE ∥AC 得出∠A=∠BDE ,再由∠A=∠DEF 可得出∠DEF=∠BDE ,据此可得出结论.本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.24.【答案】解:(1)∵△ABC 中任意一点P (x 1,y 1)平移后的对应点为P ′(x 1+6,y 1+4),∴平移后对应点的横坐标加6,纵坐标加4,∴△ABC 先向右平移6个单位,再向上平移4个单位得到△A ′B ′C ′或△ABC 先向上平移4个单位,再向右平移6个单位得到△A ′B ′C ′;(2)由(1)可知,A ′(2,3),B ′(1,0),C ′(5,1);(3)如图所示,S △A ′B ′C ′=3×4-12×1×3-12×1×4-12×2×3=5.5. 【解析】(1)根据点P平移后的坐标即可得出结论;(2)根据(1)的平移过程即可得出结论;(3)利用矩形的面积减去三个顶点上三角形的面积即可得出结论.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.。
2017-2018学年福建省福州市福清市七年级(下)期中数学试卷(解析版)

2017-2018学年福建省福州市福清市七年级(下)期中数学试卷一、选择题(本大题共10小题,共20.0分)1.在下列四个图案中,能用其中的一部分图案通过平移的方法得到的是()A. B. C. D.2.在平面直角坐标系中,下列坐标所对应的点位于第三象限的是()A. B. C. D.3.如图能说明∠1>∠2的是()A. B.C. D.4.如图,由AB∥CD,可以得到()A.B.C.D.5.已知命题A:“带根号的数都是无理数”.在下列选项中,可以作为判断“命题A是假命题”的反例的是()A. B. C. D.6.在同一平面内,AB⊥l,BC⊥l,B为垂足,那么A、B、C三点在同一条直线上.判断这个命题为真命题的理由是()A. 两点确定一条直线B. 经过直线外一点,有且只有一条直线与这条直线平行C. 垂线段最短D. 同一平面内,过一点有且只有一条直线与已知直线垂直7.如图,已知∠BAC,过点B画BE∥AC,画∠BAC的平分线AF,AF、BE交于点D,量一量∠ADB的度数,约为()A. B. C.D.8.小李在平面直角坐标系中画了一张示意图,分别标出了学校、电影院、体育馆、超市的大致位置,如果张大妈从体育馆向南走150米,再向东走400米,再向南走250米,再向西走50米,最终到达的地点是()A. 学校B. 电影院C. 体育馆D. 超市9.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A. B. C. D.10.已知,x是整数,若满足条件的值有7个,则a的取值可能是A. B. C. D. 7二、填空题(本大题共6小题,共12.0分)11.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A的度数为130°,第二次拐角∠B的度数为______.12.王明在班级的座位是“第3列第5排”,若用(3,5)表示,则(5,3)表示的实际意义是______.13.2的算术平方根是______.14.把命题“同位角相等”改写成“如果…那么…”的形式为______.15.在平面直角坐标系中,已知点A的坐标为(-3,0),则点A到y轴的距离为______.16.如图a是长方形纸带,∠CFE=50°,将纸带沿EF折叠成图b,再沿GE折叠成图c,则图c中∠DEF的度数是______.三、计算题(本大题共1小题,共10.0分)17.计算题:(1)+-;(2)(1+)+|2-|.四、解答题(本大题共8小题,共58.0分)18.解方程:(x-1)2-9=0.19.在正方形网格中,每个小正方形的边长为1个单位长度,三角形ABC的三个顶点位置如图所示,平移三角形ABC,使点A移动到点A′.(1)画出平移后的三角形A′B′C′;(2)建立平面直角坐标系后,我们得到平移后点B′的坐标是(1,2),则它的对应点B的坐标为______.20.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O,∠EOC=40°,求∠AOD的度数.21.如图,∠BAE+∠AED=180°,∠M=∠N.求证:∠BAN=∠CEM.证明:∵∠BAE+∠AED=180°,(已知)∴AB∥CD,(______)∴______=______.(两直线平行,内错角相等)又∵∠M=∠N(已知)∴______∥______(______)∴∠BAE=∠MEA.(______)∴∠BAE-∠MAE=∠CEA-∠MEA.(等式性质1)即:∠BAN=∠CEM.(等量代换)22.【操作与探究】(1)如图,在所给的坐标系中描出下列各点:D(1,-2),E(-2,4),F(0,0).(2)观察并探究所有点的坐标特征,回答下列问题:①将具有该特征的点的坐标记为(x,y),写出y与x满足的函数表达式.②点(3000,-6000)是否满足这个关系?.(填“满足”或“不满足”)③请你再写出一个类似的点的坐标.(3)观察坐标系中所有点的分布规律,我们能得到一些合理的信息,请你写出两条.23.如图,计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小英说:“我们不可能围成满足要求的长方形场地.”小军说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法准确,为什么?24.如图,点A、C的坐标分别为(a,0)、(0,b),且a、b满足|a-4|+=0,分别过点A、C作x轴、y轴的垂线交于点B.(1)直接写出点B的坐标:______;(2)点D在线段OA上,若直线CD把四边形OABC的面积分成1:2两部分,求点D的坐标;(3)将(2)中的线段CD向右平移h个单位(h>0),得到对应线段C′D′,若C′D′将四边形OABC的周长分成相等的两部分,求h的值.25.如图1,AM∥NC,点B位于AM,CN之间,∠BAM为钝角,AB⊥BC,垂足为点B.(1)若∠C=40°,则∠BAM=______;(2)如图2,过点B作BD⊥AM,交MA的延长线于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,BE平分∠DBC交AM于点E,若∠C=∠DEB,求∠DEB的度数.答案和解析1.【答案】C【解析】【分析】根据平移的性质,对选项进行一一分析,排除错误答案.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.【解答】解:A、是图形旋转所得,故不合题意;B、是图形旋转所得,故不合题意;C、图形的形状和大小不变,符合平移性质,故正确;D、是图形旋转所得,故不合题意.故选C.2.【答案】A【解析】解:A、(-1,-3)位于第三象限,故本选项符合题意;B、(-3,0)在x轴负半轴,故本选项不符合题意;C、(1,-4)位于第四象限,故本选项不符合题意;D、(3,2)位于第一象限,故本选项不符合题意.故选A.