七年级数学上册 相交线测试题及答案

合集下载

(考试真题)第12章 相交线与平行线数学七年级上册-单元测试卷-人教五四学制版(含答案)

(考试真题)第12章 相交线与平行线数学七年级上册-单元测试卷-人教五四学制版(含答案)

(考试真题)第12章相交线与平行线数学七年级上册-单元测试卷-人教五四学制版(含答案)一、单选题(共15题,共计45分)1、如图,给出下列条件:其中,能判断AB∥CD的是()①∠1=∠2 ②∠3=∠4 ③∠B=∠DCE ④∠B=∠D.A.①或④B.②或③C.①或③D.②或④.2、如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于()A.4B.6或4C.8D.4或83、如图,在平面直角坐标系中,已知点,点,平移线段AB,使点A落在点处,则点B的对应点的坐标为()A. B. C. D.4、如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°5、如图,AB∥CD,AB=AC,∠1=40°,则∠ACE的度数为()A.80°B.100°C.120°D.160°6、在长为20m,宽为16m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则花圃的面积是()A.64m 2B.32m 2C.128m 2D.96m 27、如图,在Rt△ABC中,∠A=90°,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,动点P从点B出发,沿着BC匀速向终点C运动,则线段EF的值大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少8、如图,AB//CD,EF与AB、CD分别相交于点E、F,EP⊥EF,且∠BEP=50°,则∠EFD=()A.30°B.40°C.50°D.90°9、如右下图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.35°10、下列四个命题中是真命题的是()A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.实数与数轴上的点是一一对应的D.垂直于同一条直线的两条直线互相平行11、如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于()A.70°B.75°C.80°D.85°12、在直线AB上取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数()A.60°B.90°C.120°D.60°或120°13、如图,AB//CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°14、下列命题中,是假命题的是()A.四边形的内角和为360°B.直角三角形两锐角互补C.两直线平行,同位角相等D.平行线间距离处处相等15、点M(﹣2,﹣5)向上平移4个单位后得到的点M′的坐标为()A.(﹣6,﹣5)B.(2,﹣5)C.(﹣2,﹣1)D.(﹣2,﹣9)二、填空题(共10题,共计30分)16、如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是________度.17、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.18、小张同学观察如图1所示的北斗七星图,小张同学把北斗七星:摇光、开阳、玉衡、天权、天玑、天璇、天枢按图2分别标为点A、B、C、D、E、F、G,然后将点A、B、C、D、E、F、G顺次首尾连接,发现AG恰好经过点C,且∠B-∠DCG=115°,∠B-∠D=10°,若AG//EF,则∠E=m°,这里的m=________.19、如图,点P是的角平分线上一点,,垂足为点D,且,点M是射线上一动点,则的最小值为________.20、如图,要使AB∥CD,只需要添加一个条件,这个条件是________(填一个你认为正确的条件即可).21、如图,工程队铺设一公路,他们从点A处铺设到点B处时,由于水塘挡路,他们决定改变方向经过点C,再拐到点D,然后沿着与AB平行的DE方向继续铺设,如果∠ABC=120°,∠CDE=140°,则∠BCD的度数是________.22、吸管吸易拉罐内的饮料时,如图所示,∠1=110°,则∠2=________度.(易拉罐的上下底面互相平行)23、如图,已知∠1=∠2,∠3=80°,则∠4的度数为________.24、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠2=70°,∠1=________.25、填空,将理由补充完整.如图,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求证:FG∥BC证明:∵CF⊥AB,DE⊥AB(已知)∴∠BED=∠BFC=90°(垂直的定义)∴ED∥FC (________)∴∠2=∠3 (________)∵∠1+∠EDC=180°(已知)又∵∠2+∠EDC=180°(平角的定义)∴∠1=∠2 (________)∴∠1=∠3(等量代换)∴FG∥BC (________)三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边△CDE,使点E、A 在直线DC的同侧,连接AE.求证:AE∥BC.28、如图,已知∠1=68°,∠3=∠4,求∠2的度数.29、如图,AB,CD是⊙O的两条直径,过点A作AE∥CD交⊙O于点E,连接BD,DE,求证:BD=DE.30、如图,已知AD⊥BC,FG⊥BC,垂足分别为D、G.且∠1=∠2,猜想:∠BDE与∠C有怎样的关系?说明理由.参考答案一、单选题(共15题,共计45分)1、C3、C4、C5、B6、D7、C8、B9、A10、C11、A12、D13、B14、E15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。

