最新人教版 六年级数学下册 第1课时 鸽巢问题(1) 优质教案

合集下载

六年级下册数学教案-第5单元 第1课时 鸽巢问题(1)|人教新课标

六年级下册数学教案-第5单元 第1课时 鸽巢问题(1)|人教新课标

六年级下册数学教案-第5单元第1课时鸽巢问题(1)|人教新课标教学目标1. 知识与技能- 理解鸽巢原理,并能运用其解决实际问题。

- 培养学生运用数学语言表达和解释问题的能力。

2. 过程与方法- 通过实际操作和思考,让学生亲身体验数学问题的发现和解决过程。

- 培养学生的逻辑思维和推理能力。

3. 情感态度与价值观- 培养学生对数学的兴趣和探究精神。

- 培养学生的合作意识和团队精神。

教学重点与难点1. 重点- 理解鸽巢原理的概念和意义。

- 能够运用鸽巢原理解决实际问题。

2. 难点- 理解鸽巢原理的证明过程。

- 在实际问题中灵活运用鸽巢原理。

教学方法- 探究式学习:通过引导学生自主探索,发现鸽巢原理。

- 合作学习:通过小组讨论,让学生共同解决实际问题。

- 启发式教学:通过提问和引导,激发学生的思考和探究。

教学步骤1. 导入新课- 利用多媒体展示一组图片,引发学生对鸽巢问题的思考。

2. 探究新知- 让学生通过实际操作,发现鸽巢原理。

- 引导学生用数学语言表达和解释鸽巢原理。

3. 巩固练习- 设计一些实际问题,让学生运用鸽巢原理解决。

- 通过小组讨论,让学生互相交流解题思路。

4. 拓展延伸- 引导学生思考鸽巢原理在其他领域的应用。

- 让学生尝试用鸽巢原理解决更复杂的问题。

5. 课堂小结- 让学生总结本节课的学习内容和学习体会。

- 教师对学生的学习情况进行点评和指导。

6. 作业布置- 布置一些与鸽巢原理相关的习题,让学生课后练习。

- 鼓励学生尝试用鸽巢原理解决生活中的实际问题。

教学评价- 过程评价:观察学生在课堂上的参与程度和合作意识。

- 结果评价:检查学生对鸽巢原理的理解和应用能力。

- 自我评价:鼓励学生反思自己的学习过程和学习效果。

通过本节课的学习,学生应能够理解并运用鸽巢原理解决实际问题,培养其逻辑思维和推理能力,同时激发其对数学的兴趣和探究精神。

在以上的教案中,需要重点关注的是“探究新知”这一教学步骤。

六年级下册数学教案- 数学广角——鸽巢问题(一)-人教新课标

六年级下册数学教案- 数学广角——鸽巢问题(一)-人教新课标

六年级下册数学教案:数学广角——鸽巢问题(一)-人教新课标教学目标:知识与技能:1. 理解鸽巢原理,并能运用其解决实际问题。

2. 培养学生的逻辑思维能力和数学推理能力。

过程与方法:1. 通过实际操作和观察,让学生体验和理解鸽巢原理。

2. 通过小组合作,培养学生的团队合作能力。

情感态度价值观:1. 培养学生对数学的兴趣和好奇心。

2. 培养学生的逻辑思维能力和数学推理能力。

教学重点:1. 理解鸽巢原理。

2. 能运用鸽巢原理解决实际问题。

教学难点:1. 理解鸽巢原理的应用范围。

2. 解决实际问题时,如何运用鸽巢原理。

教学准备:1. 教师准备:多媒体课件,教具。

2. 学生准备:学习用品。

教学过程:一、导入(5分钟)教师通过一个有趣的故事引入鸽巢原理,激发学生的兴趣。

二、新课导入(10分钟)1. 教师引导学生思考:如果有更多的鸽子,但巢的数量不变,会发生什么?2. 学生回答后,教师总结并引入鸽巢原理。

三、探索发现(10分钟)1. 教师引导学生进行实际操作,让学生亲身体验鸽巢原理。

2. 学生通过观察和思考,发现鸽巢原理。

四、巩固练习(10分钟)1. 教师出示一些实际问题,让学生运用鸽巢原理解决。

2. 学生通过练习,巩固对鸽巢原理的理解和应用。

五、拓展延伸(10分钟)1. 教师出示一些更复杂的问题,让学生尝试解决。

2. 学生通过思考和讨论,解决这些问题。

六、总结反思(5分钟)1. 教师引导学生总结本节课的学习内容。

2. 学生分享自己的学习心得。