根据各象限内点的坐标特征对各选项分析判断即可得解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.【答案】C【解析】解:A.根据对顶角相等,可得∠1=∠2,故A不合题意;B.根据两直线平行,内错角相等,可得∠1=∠2,故B不合题意;C.根据∠1>90°,∠2<90°,可得∠1>∠2,故C正确;D.根据∠1<90°,∠2>90°,可得∠1<∠2,故D不合题意;故选:C.根据对顶角相等,平行线的性质以及邻补角的定义进行判断即可.本题主要考查了平行线的性质以及角的大小比较,解题时注意:比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.4.【答案】B【解析】解:∵∠2与∠4是AB和CD被BC所截而成的内错角,∴当AB∥CD时,∠2=∠4,故选:B.两直线平行,内错角相等,据此进行判断.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.【答案】C【解析】解:、、是无理数,=2是有理数,可以作为该命题是假命题的反例是4,故选:C.根据无理数的概念、算术平方根的定义进行判断即可.本题考查的是命题的真假判断,掌握无理数的概念、算术平方根的定义是解题的关键.6.【答案】D【解析】解:在同一平面内,AB⊥l,BC⊥l,B为垂足,则根据同一平面内,过一点有且只有一条直线与已知直线可判断A、B、C三点在同一条直线上.故选D.利用过B点有且只有一条直线与直线l垂直可判定A、B、C三点在同一条直线上.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.【答案】B【解析】解:∠ADB=34°.故选B.根据叙述正确作出图形,然后利用量角器测量即可.本题考查了平行线的性质,正确作出图形是关键.8.【答案】D【解析】解:根据题意,张大妈从体育馆(-100,200)向南走150米到(-100,50),再向东走400米到达(300,50),再向南走250米到达(300,-200),再向西走50米到达(250,-200),∴最终到达的地点是超市,故选:D.结合平面直角坐标系得出每次移动后的坐标即可得出答案.本题主要考查坐标确定位置,熟练掌握点在平移时坐标的变化情况是解题的关键.9.【答案】C【解析】解:∵AB∥CD,∴∠BCD=∠ABC=45°,∴∠1=∠BCD-∠BCE=45°-30°=15°.故选:C.先根据平行线的性质得出∠BCD的度数,进而可得出结论.本题考查的是平行线的性质,熟知平行线的性质与三角板的特点是解答此题的关键.10.【答案】B【解析】【分析】此题考查了绝对值以及估算无理数的大小,关键是根据绝对值的定义得出绝对值相等的数有两个.根据题意得出a的取值范围,进而得出答案.【解答】解:∵|x|<a,x是整数,满足条件的值有7个,∴这7个整数分别是:-3,-2,-1,0,1,2,3,故3≤|x|<4,即3<a≤4,故a的取值可能是:π.故选B.11.【答案】130°【解析】解:∵一条公路两次转弯后,和原来的方向相同,∴∠A=∠B,又∵∠A的度数为130°,∴第二次拐角∠B的度数为130°,故答案为:130°.根据一条公路两次转弯后,和原来的方向相同,可得∠A=∠B,再根据∠A的度数为130°,即可得出第二次拐角∠B的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.12.【答案】第5列第3排【解析】【分析】本题考查了坐标确定位置,读懂题目信息,理解有序数对的两个数的实际意义是解题的关键.根据第一个数表示列数,第二个数表示排数解答.【解答】解:∵“第3列第5排”用(3,5)表示,∴(5,3)表示的实际意义是第5列第3排.故答案为第5列第3排.13.【答案】【解析】解:∵2的平方根是±,∴2的算术平方根是.故答案为:.根据算术平方根的定义直接解答即可.本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.14.【答案】如果两个角是同位角,那么这两个角相等【解析】解:命题“同位角相等”改写成“如果…那么…”的形式为:如果两个角是同位角,那么这两个角相等.故答案为如果两个角是同位角,那么这两个角相等.命题有题设与结论组成,把命题的题设写在如果的后面,结论写在那么的后面即可.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.15.【答案】3【解析】解:由题意,得点A到y轴的距离为|-3|=3,故答案为:3.根据点到y轴的距离是横坐标的绝对值,可得答案.本题考查了点的坐标,利用点到y轴的距离是横坐标的绝对值是解题关键.16.【答案】30°【解析】解:∵AD∥BC,∠CFE=50°,∴∠AEF=∠CFE=50°,∠DEF=130°,∴b图中的∠GEF=50°,∠DEG=180°-2×50°=80°,∴c图中∠GFE=50°,∴c图中∠DEF=80°-50°=30°.故答案为:30°.根据两条直线平行,内错角相等,则∠AEF=∠CFE=50°,根据平角定义,则b图中的∠DEG=80°,进一步求得c图中∠GFE=50°,进而求得图c中的∠DEF的度数.此题主要考查了根据折叠能够发现相等的角,同时运用了平行线的性质和平角定义.17.【答案】解:(1)+-=0+3-2=1(2)(1+)+|2-|=3++2-=(3+2)+(-)=5+0=5【解析】(1)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘法,然后应用加法交换律和加法结合律,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.【答案】解:∵(x-1)2-9=0,∴(x-1)2=9,∴x-1=±3,解得:x=4或x=-2.【解析】依据平方根的性质可得到x-1的值,然后解关于x的一元一次方程即可.本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.19.【答案】解:(1)如图,△A′B′C′即为所求;(2)(-2,1).【解析】解:(1)如图,△A′B′C′即为所求;(2)如图,B(-2,1).故答案为:(-2,1).(1)根据图形平移的性质画出△A′B′C′即可;(2)利用点B′的坐标是(1,2)建立直角坐标系,并写出点B的坐标即可.本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.20.【答案】解:∵EO⊥AB,∴∠EOB=90°.又∵∠EOC=40°,∴∠COB=∠EOC+∠BOE=130°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=130°.【解析】根据图形求得∠COB=∠COE+∠BOE=130°;然后由对顶角相等的性质来求∠AOD的度数.本题考查了垂线,对顶角、邻补角等知识点.求出∠COB的度数是解决问题的关键.21.