第五章 相交线与平行线 - 人教版七年级数学上册单元测试题(含答案)

第五章  相交线与平行线 - 人教版七年级数学上册单元测试题(含答案)

人教版七年级数学上册单元测试题第五章 相交线与平行线学校:___________姓名:___________班级:___________考号:___________一、(共30分,每小题3分)单选题1.下列说法中错误的是( )A .同一个角的两个邻补角是对顶角B .对顶角相等,相等的角是对顶角C .对顶角的平分线在一条直线上D .α∠的补角与α∠的和是180︒ 2.如图,已知15180∠+∠=︒,则图中与1∠相等的角有( )A .4,5,8∠∠∠B .2,6,7∠∠∠C .3,6,7∠∠∠D .4,6,7∠∠∠ 3.如图,直线AB ,CD 相交于点O ,OE ⊥CD 于点O ,⊥AOC =36°,则⊥BOE =( )A .36°B .64°C .144°D .54° 4.如图,若////,//,AB CD EF BC AD AC 为BAD ∠的平分线,则与AOF ∠相等的角有( )个.A.2B.3C.4D.55.下列图形中,线段PQ能表示点P到直线l的距离的是().A.B.C.D.6.在下图中,1∠和2∠是同位角的是()A.(1)、(2)B.(1)、(3)C.(2)、(3)D.(2)、(4)7.已知:如图,AB⊥DE,⊥E=65°,则⊥B+⊥C⊥的度数是()A.135°B.115°C.65°D.35°8.探照灯、锅形天线、汽车灯以及其它很多灯具都与抛物线形状有关,如图所示是一探照灯灯碗的纵剖面,从位于O点的灯泡发出的两束光线OB、OC经灯碗反射以后平行射出.如果图中⊥ABO=α,⊥DCO=β,则⊥BOC的度数为()A.180°﹣α﹣βB.α+βC.1(α+β)D.90°+(β﹣α)29.下列语句不是命题的是().A .两直线平行,同位角相等B .作直线AB 垂直于直线CDC .若a b =,则22a b =D .等角的补角相等10.下列现象中,属于平移现象的是( )A .方向盘的转动B .行驶的自行车的车轮的运动C .电梯的升降D .钟摆的运动二、(共30分,每小题3分)填空题11.如图,已知AB 、CD 相交于点O,OE⊥AB 于O ,⊥EOC=28°,则⊥AOD=_____度;12.如图,三条直线1l 、2l 、3l 相交于一点O ,则123∠+∠+∠=________度.13.如图AB 、CD 相交于O ,OB 平分DOE ∠,若98DOE ∠=︒,则AOC ∠的度数是_____.14.如图,将一副三角板摆成如图所示,图中1∠=________.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西________度.16.如图,已知AB⊥CD ,CE ,AE 分别平分⊥ACD ,⊥CAB ,则⊥1+⊥2=________.17.同一平面内的三条直线a ,b ,c ,若a⊥b ,b⊥c ,则a________c .若a⊥b ,b⊥c ,则a________c .若a⊥b ,b⊥c ,则a________c.18.把命题“同角的余角相等”改写成“如果……,那么……”的形式:_________________.19.如图,在一块长为a 米、宽为b 米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为__________平方米.20.将直角梯形ABCD 平移得梯形EFGH ,若10,2,4HG MC MG ===,则图中阴影部分的面积为_________平方单位.三、(共40分)解答题21.(共5分)如图,A 、B 、C 三点在同一直线上,12,3D ∠=∠∠=∠,试说明 //BD CE .