教学评价:1. 学生对鸽巢原理的理解和应用。

2. 学生在解决问题时的逻辑思维能力和数学推理能力。

教学延伸:1. 让学生尝试用鸽巢原理解决生活中的实际问题。

2. 引导学生探索鸽巢原理在其他数学问题中的应用。

通过本节课的学习,学生能理解鸽巢原理,并能运用其解决实际问题。

同时,学生的逻辑思维能力和数学推理能力也得到了培养。

在以上的教案中,需要重点关注的是“探索发现”环节。

这个环节是学生对鸽巢原理进行深入理解和应用的关键步骤,通过实际操作和观察,学生可以亲身体验鸽巢原理,从而更好地理解其内涵和应用。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

人教版数学六年级下册鸽巢问题教案3篇2024

人教版数学六年级下册鸽巢问题教案3篇2024

人教版数学六年级下册鸽巢问题教案3篇2024〖人教版数学六年级下册鸽巢问题教案第【1】篇〗鸽巢问题教案教学目标:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义;经历“鸽巢原理”的学习过程,体验观察,猜测,实验,推理等活动的学习方法,渗透数形结合的思想;通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

重点:整合教材,由浅入深,逐层深入引导学生把具体问题转化成鸽巢问题,最终达到深入浅出解决问题。

难点:找出鸽巢问题解决的窍门进行反复推理。

并对一些简单的实际问题加以“模型化”。

教学准备:课件、扑克牌。

学生准备:小棒、杯子。

教学过程:一、情境导入:由游戏“抢凳子”引入课题并板书课题“鸽巢问题”二、探究新知1.动手操作,动画演示(1)(摆一摆)4只鸽子飞进3个鸽巢,会怎么飞呢?请同学们用小棒当鸽子,杯子做鸽巢,试试看!并把各种结果用你喜欢的方法记录下来。

(2)(议一议)教师引导学生分析各种情况,得出结论,不管怎么飞,总有一个鸽巢里至少飞进了2只鸽子。

(3)(飞一飞):4只鸽子飞进3个鸽巢,要使每个鸽巢里鸽子最少,该怎么飞?你能发现什么?通过引导让学生说出平均分的'方法。

2.以此类推,发现规律(1)6只鸽子飞进了5个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?你是怎么想的?(2)100只鸽子飞进了99个鸽巢,总有一个鸽巢至少飞进了()只鸽子?3.由浅入深,逐层深入(1)(飞一飞)5只鸽子飞进了3个鸽巢,总有一个鸽巢里至少飞进了()只鸽子?是怎么飞的?通过演示鸽子飞的过程,引导学生理解平均分后,剩下的鸽子数不能超过鸽巢数,把剩下的鸽子再平均分,才能保证总有一个鸽巢里至少有的鸽子数。

(2)(说一说)7本书放进3个抽屉,总有一个抽屉里至少放进了()本书?你是怎么想的?4.动画演示,掌握规律14只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了4只鸽子。

为什么?5.学以致用,总结规律(1)10支铅笔放进3个笔筒中,总有一个笔筒里至少有4支铅笔,为什么?(2)28本书放进5个抽屉,总有一个抽屉里至少放进了几本书?为什么?(3)33只鸽子飞进了4个鸽巢,总有一个鸽巢至少飞进了9只鸽子?为什么?(4)思考:你能发现什么规律吗?引导学生总结出计算方法,列出算式,最终得出至少数=商+1。

六年级下册数学教学设计《第1课时鸽巢问题》人教版

六年级下册数学教学设计《第1课时鸽巢问题》人教版

六年级下册数学教学设计《第1课时鸽巢问题》人教版一. 教材分析人教版六年级下册数学第1课时“鸽巢问题”,主要让学生理解和掌握鸽巢问题的基本概念和解决方法。

通过本节课的学习,使学生能够运用鸽巢问题解决实际生活中的问题,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析六年级的学生已经具备了一定的数学基础,对于解决实际问题有一定的认识和理解。