【答案】同旁内角互补,两直线平行;∠BAE;∠CEA;AN;ME;内错角相等,两直线平行;两直线平行,内错角相等【解析】解:∵∠BAE+∠AED=180°,(已知)∴AB∥CD,(同旁内角互补,两直线平行)∴∠BAE=∠CEA.(两直线平行,内错角相等)又∵∠M=∠N (已知)∴AN∥ME(内错角相等,两直线平行)∴∠NAE=∠MEA.(两直线平行,内错角相等)∴∠BAE-∠NAE=∠CEA-∠MEA.(等式性质1)即:∠BAN=∠CEM.(等量代换)故答案为:同旁内角互补,两直线平行;∠BAE;∠CEA; AN,ME;内错角相等,两直线平行;两直线平行,内错角相等.由平行线的判定与性质即可得出结论.本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键.22.【答案】(1)描点,如图所示.(2)①y=-2x;②满足;③(2,-4)(3)满足条件的点都在同一条直线上;除原点外其他各点都在第二、四象限内.【解析】解:(1)描点,如图所示.(2)①∵A(-3,6),B(-1,2),C(3,-6),D(1,-2),E(-2,4),F(0,0),∴y=-2x.故答案为:y=-2x.②∵-6000=-2×3000,∴点(3000,-6000)满足y=-2x.故答案为:满足;③当x=2时,y=-2x=-4,∴(2,-4)满足y=-2x.故答案为:(2,-4).(3)满足条件的点都在同一条直线上;除原点外其他各点都在第二、四象限内;y随着x的增大而减小.(1)根据点D、E、F的坐标,将其标记在坐标系中即可;(2)①根据点的坐标的变化,找出x、y之间的关系;②由点的坐标结合y=-2x,即可得出结论;③将x=2代入y=-2x中求出y值;(3)根据函数图象结合一次函数的性质,即可得出结论.本题考查了规律型中点的坐标、一次函数图象以及一次函数的性质,解题的关键是:(1)根据点的坐标描点;(2)①根据坐标的变化找出y=-2x;②代入点的坐标,验证是否满足条件;③代入x=2求出y;(3)观察函数图象,找出函数性质.23.【答案】解:设长方形场地的长为5xm,宽为2xm,依题意,得,5x•2x=50,∴x=,长为5,宽为2,∵4<5<9,∴2<<3.由上可知2<6,且5>10若长与墙平行,墙长只有10m,故不能围成满足条件的长方形场地;若宽与墙平行,则能围成满足条件的长方形场地.∴需要分两种情况来看,他们的说法都不准确.【解析】此题主要考查了列一元二次方程的应用和解简单的一元二次方程有关知识,根据矩形的面积公式求出矩形的长和宽,最后进行判断即可得出结论.24.【答案】(4,3)【解析】解:(1)∵a 、b 满足|a-4|+=0, ∴a=4,b=3,∴点A 、C 的坐标分别为(4,0)、(0,3),∴OA=4,OC=3,∵分别过点A 、C 作x 轴、y 轴的垂线交于点B ,∴四边形ABCO 是矩形,∴BA=OC=3,BC=OA=4,∴B (4,3);故答案为:(4,3);(2)∵A 、C 的坐标分别为(4,0)、(0,3),∴OA=BC=4,OC=3.∵直线CD 把四边形OABC 的面积分成1:2两部分,∴S △COD =S 四边形OABC =4或S △COD =S 四边形OABC =8.∵点D 在线段OA 上,S △OAC =OA•OC=6,∴S △COD =8>6不合题意,舍去. ∴OA•OC=4,∴OD=.∴点D 的坐标为(,0).(3)∵四边形OABC 的周长=2(OA+OC )=14,∴CC′+OC+OD′=7,∴h+3++h=7,解得:h=.∴h 的值为.(1)根据点A 、C 的坐标分别为(4,0)、(0,3),即可写出点B 的坐标;(2)直线CD 把四边形OABC 的面积分成1:2两部分,可得S △COD =S 四边形OABC =4或S △COD =S 四边形OABC =8,因为点D 在线段OA 上,S △OAC =OA•OC=6得到S△COD=8>6不合题意,舍去,然后根据OA•OC=4,OD=,即可解答;(3)利用四边形OABC的周长=2(OA+OC)=10,可得CC′+BC+BD′=5,所以h+3+1+h=5,即可解答.本题考查了坐标与图形性质,矩形的判定和性质,三角形面积的计算,解决本题的关键是数形结合思想的应用.25.【答案】130°【解析】(1)解:过点B作BE∥AM,则AM∥BE∥NC,∵BE∥NC,∠C=40°,∴∠CBE=∠C=40°.∵AB⊥BC,∴∠ABC=90°,∴∠ABE=90°-40°=50°.∵AM∥BE,∴∠BAM+∠ABE=180°,∴∠BAM=180°-50°=130°.故答案为:130°;(2)证明:如图2,过点B作BF∥DM,则∠ADB+∠DBF=180°.∵BD⊥AM,∴∠ADB=90°.∴∠DBF=90°,∠ABD+∠ABF=90°.又∵AB⊥BC,∴∠CBF+∠ABF=90°.∴∠ABD=∠CBF.∵AM∥CN,∴BF∥CN,∴∠C=∠CBF.∴∠ABD=∠C.(3)解:设∠DEB=x°,由(2)可得∠ABD=∠C,∵∠C=∠DEB,∴∠ABD=∠C=∠DEB=x°.过点B作BF∥DM,如图3,∴∠DEB=∠EBF,∠C=∠FBC.∴∠CBE=∠EBF+∠FBC=∠DEB+∠C=2x°.∵∠DBC=∠ABC+∠ABD=90°+x°.∵BE平分∠DBC,∴∠DBC=2∠CBE=4x°,即4x=90+x,解得x=30.∴∠DEB的度数为30°.(1)过点B作BE∥AM,则AM∥BE∥NC,再由平行线的性质即可得出结论;(2)过点B作BF∥DM,则∠ADB+∠DBF=180°,再由BD⊥AM,AB⊥BC可得出∠ABD=∠CBF,再由平行线的性质即可得出结论;(3)设∠DEB=x°,由(2)可得∠ABD=∠C,由∠C=∠DEB可得出∠ABD=∠C=∠DEB=x°,过点B作BF∥DM,根据平行线的性质可得出∠DBC=∠ABC+∠ABD=90°+x°.再由BE平分∠DBC可知∠DBC=2∠CBE=4x°,据此可得出x的值.本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线,利用平行线的性质求解是解答此题的关键.。
2017~2018学年第二学期初一数学期中考试试卷及答案

提出问题:
(1)观察图②,请用两种不同的方法表示阴影部分的积:,;
(2)请写出三个代数式 , , 之间的一个等量关系:;
问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知 , ,求 的值.
3、下列各式从左边到右边的变形是因式分解的是(▲)
A. B.
C. D.
4、如果一个三角形的两边长分别为3和7,则第三边长可能是(▲)
A.3B.4C.8D.10
5、若a=0.32,b=-3-2,c=(-3)0,那么 、 、 三数的大小为(▲)
A. B. C. D.
6、如图所示,下列判断正确的是(▲)
A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥CD
26、(本题满分8分)若∠C=α,∠EAC+∠FBC=β
(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则α与β有何关系?并说明理由.