证明:⊥12∠=∠(已知)⊥________//________(________________)⊥D ∠=∠________(________________)又⊥3D ∠=∠(________)⊥∠________=∠________(________________)⊥//BD CE (________________).22.(共5分)如图,,,12AB BF CD BF ⊥⊥∠=∠,试说明3E ∠=∠.证明:⊥,AB BF CD BF ⊥⊥(已知)⊥ABD ∠=∠________=________︒(垂直定义)⊥________//________(________________)⊥12∠=∠(________)⊥________//________(________________)⊥//CD ________(平行于同一直线的两条直线互相平行)⊥3E ∠=∠(________________________).23.(共8分)根据语句画图,并填空⊥画80AOB ∠=︒;⊥画AOB ∠的平分线OC ;⊥在OC 上任取一点P ,画PD OA ⊥于D ,PE OB ⊥于E ;⊥画//PF OB 交OA 于F ;⊥通过度量比较,PE PD 的大小________;⊥OPF ∠=________.24.(共10分)如图所示,AC⊥BC ,DE⊥BC ,FG⊥AB ,⊥1=⊥2,求证:⊥2与⊥3互余.25.(共12分)探究题:(1)已知:三角形ABC ,求证:180A B ACB ∠+∠+∠=︒;小明同学经过认真思考,他过点C 作//CE AB ,利用添加辅助线的方法成功解决了这个问题.你能说出小明是怎么解决这个问题的吗?写出论证过程.(2)利用以上结论或方法,解决如下问题:已知:六边形ABCDEF ,满足A B C D E F ∠+∠+∠=∠+∠+∠,求证://AF CD .参考答案:1.B 2.D 3.D 4.D 5.D 6.B 7.C 8.B 9.B 10.C11.62 12.180 13.49︒ 14.120; 15.48° 16.90° 17. ⊥; ⊥; ⊥ 18.如果两个角是同一个角的余角,那么这两个角相等 19.(ab ﹣2b ) 20.36 21.,AD BE ,内错角相等,两直线平行;DBE ,两直线平行,内错角相等;已知,DBE ,3,等量代换;内错角相等,两直线平行.22.CDF ,90;,AB CD ,同位角相等,两直线平行;已知;,AB EF ,内错角相等,两直线平行;EF ;两直线平行,同位角相等.23.图见解析,PE PD =;40︒解:⊥如图:80AOB ∠=︒为所作;⊥如图:OC 为所作;⊥如图:PD 、PE 为所作;⊥如图:PF 为所作;⊥通过度量可得:PE =PD ,⊥⊥PF //OB ,⊥⊥OPF =⊥POB ,⊥⊥AOB =80°,OC 平分⊥AOB , ⊥180402COB AOB ∠=∠=⨯︒=︒ , ⊥P 在OC 上,⊥⊥POB =40°,⊥⊥OPF =⊥POB =40°.24.证明:⊥AC⊥BC ,DE⊥BC ,⊥⊥B+⊥A=90°,⊥B+⊥3=90°,⊥⊥3=⊥A ,⊥FG⊥AB ,⊥⊥1+⊥A=90°,⊥⊥1=⊥2,⊥⊥2+⊥3=90°,⊥⊥2与⊥3互余.25.(1)⊥//CE AB⊥1A ∠=∠,2B ∠=∠⊥B 、C 、D 在同一直线上⊥⊥ACB +⊥1+⊥2=180°⊥180A B ACB ∠+∠+∠=︒;(2)如图,连结,,AC FC FD ,得到⊥ABC 、⊥ACF 、⊥CDF 、⊥DEF⊥⊥B +⊥BAC +⊥ACB =⊥ACF +⊥AFC +⊥CAF =⊥FCD +⊥CDF +⊥CFD =⊥E +⊥EDF +⊥DFE =180° ⊥BAF B BCD CDE E EFA ∠+∠+∠=∠+∠+∠⊥BAC ACB ACF F F B CD CA ∠+∠+∠∠+∠+∠+=CDF EDF E CFD AFC EFD +∠+∠∠+∠+∠+∠化解得360°-⊥AFC +⊥FCD =360°-⊥FCD +⊥AFC⊥2⊥FCD =2⊥AFC则⊥FCD =⊥AFC⊥//AF CD .。