但是,对于鸽巢问题的理解和运用还需要进一步的引导和培养。

因此,在教学过程中,要充分考虑学生的认知水平和学习兴趣,设计符合学生特点的教学活动。

三. 教学目标1.知识与技能目标:使学生理解和掌握鸽巢问题的基本概念和解决方法,能够运用鸽巢问题解决实际生活中的问题。

2.过程与方法目标:通过解决实际问题,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和积极进取的精神。

四. 教学重难点1.教学重点:理解和掌握鸽巢问题的基本概念和解决方法。

2.教学难点:如何引导学生运用鸽巢问题解决实际生活中的问题。

五. 教学方法1.情境教学法:通过设计实际情境,引导学生理解和运用鸽巢问题。

2.问题驱动法:通过提出问题,激发学生的思考和探究欲望。

3.合作学习法:通过小组合作,培养学生的团队合作意识和沟通能力。

六. 教学准备1.教学素材:准备一些与鸽巢问题相关的实际问题,如学校运动会报名、家庭聚会安排等。

2.教学工具:准备黑板、粉笔、投影仪等教学工具。

七. 教学过程1.导入(5分钟)利用学校运动会报名的实际例子,引导学生思考如何合理安排报名情况,引出鸽巢问题的概念。

2.呈现(10分钟)呈现一些与鸽巢问题相关的实际问题,让学生尝试解决。

如家庭聚会安排、班级座位安排等。

3.操练(10分钟)让学生分组讨论,每组选择一个问题,运用鸽巢问题的解决方法进行解决,并展示解题过程和结果。

4.巩固(10分钟)对每组的解题过程和结果进行评价,引导学生总结解决鸽巢问题的方法和技巧。

六年级下册数学教案《第1课时鸽巢问题 》人教版

六年级下册数学教案《第1课时鸽巢问题 》人教版

六年级下册数学教案《第1课时鸽巢问题》人教版一、教学目标1.知识与技能:–了解鸽巢问题的基本概念;–能够运用鸽巢原理解决问题。

2.过程与方法:–通过讨论与实例分析引导学生主动参与课堂;–培养学生的逻辑思维和问题解决能力。

3.情感态度价值观:–培养学生的合作意识,鼓励学生勇于尝试、探索未知领域;–正确认识数学知识与实际生活的联系,激发学生学习数学的兴趣。

二、教学重点与难点:•重点:掌握鸽巢问题的基本原理,并能运用到实际问题中。

•难点:发散式思维在解决鸽巢问题时的应用。

三、教学准备1.教材:人教版六年级数学下册教材。

2.教具、媒体:黑板、彩色粉笔、教学PPT。

3.课前准备:准备好教学内容,查看教材相关知识点,准备相关实例分析。

四、教学步骤第一步:导入(5分钟)•通过一个简单的生活场景引入鸽巢问题,激发学生的学习兴趣,引发思考。

第二步:讲授基本概念(10分钟)•概念解释:介绍鸽巢问题的基本概念,让学生对其有一个直观、清晰的认识。

第三步:示例分析(15分钟)•通过实例分析,让学生参与其中,讨论解决方法,引导学生理解鸽巢问题的解题思路。

第四步:概念强化(10分钟)•整理并归纳鸽巢问题解决的基本方法和技巧,强化学生对知识点的理解。

第五步:练习与讨论(15分钟)•分发练习题,让学生独立或合作完成,引导他们主动分享解题思路,进行讨论。

第六步:课堂总结(5分钟)•总结本节课的重点内容,并展示本课知识点与实际应用的联系,引导学生将所学内容与实际生活结合。

五、课后作业•完成教师留的相关练习题;•收集身边的实例来解决一个鸽巢问题。

六、教学反思在教学过程中,需要及时调整教学方法,引导学生主动参与课堂,激发他们的学习兴趣和求知欲,使学生在轻松氛围中掌握知识点。

以上就是本节课鸽巢问题的教学设计,希會一切顺利!。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。

2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。

3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。

4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。

二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

三、教学准备纸杯、吸管、多媒体课件。

四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

(二)探索新知(1)初步感知。

把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。

(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。

(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。

《鸽巢问题(第1课时)》(教案)六年级下册数学人教版

《鸽巢问题(第1课时)》(教案)六年级下册数学人教版《鸽巢问题(第1课时)》教案一、教学内容1. 理解鸽巢问题的概念,掌握其基本性质。

2. 学会运用鸽巢原理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学目标1. 了解并掌握鸽巢问题的基本概念和性质。