(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与α、β的关系.(用α、β表示)
(3)如图③,若α≥β,∠EAC与∠FBC的平分线相交于P1,∠EAP1与∠FBP1的平分线交于P2;依此类推,则∠P5=______.(用α、β表示)
∴∠C=∠APB+(∠PAC+∠PBC),
∴α=∠APB+ β,
即∠APB=α- β;………………………3分
(3)由(2)得,∠P1=∠C-(∠PAC+∠PBC)=α- β,
∠P2=∠P1-(∠P2AP1+∠P2BP1),
=α- β- β=α- β,
2017-2018学年天津市和平区七年级(下)期中数学试卷(解析版)

2017-2018学年天津市和平区七年级(下)期中数学试卷一、选择题(本大题共12小题,共24.0分)1.36的算术平方根是()A. 6B. −6C. ±6D. √62.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,-y)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.点P(a,b)在第四象限,则点P到x轴的距离是()A. aB. bC. |a|D. |b|4.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是()A. 3B. 3.5C. 4D. 55.若∠A与∠B是对顶角且互补,则它们两边所在的直线()A. 互相垂直B. 互相平行C. 既不垂直也不平行D. 不能确定6.把点M(-2,1)向右平移3个单位长度,再向下平移2个单位长度后得到点N,则N的坐标为()A. (−4,4)B. (−5,3)C. (1,−1)D. (−5,−1)7.计算|1+√3|+|√3-2|=()A. 2√3−1B. 1−2√3C. −1D. 38.若x使(x-1)2=4成立,则x的值是()A. 3B. −1C. 3或−1D. ±29.如图所示,下列推理不正确的是()A. 若∠AEB=∠C,则AE//CDB. 若∠AEB=∠ADE,则AD//BCC. 若∠C+∠ADC=180∘,则AD//BCD. 若∠AED=∠BAE,则AB//DE10.下列命题是假命题的有()①邻补角相等;②对顶角相等;③同位角相等;④同旁内角互补A. 1个B. 2个C. 3个D. 4个11.一个人从A点出发向北偏东60°的方向走到B点,再从B出发向南偏西15°方向走到C点,那么∠ABC等于()A. 75∘B. 105∘C. 45∘D. 135∘12.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少40°,那么这两个角分别是()A. 20∘,20∘B. 55∘,125∘C. 35∘,145∘D. 以上都不对二、填空题(本大题共6小题,共18.0分)13.点P(m+3,m+1)在直角坐标系的y轴上,则点P的坐标为______.14.已知一个数的平方根是3a+1和a+11,求这个数的立方根是______.15.在平面直角坐标系中,若点M(1,x)与点N(1,3)之间的距离是5,则x的值是______.16.如图,将直三角形ABC沿AB方向平移得到三角形DEF,已知AD=6,EF=8,CG=3,则阴影部分的面积为______.17.如图(1)是长方形纸片,∠DEF=21°,将纸片沿EF折叠成图(2)的形状,则图(2)中的∠CFG的度数是______.3,则a+b的最小值是______.18.若a、b均为正整数,且a>√7,b<√2三、解答题(本大题共7小题,共58.0分)3-√(−6)2-(-√5)219.计算:√121+√−2720.三角形ABC与三角形A′B′C′在平面直角坐标系中的位置如图所示,三角形A′B′C′是由三角形ABC平移得到的.(1)分别写出点A′、B′、C′的坐标;(2)说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的?(3)若点F(a,b)是三角形ABC内的一点,则平移后三角形A′B′C′内的对应点为P′,写出点P′的坐标.21.已知4是3a-2的算术平方根,2-15a-b的立方根为-5.(1)求a和b的值;(2)求2b-a-4的平方根.22.如图,已知点E、F在直线AB上,点G在线段CD上,DE与FG相交于点H.∠C=∠EFG,∠CED=∠GHD.试说明:(1)CE∥GF;(2)∠AED+∠D=180°.23.在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式:(a-2)2+√b−3+|c-4|=0.(1)求A、B、C三点的坐标;),若四边形ABOP的面积与三角形ABC (2)如果在第二象限内有一点P(m,12的面积相等,求点P的坐标.24.如图,已知AE∥CF,∠A=∠C.(1)若∠1=40°,求∠2的度数;(2)判断AD与BC的位置关系,并说明理由;(3)若AD平分∠BDF,求证:BC平分∠DBE.25.如图(1)所示:已知MN∥PQ,点B在MN上,点C在PQ上,点A在点B的左侧,点D在点C的右侧,∠ADC、∠ABC的平分线交于点E(不与B、D点重合),∠CBN=110°.(1)若∠ADQ=140°,则∠BED的度数为______(直接写出结果即可);(2)若∠ADQ=m°,将线段AD沿DC方向平移,使点D移动到点C的左侧,其它条件不变,如图(2)所示,求∠BED的度数(用含m的式子表示).答案和解析1.【答案】A【解析】解:36的算术平方根是6.故选:A.利用算术平方根的定义计算即可得到结果.此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.【答案】B【解析】解:由点A(x,y)在第三象限,得x<0,y<0.x<0,-y>0,则点B(x,-y)在第二象限;故选:B.根据第三象限内的点的纵坐标小于零,纵坐标小于零,可得x、y的取值范围,根据不等式的性质,可得答案;本题考查了点的坐标,熟记各象限内点的坐标符号是解题关键.3.【答案】D【解析】解:P(a,b)在第四象限,则点P到x轴的距离是|b|,故选:D.根据点到x轴的距离是纵坐标的绝对值解答即可.本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值是解题关键.4.【答案】A【解析】【分析】本题考查了垂线短的性质,利用垂线段的性质是解题关键.根据垂线段的性质,可得答案.【解答】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥AB,AP≥3.5.故选A.5.【答案】A【解析】解:∵∠A与∠B是对顶角,∴∠A=∠B,又∵∠A与∠B互补,∴∠A+∠B=180°,可求∠A=90°.故选:A.∠A与∠B是对顶角且互补,根据对顶角的性质,判断这两个对顶角相等,且都为90°,因此它们两边所在的直线互相垂直.本题考查垂线的定义和对顶角的性质,是简单的基础题.6.【答案】C【解析】解:把点M(-2,1)向右平移3个单位长度,再向下平移2个单位长度后得到点N,则N的坐标为(-2+3,1-2),即(1,-1),故选:C.利用点平移的坐标规律,把点M的横坐标加3,把纵坐标减2即可得到对应点N的坐标.本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.7.【答案】D【解析】解:原式=1++2-=3.故选:D.直接利用绝对值的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.8.【答案】C【解析】解:∵(x-1)2=4成立,∴x-1=±2,解得:x1=3,x2=-1.故选:C.直接利用平方根的定义得出x-1=±2,进而得出答案.此题主要考查了平方根,正确把握平方根的定义是解题关键.9.【答案】B【解析】解:A、若∠AEB=∠C,则AE∥CD,正确;B、若∠AEB=∠DAE,则AD∥BC,错误;C、若∠C+∠ADC=180°,则AD∥BC,正确;D、若∠AED=∠BAE,则AB∥DE,正确;故选:B.