相交线》练习题(含答案)

相交线》练习题(含答案)

相交线》练习题(含答案)5.1.1 相交线1.下列说法中,正确的是(。

B。

)。

A。

相等的两个角是对顶角B。

有一条公共边的两个角是邻补角C。

有公共顶点的两个角是对顶角D。

一条直线与端点在这条直线上的一条射线组成的两个角是邻补角2.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠1的对顶角是∠3.3.如图是一把剪刀,其中∠1=40°,则∠2=140°,其理由是邻补角互补。

4.如图,O是直线AB上一点,∠COB=30°,则∠1=150°。

5.如图所示,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD=35°。

6.如图所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为(。

A。

)。

A。

62°B。

118°C。

72°D。

59°7.如图,三条直线l1,l2,l3相交于一点,则∠1+∠2+∠3等于(。

C。

)。

A。

90°B。

120°C。

180°D。

360°8.如图所示,AB,CD,EF交于点O,∠1=20°,∠2=60°,求∠BOC的度数为80°。

9.如图所示,l1,l2,l3交于点O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数为72°。

10.探究题:1) 三条直线相交,最少有一个交点,最多有三个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;2) 四条直线相交,最少有四个交点,最多有十个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数。

七年级数学上册《相交线》-典型例题五

七年级数学上册《相交线》-典型例题五

典型例题五
例 已知mm 26,mm 42,30===︒=∠BC BA MBN (如图所示),过点A 分别画AB 和BC 的垂线,画点C 到AB 的垂线段,画点B 到AC 的垂线段,并量出点A 到BC 的距离和点C 到AB 的距离及A ,C 两点间的距离.
分析 本题通过动手画图来考查对垂线段的概念和性质的理解.点到直线的距离就是点到直线的垂线段的长度.值得注意的是,过点B 画B 到AC 的垂线段,必须延长线段AC ,否则垂线段无法画出.
答案 如图,经过点A 作BA AD ⊥于A ,BN AE ⊥于E .
过点C 作BA CF ⊥于F ,延长AC 至H ,过点B 作AH BG ⊥于G .
量得A 点到BC 的距离AE 的长为21mm ,C 点到AB 的距离CF 的长为13mm ,A 和C 两点间的距离约为24mm .。

人教五四学制版七年级上册数学第12章 相交线与平行线含答案

人教五四学制版七年级上册数学第12章 相交线与平行线含答案

人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=34°,那么∠BED =()A.134°B.124°C.114°D.104°2、已知坐标平面内的点A(-2,4),如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A的坐标是()A.(1,6)B.(-5,6)C.(-5,2)D.(1,2)3、如图,下列各组条件中,能一定得到a//b的是()A.∠1+∠2=180ºB.∠1=∠3C.∠2+∠4=180ºD.∠1=∠44、如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°5、在平面直角坐标系中,将点A(﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A',则点A'的坐标是()A.(4,5)B.(4,3)C.(6,3)D.(﹣8,﹣7)6、已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等。

其中假命题有()A.4个B.3个C.2个D.1个7、如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()A.60°B.50°C.40°D.30°8、如图,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有( )A.1个B.2个C.3个D.4个9、已知,CE平分,交AB于点E,,则的度数为()A. B. C. D.10、在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(﹣5,2)、N(1,﹣4),将线段MN向上移动3个单位,向左移动2个单位平移后,点M,N的对应坐标为()A.(﹣5,1),(0,﹣5)B.(﹣4,2),(1,﹣3)C.(﹣7,5),(﹣1,﹣1)D.(﹣5,0),(1,﹣5)11、如图,CD是△ABC的角平分线,DE∥BC.若∠A=60°,∠B=80°,则∠CDE 的度数是( )A.20°B.30°C.35°D.40°12、如图,AB//CD,EF与AB、CD分别相交于点E、F,EP⊥EF,且∠BEP=50°,则∠EFD=()A.30°B.40°C.50°D.90°13、如图,下列条件中能判定AB∥CE的是()A.∠B=∠ACEB.∠B=∠ACBC.∠A=∠ECDD.∠A=∠ACE14、如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.15、一把直尺和一块三角板(含、角)如图所示摆放,直尺一边与三角板的两直角边分别交于点和点,另一边与三角板的两直角边分别交于点和点,且,那么的大小为()A. B. C. D.二、填空题(共10题,共计30分)16、如图所示,三角形ABC中,∠C=90°,三条边AB,AC,BC中AB>AC,理由:________.又有BC________AB(点B到AC距离,以垂线段最短).17、AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数为________.18、如图,∠1=∠2,∠4=120°,则∠3=________。