2. 能够运用鸽巢原理解决实际问题。

3. 提高自己的逻辑思维能力和解决问题的能力。

三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。

难点在于如何引导学生理解并运用鸽巢原理。

四、教具与学具准备为了让大家更好地理解鸽巢问题,我准备了一些教具和学具,包括黑板、粉笔、PPT、鸽巢模型等。

五、教学过程1. 实践情景引入:请大家想象一下,如果我们有一个鸽巢,里面有若干个鸽子,我们要如何确定鸽子的数量呢?2. 讲解鸽巢问题的概念:通过引入的实践情景,我会向大家讲解鸽巢问题的基本概念和性质。

3. 例题讲解:我会给大家讲解一些典型的鸽巢问题例题,让大家通过例题理解并掌握鸽巢原理。

4. 随堂练习:在讲解完例题后,我会给大家一些随堂练习题,让大家运用所学知识解决实际问题。

5. 鸽巢原理的应用:通过一些实际问题,让大家学会运用鸽巢原理解决问题。

六、板书设计板书设计如下:鸽巢问题1. 概念与性质2. 鸽巢原理3. 应用与实例七、作业设计作业题目:1. 请用一句话概括鸽巢问题的定义。

2. 请用一句话概括鸽巢原理。

3. 请举例说明如何运用鸽巢原理解决实际问题。

答案:1. 鸽巢问题是指在一定条件下,确定鸽子数量的问题。

3. 举例:假设一个班级有30个学生,如果有31个学生,那么至少有两个学生坐在同一个座位上。

八、课后反思及拓展延伸通过本节课的学习,我希望大家能够理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。

在课后,大家可以尝试解决一些更复杂的问题,也可以和同学互相交流心得和经验,共同提高。

人教版数学六年级下册鸽巢问题教案(推荐3篇)

人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题》教学设计【教学内容】人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。

【教学目标】1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。

2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。

3.使学生感受数学的魅力,培养学习的兴趣。

【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。

【教学难点】理解抽屉原理,并对一些简单的实际问题加以模型化。

【教学过程】一、开门见山,引入课题。

承接课前谈话内容,直接揭示课题。

二、经历过程,构建模型。

(一)研究“4个小球任意放进3个抽屉”存在的现象。

1.出示结论:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。

让学生说说对这句话的理解。

2.验证结论的正确性。

让学生用长方形代替抽屉,用圆代替小球画一画,看有几种不同的放法。

3.全班交流。

学生汇报后,教师引导观察每种放法,通过横向、纵向比较,找到每种放法中放得最多的抽屉,然后从最多数里找最少数,发现不管哪种放法,都能从里面找到这样的一个抽屉,里面至少有2个小球。

从而理解并证明了“不管怎么放,总有一个抽屉里至少放2个小球”这个结论是正确的。

(二)研究“5个小球任意放进4个抽屉”存在的现象,找到求至少数的简便方法。

1.猜测:根据刚才的研究经验猜一猜:把5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放几个小球?2.验证。

学生以小组为单位共同研究:先画出不同的放法。

然后观察分析每种放法,看看哪种猜测是正确的。

3.全班交流。

小组汇报研究结果。

教师追问:通过验证,我们发现5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放2个小球。

那“总有一个抽屉至少放3个小球”为什么不对?学生通过观察各种放法来说明原因。

第五单元第01课时 鸽巢问题(一) (教学设计)-六年级数学下册人教版

第五单元第01课时鸽巢问题(一)(教学设计)-【上好课】六年级数学下册人教版一、教学目标1.知识与能力:(1)掌握鸽巢问题的解法;(2)能在独自思考的基础上运用方法解决相关问题;(3)习惯为问题建立模型。