根据平行线的判定进行判断即可.此题主要考查了平行线的判定,熟练掌握平行线的判定是解题关键.10.【答案】C【解析】解:邻补角互补,①是假命题;对顶角相等,②是真命题;两直线平行,同位角相等,③是假命题;两直线平行,同旁内角互补,④是假命题;故选:C.根据邻补角的性质、对顶角的性质、平行线的性质定理判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.【答案】C【解析】解:从图中发现∠ABC等于60°-15°=45°.故选C.根据方位角的概念,画图正确表示出方位角,即可求解.解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.12.【答案】D【解析】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x-40,解得:x=20,∴这两个角的度数是20°和20°;若这两个角互补,则180-x=3x-40,解得:x=55,∴这两个角的度数是55°和125°.∴这两个角的度数是20°和20°或55°和125°.故选:D.首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少40°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.此题考查了平行线的性质与一元一次方程的解法.此题难度适中,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补,注意方程思想的应用.13.【答案】(0,-2)【解析】解:∵点P(m+3,m+1)在直角坐标系的y轴上,∴m+3=0,解得:m=-3,故m+1=-2,则点P的坐标为:(0,-2).故答案为:(0,-2).根据y轴上点的坐标性质得出m的值,进而得出答案.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.【答案】4【解析】解:∵一个数的平方根是3a+1和a+11,∴3a+1+a+11=0,解得:a=-3,这个数是(3a+1)2=64,即这个数的立方根是4,故答案为:4.根据题意得出方程,求出方程的解,求出这个数是64,即可求出答案.本题考查了立方根、平方根、一元一次方程的应用,解此题的关键是求出a的值,注意:一个正数有两个平方根,它们互为相反数.15.【答案】-2或8【解析】解:∵点M(1,x)与点N(1,3)之间的距离是5,∴|x-3|=5,解得x=-2或8.故答案为:-2或8.点M、N的横坐标相等,则直线MN在平行于y轴的直线上,根据两点间的距离,可列出等式|x-3|=5,从而解得x的值.本题是基础题,考查了坐标与图形的性质,当两点的横坐标相等时,则这两点在平行于y轴的直线上.16.【答案】39【解析】解:∵Rt△ABC沿AB的方向平移AD距离得△DEF,∴△DEF≌△ABC,∴EF=BC=8,S△DEF=S△ABC,BE=AD=6,∴S△ABC-S△DBG=S△DEF-S△DBG,∴S四边形ACGD=S梯形BEFG,∵CG=3,∴BG=BC-CG=8-3=5,∴S梯形BEFG=(BG+EF)•BE=(5+8)×6=39.故答案为:39.根据平移的性质可得△DEF≌△ABC,S△DEF=S△ABC,则阴影部分的面积=梯形BEFG的面积,再根据梯形的面积公式即可得到答案.本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.同时考查了梯形的面积公式.17.【答案】138°【解析】解:∵AD∥BC,∴∠DEF=∠EFB=21°,由折叠可得:∠EFC=180°-21°=159°,∴∠CFG=159°-21°=138°,故答案为:138°先根据平行线的性质得出∠DEF=∠EFB,根据图形折叠的性质得出∠EFC的度数,进而得出∠CFG即可.本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.18.【答案】4【解析】解:∵,∴2,∵a,a为正整数,∴a的最小值为3,∵,∴1<<2,∵b<,b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.先估算、的范围,然后确定a、b的最小值,即可计算a+b的最小值.此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.19.【答案】解:原式=11-3-6-5=-3.【解析】根据立方根,平方根,二次根式的性质,可得答案.本题考查了实数的运算,利用立方根,平方根,二次根式的性质是解题关键.20.【答案】解:(1)A′(-3,1)、B′(-2,-2)、C′(-1,-1);(2)△ABC向左平移4个单位,向下平移2个单位得到△A′B′C′;(3)点P′的坐标为(a-4,b-2).【解析】(1)根据平面直角坐标系分别写出各点的坐标即可;(2)根据图形,从点A、A′的变化写出平移规律;(3)根据平移规律写出点P′的坐标即可.本题考查了坐标与图形变化-平移,准确识图是解题的关键.21.【答案】解:(1)∵4是3a-2的算术平方根,∴3a-2=16,∴a=6,∵2-15a-b的立方根为-5,∴2-15a-b=-125,∴2-15×6-b=-125,∴b=37.(2)2b-a-4=2×37-6-4=64,64的平方根为±8,∴2b-a-4的平方根为±8.【解析】(1)根据算术平方根、立方根的定义,得到3a-2=16,2-15a-b=-125,求出a,b的值即可;(2)把a,b值代入代数式求出代数式的值,根据平方根即可解答.本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的定义.22.【答案】证明:(1)∵∠CED=∠GHD,∴CE∥GF;(2)∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°.【解析】(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;考查了平行线的判定和性质,平行线的判定有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补. 23.【答案】解:(1)由已知(a -2)2+√b −3+|c -4|=0,可得:a -2=0,b -3=0,c -4=0,解得a =2,b =3,c =4;可得:A (0,2),B (3,0),C (3,4);(2)∵S △ABO =12×2×3=3,S △APO =12×2×(-m )=-m ,∴S 四边形ABOP =S △ABO +S △APO =3+(-m )=3-m ;∵S △ABC =12×4×3=6, 又∵S 四边形ABOP =S △ABC∴3-m =6,解得m =-3,∴存在点P (-3,12)使S 四边形ABOP =S △ABC .【解析】 本题考查了非负数的性质,三角形及四边形面积的求法,解题时注意:当几个非负数的和为0时,则其中的每一项都必须等于0.(1)用非负数的性质求解可得a ,b ,c 的值;(2)把四边形ABOP 的面积看成两个三角形面积和,用m 来表示;依据四边形ABOP 的面积与三角形ABC 的面积相等,列方程即可.24.【答案】解:(1)∵AE ∥CF ,∴∠BDC =∠1=40°,又∵∠2+∠BDC =180°,∴∠2=180°-∠BDC =180°-40°=140°;(2)BC ∥AD .理由:∵AE ∥CF ,∴∠A +∠ADC =180°,又∵∠A =∠C ,∴∠C +∠ADC =180°,∴BC ∥AD .(3)∵AE ∥CF ,∴∠BDF =∠DBE .∵BC ∥AD ,∴∠ADB =∠DBC .∵AD 平分∠BDF ,∴∠ADB =12∠BDF ,∴∠DBC=1∠EBD.2∴BC平分∠DBE.