初一相交线试题及答案

初一相交线试题及答案

初一相交线试题及答案
一、选择题
1. 两条直线相交,交点的个数是()
A. 0个
B. 1个
C. 2个
D. 3个
2. 如果两条直线相交成90°角,那么这两条直线是()
A. 垂直
B. 平行
C. 相交
D. 重合
3. 在平面内,两条直线的位置关系有()
A. 只有相交
B. 只有平行
C. 只有重合
D. 相交、平行和重合
4. 两条直线相交,其中一条直线的斜率是2,另一条直线的斜率是-1/2,则这两条直线()
A. 垂直
B. 平行
C. 重合
D. 既不垂直也不平行
二、填空题
1. 当两条直线相交时,它们相交成的角叫做______。

2. 如果两条直线相交成30°角,那么这两条直线是______。

3. 在平面直角坐标系中,若直线y=2x+3与直线y=-1/2x+5相交,则交点的坐标是______。

三、解答题
1. 已知直线l1:y=3x-4与直线l2:y=-2x+6相交,求两条直线的交点坐标。

2. 判断两条直线y=x+1和y=-x+2是否相交,并说明理由。

答案:
一、选择题
1. B
2. A
3. D
4. A
二、填空题
1. 邻角
2. 相交
3. (2, 7)
三、解答题
1. 将直线l1的方程代入直线l2的方程中,得到3x-4=-2x+6,解得x=2,代入任一方程得y=2,所以交点坐标为(2, 2)。