2.过程与方法:(1)教师以故事的方式引出鸽巢问题,激发学生的兴趣。

(2)教师以示例的方式指导学生,梳理解题思路。

(3)教师引导学生自主探究,鼓励学生发言、讨论,促进学生自主思考,探究解题方法。

(4)教师在学生学习的过程中,有针对性地提出问题,引导学生自己思考问题的解决方法,培养学生的独立思考能力和解决问题的能力。

二、教学重点1.鸽巢问题的解法。

2.培养学生的独立思考能力和解决问题的能力。

三、教学难点1.如何运用方法解决鸽巢问题。

2.如何培养学生的独立思考能力和解决问题的能力。

四、教学准备1.多媒体教具及PPT。

2.课件或课本。

3.笔记本电脑。

五、教学过程1.引入:故事引入鸽巢问题。

教师讲述一个有趣的故事——从前有一只鸽子,她有$n$个鸽巢供$n$只小鸽子住宿。

可是有一天,一只小鸽子来访,它不畏惧地向鸽子迈进,鸽子心急如焚,为冷落小鸽子感到非常不忍。

于是,鸽子陷入窘境——如果接纳这只小鸽子,有的鸽巢会被占据,有的鸽巢会有两只小鸽子。

请问,鸽子至少要有几个鸽巢才能接纳所有小鸽子呢?2.概念讲解:鸽巢问题(1)鸽巢问题指的是将$k$个物体放入到大小为$n$的集合里,且$k>n$,则至少有一个元素有被放置超过一次。

(2)例如:将12个苹果放进10个盘子里,至少会有一个盘子里面有两个苹果。

3.问题解析(1)探究1:如果有3个鸽子和2个鸽巢,必定有一个鸽巢最少容纳两只鸽子,这是为什么呢?将3只鸽子放入2个鸽巢里,根据抽屉原理:$3÷2=1$ (1)即至少有一个鸽巢有两只鸽子。

(2)探究2:如果有8个鸽子和5个鸽巢,必定有一个鸽巢最少容纳两只鸽子,这是为什么呢?将8只鸽子放入5个鸽巢里,根据抽屉原理:$8÷5=1$ (3)即至少有一个鸽巢有3只鸽子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版六年级数学下册第1课时鸽巢问题(1)优质教案
第5单元数学广角—鸽巢问题
第1课时鸽巢问题(1)
【教学目标】
1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

【教学重难点】
重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”解决的窍门进行反复推理。

【教学过程】
一、情境导入
教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。

通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。

(板书课题:鸽巢问题)
教师:通过学习,你想解决哪些问题?
根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?
这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题?
二、探究新知:
1.教学例1.(课件出示例题1情境图)
思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?“总有”和“至少”是什么意思?
学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。

(1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明。

方法一:用“枚举法”证明。

方法二:用“分解法”证明。

把4分解成3个数。

由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。

方法三:用“假设法”证明。

通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

(4)认识“鸽巢问题”
①像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。

小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。

②如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔……
小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。

(5)归纳总结:
鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。

2、教学例2(课件出示例题2情境图)
思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。

为什么呢?(二)如果有8本书会怎样呢?10本书呢?
学生通过“探究证明→得出结论”的学习过程来解决问题(一)。

(1)探究证明。

方法一:用数的分解法证明。

把7分解成3个数的和。

把7本书放进3个抽屉里,共有如下8种情况:
由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。

方法二:用假设法证明。

把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。

如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。

(2)得出结论。

通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。

(1)用假设法分析。

①8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1
个抽屉里至少放进3本书。

②10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

(2)归纳总结:
综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b(本) (1)
(本)或a÷3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。

鸽巢原理(二):我们把多余kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

三、巩固练习
1、完成教材第70页的“做一做”第1题。

学生独立思考解答问题,集体交流、纠正。

2、完成教材第71页练习十三的1-2题。

学生独立思考解答问题,集体交流、纠正。

四、课堂总结
今天这节课你有什么收获?能说给大家听听吗?。

相关文档
最新文档