【解析】(1)由平行线的性质求得∠BDC=∠1=40°,然后由邻补角的定义求得∠2的度数即可;(2)由平行线的性质可知:∠A+∠ADC=180°,然后由∵∠A=∠C,再证得∠C+∠ADC=180°,从而可证得BC∥AD;(3)由AE∥CF可证明∠BDF=∠DBE,由BC∥AD,可证明∠ADB=∠DBC,由角平分线的定义可知,∠ADB=∠BDF,从而可证明∠DBC=∠EBD.本题主要考查的是平行线的性质的应用,掌握平行线的性质是解题的关键.25.【答案】55°【解析】解:(1)如图(1),过点E作EF∥PQ.∵∠CBN=110°,∠ADQ=140°,∴∠CBM=70°,∠ADP=40°.∵∠CDE=∠ADE,∠ABE=∠CBE,∴∠EBM=35°,∠EDP=20°.∵EF∥PQ,∴∠DEF=∠EDP=20°.∵EF∥PQ,MN∥PQ,∴EF∥MN,∴∠FEB=∠EBM=35°,∴∠BED=∠DEF+∠FEB=20°+35°=55°;故答案为:55°(2)如图(2),过点E作EF∥PQ.∵∠CBN=110°,∴∠CBM=70°.∵∠CDE=∠ADE,∠ABE=∠CBE,∴∠EBM=35°,∠EDQ=m°.∵EF∥PQ,∴∠DEF=180°-∠EDQ=180°-m°.∵EF∥PQ,MN∥PQ,∴EF∥MN,∴∠FEB=∠EBM=35°,∴∠BED=∠DEF+∠FEB=180°-m°+35°=215°-m°.(1)过点E作EF∥PQ,根据邻补角的定义求出∠CBM=70°,∠ADP=40°,再根据角平分线的定义求出∠EBM=35°,∠EDP=20°,再根据两直线平行,内错角相等可得∠DEF=∠EDP,∠FEB=∠EBM,然后根据∠BED=∠DEF+∠FEB代入数据计算即可得解;(2)过点E作EF∥PQ,根据邻补角的定义求出∠CBM=70°,再根据角平分线的定义求出∠EBM=35°,∠EDQ=m°,再根据两直线平行,同旁内角互补可得∠DEF=180°-∠EDQ=180°-m°,根据两直线平行,内错角相等可得∠FEB=∠EBM,然后根据∠BED=∠DEF+∠FEB代入数据计算即可得解.本题考查了平移的性质,平行线的性质,角平分线的定义,准确识图并理清图中各角度之间的关系是解题的关键,难点在于过拐点作平行线.。
2017-2018学年安徽省宿州市十三校七年级(下)期中数学试卷(解析版)

2017-2018学年安徽省宿州市十三校七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.计算a2•a4的结果是()A. a6B. 2a6C. a8D. 2a8【答案】A【解析】【分析】根据同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】a2•a4=a2+4=a6.故选:A.【点睛】考查了同底数幂的乘法,熟记性质并理清指数的变化是解题的关键.2.下列各式中计算正确的是()A. (x4)3=x7B. [(﹣a)2]5=﹣a10C. (a m)2=(a2)m=a2mD. (﹣a2)3=(﹣a3)2=﹣a6【答案】C【解析】【分析】直接利用幂的乘方运算法则化简各式求出答案.【详解】A选项:(x4)3=x12,故此选项错误;B选项:[(-a)2]5=a10,故此选项错误;C选项:(a m)2=(a2)m=a2m,正确;D选项:(-a2)3=-(a3)2=-a6,故此选项错误;故选:C.【点睛】考查了幂的乘方运算,正确将原式变形是解题关键.3. 下列运算中,正确的是()A. (a+3)(a-3)=a2-3B. (3b+2)(3b-2)=3b2-4C. (3m-2n)(-2n-3m)=4n2-9m2D. (x+2)(x-3)=x2-6【答案】C【解析】试题分析:应用多项式的乘法法则分别进行计算,得出结论,A.(a+3)(a-3)=a2-9,故A错误;B.(3b+2)(3b-2)=9b2-4,故B错误;C.(3m-2n)(-2n-3m)=4n2-9m2,故C正确;D.(x+2)(x-3)=x2-x-6,故D错误.故选:C.考点:多项式的乘法;乘法公式.4.一种细菌半径是0.000047米,用科学记数法表示为()A. 0.47×10﹣4米B. 4.7×10﹣5米C. 4.7×10﹣6米D. ﹣4.7×105米【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000047=4.7×10-5,故选:B.【点睛】考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图,直线a,b被直线c所截,∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 对顶角【答案】B【解析】试题分析:如图所示,∠1和∠2两个角都在两被截直线直线b和c同侧,并且在第三条直线a(截线)的两旁,故∠1和∠2是直线b、c被a所截而成的内错角.故选B.考点:同位角、内错角、同旁内角.视频6.如图,直线a,b被直线c所截,下列说法正确的是()学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...A. 当∠1=∠2时,一定有a∥bB. 当a∥b时,一定有∠1=∠2C. 当a∥b时,一定有∠1+∠2=180°D. 当a∥b时,一定有∠1+∠2=90°【答案】C【解析】考点:平行线的性质.分析:根据平行线的性质和邻补角互补,结合图形,逐一分析,排除错误答案.解:A、∵∠2与∠3互为邻补角,∴∠3=180°-∠2,当∠1=∠3,即∠1=180°-∠2时,根据同位角相等,两直线平行,一定有a∥b,故错误;B、当a∥b时,根据两直线平行,同位角相等,一定有∠1=∠3,∵∠2与∠3互为邻补角,∴∠3+∠2=180°,即∠1+∠2=180°,故错误;C、由B知,正确;D、由B知,错误.故选C.7. 如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A. ∠2=60°B. ∠3=60°C. ∠4=120°D. ∠5=40°【答案】D【解析】试题分析:根据平行线的性质和对顶角的性质得出∠3=∠2=∠1=60°,根据互补的性质可得:∠4=180°-60°=120°,根据互补的性质可得:∠5=90°-60°=30°.考点:(1)平行线的性质;(2)对顶角的性质;(3)互余与互补的性质8.下列说法正确的是()A. 直线外一点到这条直线的垂线段叫这点到这条直线的距离B. 一对同旁内角的平分线互相垂直C. 对顶角的平分线在一条直线上D. 一个角的补角可能与它的余角相等【答案】C【解析】【分析】根据点到直线的距离,平行线的定义,垂线的性质,对顶角的定义对各选项分析判断后利用排除法求解.【详解】A选项:直线外一点到这条直线的垂线段的长度,叫点到直线的距离,故本选项错误;B选项:两条直线被第三条直线所截,如果两条直线平行,则一对同旁内角的平分线互相垂直,故本选项错误;C选项:对顶角的平分线在同一条直线上,故本选项正确;D选项:一个角的补角不可能与它的余角相等,故本选项错误;故选:C.【点睛】考查了平行线的定义,点到直线的距离的定义,垂线的性质以及对顶角的定义,是基础题,熟记概念与性质是解题的关键.9.变量x与y之间的关系是y=﹣x2+1,当自变量x=2时,因变量y的值是()A. ﹣2B. ﹣1C. 1D. 2【答案】B【解析】【分析】把自变量x的值代入函数解析式进行计算即可得解.【详解】把x=2代入y=﹣x2+1中得:y=-1.故选:B.【点睛】考查了函数值的求解,是基础题,准确计算是解题的关键.10. 如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()A. 第3分时汽车的速度是40千米/时B. 第12分时汽车的速度是0千米/时C. 从第3分到第6分,汽车行驶了120千米D. 从第9分到第12分,汽车的速度从60千米/时减少到0千米/时【答案】C【解析】横轴表示时间,纵轴表示速度.当第3分的时候,对应的速度是40千米/时,A对;第12分的时候,对应的速度是0千米/时,B对;从第3分到第6分,汽车的速度保持不变,是40千米/时,行驶的路程为40×=2千米,C错;从第9分到第12分,汽车对应的速度分别是60千米/时,0千米/时,所以汽车的速度从60千米/时减少到0千米/时,D对.