2. 两条直线的斜率不相等,即1≠-1,因此它们相交。

(基础题)人教五四学制版七年级上册数学第12章 相交线与平行线含答案

(基础题)人教五四学制版七年级上册数学第12章 相交线与平行线含答案

人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,△ABC为等边三角形,AB=8,AD⊥BC,点E为线段AD上的动点,连接CE,以CE为边作等边△CEF,连接DF,则线段DF的最小值为()A. B.4 C.2 D.无法确定2、如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°3、如图,a∥b,c与a,b都相交,∠1=50°,则∠2=()A.40°B.50°C.100°D.130°4、在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)5、同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥dB.b⊥dC.a⊥dD.b∥c6、如图,一块直角三角尺的一个顶点落在直尺的一边上,若,则的度数为( )A.45°B.C.D.7、如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有()A.1条B.2条C.3条D.5条8、如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是()A.∠1=∠2B.∠3=∠4C.∠ D=∠5D.∠ B+∠ BAD=180°9、如图所示,下列判断中错误的是()A.因为∠A+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠ABC+∠C=180° C.因为∠1=∠2,所以AD∥BC D.因为AD∥BC,所以∠3=∠410、下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤11、如果线段AB与线段CD没有交点,则()A.线段AB与线段CD一定平行B.线段AB与线段CD一定不平行C.线段AB与线段CD可能平行D.以上说法都不正确12、如图,下列条件中,不能判定直线a平行于直线b的是()A.∠3=∠5B.∠2=∠6C.∠1=∠2D.∠4+∠6=180°13、如果△ABC与△A1B1C1关于y轴对称,已知A(﹣4,6)、B(﹣6,2)、C(2,1),现将△A1B1C1向左平移5个单位,再向下平移3个单位后得到△A2B2C2,则点B2的坐标为()A.(﹣13,﹣1)B.(﹣1,﹣5)C.(1,﹣1)D.(1,5)14、如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=()A.20°B.60°C.30°D.45°15、如图所示,一辆汽车经过一段公路两次拐弯后,和原来的行驶方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C的度数为 ( )A.38°B.142°C.130°D.140°二、填空题(共10题,共计30分)16、如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=________.17、如图,B处在A处南偏西50°方向,C处在A处的南偏东20°方向,C处在B处的北偏东80°方向,则∠ACB=________.18、如图,CO⊥AB,垂足为O,∠COE﹣∠BOD=4°,∠AOE+∠COD=116°,则∠AOD=________°.19、如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为________ .20、如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB 上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2 ;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2 ;⑤当点D从点A运动到点B 时,线段EF扫过的面积是16 .其中正确结论的序号是________.21、如图,将△ABC沿BC方向平移2cm 得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为________.22、如图,a//b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=________.23、如图,已知AD∥BC,∠B=32°,BD平分∠ADE,则∠DEC=________.24、将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是________.25、如图,在矩形ABCD中,AD=10,AB=8,点P在AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且MP=NC,连接MN交线段PC于点F,过点M作ME⊥PC于点E,则EF= ________.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=25°,求∠FEC的度数.28、推理填空:已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC于B,CO⊥BC于C(已知)∴∠1+∠3=90°,∠2+∠4=90°∴∠1与∠3互余,∠2与∠4互余又∵∠1=∠2(▲)∴▲ = ▲(▲)∴BE∥CF(▲)29、如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.30、如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,DE∥FB.求证:AB∥DC.请根据条件进行推理,得出结论,并在括号内注明理由.证明:∵BF、DE分别平分∠ABC与∠ADC,∴ ,.(▲)∵∠ABC=∠ADC,∴▲.∵DE∥FB,∴∠1=∠,(▲),∴∠2=▲.(等量代换),∴AB∥CD.(▲)参考答案一、单选题(共15题,共计45分)1、C2、D3、B5、C6、B7、D8、A9、D10、D11、C12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.1 相交线检测时间50分钟 满分100分)
一、选择题:(每小题3分,共15分)
1.如图所示,∠1和∠2是对顶角的图形有( ) A.1个 B.2个 C.3个 D.4个
1
2
1
2
1
2
2
1
2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )
A.150°
B.180°
C.210°
D.120°
O
F E D C
B
A O D
C
B
A 60︒30︒
34
l 3
l 2
l 1
12
(1) (2) (3) 3.下列说法正确的有( ) A.1个 B.2个 C.3个 D.4个
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.
4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为
236°,则∠AOC•的度数为( ) A.62° B.118° C.72° D.59°
5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( )
A.∠1=90°,∠2=30°,∠3=∠4=60°;
B.∠1=∠3=90°,∠2=∠4=30
C.∠1=∠3=90°,∠2=∠4=60°;
D.∠1=∠3=90°,∠2=60°,∠4=30°
二、填空题:(每小题2分,共16分)
1. 如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.
3
4D C
B
A 12O
F
E
D C
B A O
E
D C
B
A
(4) (5) (6)
2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.
3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是
_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.
4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,
则∠BOD=•______.
5.对顶角的性质是______________________.
6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.
O
D
C B
A 1
2
O
E D C
B
A O
E D
C
B
A
(7) (8) (9) 7.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠
DOB=50°,•则∠EOB=______________.
8.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD
分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________. 三、训练平台:(每小题10分,共20分)
1. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.
O
F E
D
C
B
A 1
2
2. 如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.
34
l 3
l 2l 1
1
2
四、提高训练:(每小题6分,共18分)
1. 如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的 度数.
O
E D
C
B
A O
D
C
B
A
c
b
a
3
4
1
2
2. 如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.
3. 如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.
五、探索发现:(每小题8分,共16分)
1. 若4条不同的直线相交于一点,则图中共有几对对顶角?若n 条不同的直线相交 于一点呢?
2. 在一个平面内任意画出6条直线,最多可以把平面分成几个部
分?n 条直线呢?•
六、能力提高:(共10分)
已知点O 是直线AB 上一点,OC,OD 是两条射线,且∠AOC=∠BOD,
则∠AOC 与∠BOD 是 对顶角吗?为什么?
七、中考题与竞赛题:(共5分)
(2001.南通)如图16所示,直线AB,CD 相交于O,若∠1=40°,则∠2•的度数为____
O
D
C
B
A 1
2
答案:
一、1.A 2.B 3.B 4.A 5.D
二、1.∠2和∠4 ∠3 2.155° 25° 155° 4.35° 5.对顶角相等 •6 .125° 55° 7.147.5° 8.42° 三、1.∠2=60° 2.∠4=36°
四、1.∠BOD=120°,∠AOE=30° 2.∠BOD=72° 3.∠4=32.5° 五、
1.4条不同的直线相交于一点,图中共有12对对顶角(平角除外),n 条不同的直线相交于一点,图中共有(n 2-n)对对顶角(平角除外).
2.6条直线最多可以把平面分成22个部分,n 条直线最多可以把平面分成(1)12n n +⎡⎤
+⎢
⎥⎣⎦
个部分. 六、∠AOC 与∠BOD 不一定是对顶角.如图1所示,当射线OC,OD 位于直线AB 的一侧 时,不是对顶角;如图2所示,当射线OC,OD 位于直线AB 的两侧时,是对顶角.
(1)
O D C B
A
2
1
(2)
O D
C
B
A
七、140°.。

相关文档
最新文档