综上可得:错误的是C.故选C.二、填空题(本大题共4小题,每小题5分,满分20分)11.315÷313=_____.【答案】9.【解析】【分析】根据同底数幂除法法则计算.【详解】315÷313=.故答案是:9.【点睛】考查了同底数幂的除法,解题关键是运用了同底数幂的除法法则().12.按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是______________.【答案】xy=z【解析】试题分析:观察数列可发现所以这一列数据所揭示的规律是前两个数的积等于第三个数.根据规律x、y、z表示这列数中的连续三个数,则x、y、z满足的关系式是xy=z.考点:规律探究题.视频13.如图,a∥b,一块等腰直角三角板的直角顶点落在直线b上,一个锐角顶点落在直线a上,若∠1=25°,则∠2=_______.【答案】65°.【解析】【分析】先由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【详解】如图所示:∵∠1=25°,∴∠3=90°-∠1=90°-25°=65°.∵a∥b,∴∠2=∠3=65°.故答案是:65°.【点睛】考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.14.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有_____________(填所有正确的序号).【答案】①②④【解析】①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15千米/时;故②正确;④设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×=6km,故③错误;所以正确的结论有三个:①②④,故答案为:①②④。
2017-2018学年北京市北京师大附中七年级下学期期中考试数学试卷(含答案)

北京师大附中2017-2018学年下学期初中七年级期中考试数学试卷一、选择题:(本题共16分,每小题2分)1.下列各数中无理数有()3.141, 鼠-心,0,0.1010010001A. 2个B. 3个C. 4个D. 5个2.如图所示,四幅汽车标志设计中,能通过平移得到的是A. AB. BC. CD. D3.若小b,则下列不等式中,不一定成立的是()A. B 3 f b-3B. 4 + bC. 23 2bD. Jwly4.如图,直线AB与直线CD相交于点O, EOJLAB, L E OD-<5,则々lOC5.已知点A (a,b)在第三象限,则点B(-a+1 , 3b-1)在A.第一象限B.第二象限C.第三象限D.第四象限6.下列说法中正确的有()①负数没有平方根,但负数有立方根;②一个数的立方根等于它本身,则这个数是0或1;③,-5;④的的平方根是土W;⑤『定是负数A. 1个B. 2 个C. 3 个D. 4 个7.如图,直线a,b被直线c所截,-Z4,若々・4行,则匕工等于()A.Q|B.卜费C.D.飘X8.在平面上,过一定点。
作两条斜交的轴x和y,它们的交角是s (切于兜。
),以定点。
为原点,在每条轴上取相同的单位长度,这样就在平面上建立了一个斜角坐标系,其中仍叫做坐标角,对于平面内任意一点P, 过P作x轴和y轴的平行线,与两轴分别交于A和B,它们在两轴的坐标分别是x和y,于是点P的坐标就是(x,y),如图,辨-60°|,且y轴平分£MOx, OM=2则点M的坐标是( )A. (2, -2)B. (-1, 2)C. (-2, 2)D. (-2, 1)二、填空题:(本题共16分,每小题2分)9. ____ ___~\________10.点P (-2, 1)向上平移2个单位后的点的坐标为11.不等式2\-3三收*5的解集是12.已知实数x,y满足& 1+肉;6| 0,贝U x-y=13.已知点怙,3:i+6.a 1),若点P在x轴上,则点P的坐标为14.如图,AB//CD,若司则二的度数是.15.下列各命题中:①对顶角相等;②若则x=2;③入叵c/;④两条直线相交,若有一组邻补角相等,则这两条直线互相垂直,其中错误的命题是 (填序号)16.图a中,四边形ABC虚细长的长方形纸条,士”PD-《沿眄\将纸条的右半部分做第一次折叠,得到图b和交点p』;再沿pP:将纸条的右半部分做第二次折叠,得到图c和交点巴;再沿PP§将纸条的右半部分做第三次折叠,得到图d和交点I\.P a-------- K~5-(1)如果Q- 1T,那么-(2) ZPF4B -三、计算题(每小题6分,共24分)17.计算:屈+ 1手18.化简:||i£5i4成-科+球斗19. 解不等式20.已知a是1的算术平方根,b是8的立方根,求b-a的平方根四、几何解答:(每小题8分,共16分)21.已知:如图,AB//CD, , |^1 - 75°,解:卜.COTAB, kB-35Z二£"乙(,而£ 1 - 75°,MACD -小A —°,v CD //W,“ 4A '+= 1 孵.(,22.如图,AB//CD, £ 1 ・上二AM^MN,求证:求乙人的度数. DN1NINfl五、平面直角坐标系的应用(8分)23 .如图所示的象棋盘上,若 ,位于点(1, 0)上,。
2017-2018学年江西省吉安市七年级下学期期中考试数学试卷及答案解析

2017-2018学年江西省吉安市七年级下学期期中考试数学试卷及答案解析一、选择题(本大题共6小题,每小题3分,共18分)1.下列运算正确的是()A.a4+a5=a9B.a3•a3=3a3C.2a4×3a5=6a9D.(﹣a3)4=a7解:∵a4+a5不能合并,故选项A错误,∵a3•a3=a6,故选项B错误,∵2a4×3a5=6a9,故选项C正确,∵(﹣a3)4=a12,故选项D错误,故选:C.2.如图,∠1与∠2不是同旁内角的是()A.B.C.D.解:选项A、C、B中,∠1与∠2在两直线的之间,并且在第三条直线(截线)的同旁,是同旁内角;选项D中,∠1与∠2的两条边都不在同一条直线上,不是同旁内角.故选:D.3.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x012345y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加0.5cm解:A.x与y都是变量,且x是自变量,y是因变量,故A正确;B.所挂物体质量为4kg时,弹簧长度为12cm,故B正确;C.弹簧不挂重物时的长度为10cm,故C错误;D.物体质量每增加1kg,弹簧长度y增加0.5cm,故D正确.故选:C.4.星期天,小王去朋友家借书,图是他离家的距离y(千米)与时间x(分钟)的函数图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王去时走上坡路,回家时走下坡路C.小王在朋友家停留了10分钟D.小王去时所花的时间少于回家所花的时间解:A、小王去时的速度=2÷20=0.1千米/分钟,回家的速度=2÷10=0.2千米/分钟,故A选项错误;B、小王去时不一定走上坡路,回家时不一定走下坡路,故B选项错误;C、小王在朋友家停留了30﹣20=10分钟,故C选项正确;D、小王去时花的时间=20分钟,回家时所花的时间=40﹣30=10分钟,故D选项错误;故选:C.5.多项式除以单项式(3x2y﹣xy2+12xy)÷(−12xy),计算结果正确的是()A.﹣6x+2y B.﹣6x+2y﹣1C.6x+2y﹣1D.6x﹣2y+1解:原式=xy•(3x﹣y+12)÷(−12xy)=﹣2(3x﹣y+1 2)=﹣6x+2y﹣1,。
2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年七年级数学下期中考试卷及答案
2017-2018学年七年级数学下期中考试卷及答案
2017—2018学年度第二学期初一年级
数学学科期中检测试卷
(全卷满分150分,答题时间120分钟)
一、选择题(共8小题,每小题3分,共24分)1.下列图形中,能将其中一个图形平移得到另一个图形的是(▲)
A.B.C.D.
2.下列计算正确的是(▲)A.B.C.D.
3.下列长度的3条线段,能首尾依次相接组成三角形的是(▲)
A.1cm,2cm,4cm B.8cm,6cm,
4cm C.15cm,5cm,6cm D.1cm ,3cm,4cm
4.下列各式能用平方差公式计算的是(▲)A.B.C.D.
5.若, ,则的值为(▲)
A.6 B.8 C.11 D.18 6.如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式
进行表示,由此能验证的等式是(▲)
A.B.
C.D.
7.当x=﹣6,y= 时,的值为(▲)A.﹣6 B.6 C.D.
8.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为7、9、10,则四边形DHOG面积为(▲)A.7 B.8 C.9 D.10 二、填空题(共10小题,每小题3分,共30分)
9.任意五边形的内角和与外角和的差
为度.
10. 已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为.
三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答)
19.计算(每小题4分,共16分)
(1)(2)
(3)(4)(a-b+1)(a+b-1)
20. 解方程组(每小题4分,共8分)
(1)(2)
21. (本题满分8分)画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.
(1)将△ABC向左平移8格,再向下平移1格.请在图中画出平移后的△A′B′C′
(2)利用网格线在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为_____.22.(本题满分6分)已知:如图,AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H ,∠AGE=40°,求∠BHF的度数.
23.(本题满分10分)已知:如图,在△ABC中,BD ⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形。
(2)求证:∠BDH=∠CEF.
24.(本题满分6分)已知a、b、c为△ABC
的三边长,且a2+b2=6a+10b﹣34,其中c是△ABC中最长的边长,且c为整数,求c的值.25.(本题满分8分)在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.
(1)请问甲、乙两种客车每辆分别能载客多少人?
(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保
证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?
26.(本题满分10分)规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:
(3,27)=_______,(5,1)=_______,(2,)=_______.
(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n 所以3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
请你尝试运用上述这种方法说明下面这个等式
成立的理由:(4,5)+(4,6)=(4,30)
27. (本题满分12分)已知△ABC中,∠A=70°,∠ACB=30°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC 的度数.
(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.
28. (本题满分12分)如图,△ABC中,,点D在BC所在的直线上,点E在射线AC上,且,连接DE.(1)如图①,若,,求的度数;(2)如图②,若,,求的度数;
(3)当点D在直线BC上(不与点B、C重合)运动时,试探究与的数量关系,并说明理由.
答案:
一、选择题
题号 1 2 3 4 5 6 7 8
答案 A C B C D C D B
二、填空题
二、填空题
9、180 10、2.1×10-5 11 12、
12 13、-1
14、15、2 16、-3 17、18、或6
三、
19、(1)3 (2)
5a3 (3)8a3b3-4a2b2+12ab (4)
a2-b2+2b-1
20、(1) ;(2)
21、本题解析:(1)如图,△A′B′C′即为所求;
(2)如图,中线CD,高线AE即为所求;
(3) .
故答案为:8;
22.解:∵AB∥CD,∴∠EFD=∠EGB=180°-
∠AGE=180°-40°=140°.
又∵FH平分∠EFD ,∴
又∵AB∥CD ,∴,
∴网ZXXK
23.【解析】(1)根据题意,完成几何图形;(2)根据垂直的定义和平行四边形的判定得到BD∥EF,则∠CEF=∠CBD,再由DE∥BC得到∠BDH=∠CBD,于是有∠BDH=∠CEF.
(1)如图,
(2)证明:∵BD⊥AC,EF⊥AC,
∴∠CFE=∠CDB=90o
∴BD∥EF,
∴∠CEF=∠CBD,
∵DH∥BC ,
∴∠BDH=∠CBD,
∴∠BDH=∠CEF
24.解:∵a2+b2=6a+10b﹣34∴a2﹣6a+9+b2
﹣10b+25=0
∴(a﹣3)2+(b﹣5)2=0
∴a=3,b=5
∴5﹣3<c<5+3
即2<c<8.又∵c是△ABC中最长的边
长∴c=5、6、7
25.(1)设甲种客车每辆能载客人,乙两种客车每辆能载客人,根据题意得
,解之得:
答:甲种客车每辆能载客45人,乙两种客车每辆能载客30人.
(2)设同时租65座、45座和30座的大小三种客车各m辆,n辆,(7﹣m﹣n)辆,
根据题意得出:65m+45n+30(7﹣m﹣n)
=303+7,
整理得出:7m+3n=20,
故符合题意的有:m=2,n=2,7﹣m﹣n=3,租车方案为:租65座的客车2辆,45座的客车2辆,30座的3辆.
26、(1)3,0,-2[
(2)设(4,5)=x,(4,6)=y
则,=6
∴
∴(4,30)=x+y
∴(4,5)+(4,6)=(4,30)
27、试题解析:(1)①∵∠A=70°,∠ACB=30°,∴∠ABC=80°,
∵BM平分∠ABC,
∴∠ABE= ∠ABC=40°,
∵CE∥AB,
∴∠BEC=∠ABE=40°;
②∵∠A=70°,∠ACB=30°,
∴∠ABC=80°,∠ACD=180°-∠ACB=150°,∵BM平分∠ABC,CE平分∠ACD,
∴∠CBE= ∠ABC=40°,∠ECD= ∠
ACD=75°,
∴∠BEC=∠ECD-∠CBE=35°;
(2)①如图1,当CE⊥BC时,
∵∠CBE=40°,
∴∠BEC=50°;
②如图2,当CE⊥AB于F时,
∵∠ABE=40°,
∴∠BEC=90°+40°=130°,
③如图3,当CE⊥AC时,
∵∠CBE=40°,∠ACB=30°,
∴∠BEC=180°-40°-30°-90°=20°.28、解:(1)
(2)
(3)设,,,
①如图1,当点D在点B的左侧时,∴,得,,∴
②如图2,当点D在线段BC上时,∴,得,,∴
③如图3,当点D在点C右侧时,∴,得,,∴。