实验六移位寄存器7页word

合集下载

移位寄存器实验报告

移位寄存器实验报告

移位寄存器实验报告实验题目:移位寄存器一、实验目的了解移位寄存器的原理,掌握移位寄存器的应用。

二、实验原理移位寄存器是一种存储器件,用于将二进制数据以位为单位进行移位操作。

移位寄存器由若干个D触发器组成,每个D触发器的输出接入下一个D触发器的输入,以此类推,形成了一个环形移位结构。

移位寄存器有三种基本工作模式:串行输入并行输出(SIPO),并行输入串行输出(PISO)和并行输入并行输出(PIPO)。

在SIPO模式下,输入数据串行输入到移位寄存器的最高位,然后逐个向低位移位,最终输出到最低位。

在PISO模式下,输入数据并行输入到移位寄存器的每个位,然后逐个向高位移位,最终输出到最高位。

在PIPO模式下,输入数据并行输入到移位寄存器的每个位,然后逐个向低位移位,最终输出到每个输出端口。

移位寄存器的应用很广泛,其中最常见的是时序信号的处理。

移位寄存器可以用于数字频率合成、序列生成、编码器和解码器等方面。

三、实验设备1. 计算机2. Xilinx ISE14.6软件3. BASYS2开发板4. USB下载器四、实验步骤1. 设计移位寄存器的电路原理图并进行仿真。

2. 在Xilinx ISE14.6软件中创建工程并添加源、约束和测试文件。

3. 将电路原理图转换成Verilog HDL代码。

4. 将Verilog HDL代码综合为综合网表,并进行时序分析。

5. 将综合网表映射到BASYS2开发板上并进行状态机调试。

6. 使用USB下载器将设计好的逻辑文件下载到FPGA上。

7. 连接开发板的输入输出端口,验证移位寄存器的正确性,并观察输出端口结果。

五、实验结果与分析通过移位寄存器的实验,我们学会了如何使用Verilog HDL设计并实现移位寄存器,并对移位寄存器进行了详细的仿真、综合、映射和下载调试。

在实验过程中,我们还学会了串行输入并行输出(SIPO),并行输入串行输出(PISO)和并行输入并行输出(PIPO)三种基本工作模式,掌握了移位寄存器在数字频率合成、序列生成、编码器和解码器等领域中的使用方法。

实验六 寄存器及应用

实验六 寄存器及应用

实验六 移位寄存器及应用一、实验目的1、了解并掌握四位单向、双向移位寄存器的逻辑功能;2、熟悉移位寄存器的基本使用方法。

二、实验器材和仪器设备 1、实验仪器设备(1)DLC —1数字电子技术实验箱 (2)万用表2、实验器件:74LS194、74LS04、74LS20 等 三 实验原理1、在数字系统中能寄存二进制信号,并进行移位的逻辑部件称为移位寄存器。

根据移位输入和输出信号的方式有:串入串出、串入并出、并入串出、并入并出四种形式,按移位方向有左移、右移两种。

2、集成双向移位寄存器集成移们寄存器的种类很多,现以典型芯片74194为例来介绍其逻辑功能。

下图是74LS194芯片,它有16个引脚。

其功能真值表如表所示。

图5-3 四位双向移位寄存器74194引脚图R C :异步清零端; CP:时钟送数脉冲输入端; S 1S 0 :控制方式选择端, S R :右移串行输入数据端; S L :左移输入端。

Q 3:右移串行输出端;Q 0:左移串行输出端。

D 0-D 3:并行输入;Q 0-Q 3:并行输出。

表5-2 74194双向移位功能表........① 清0功能。

当CR =0时,双向移位寄存器置0。

Q 0-Q 3 都为0状态。

② 保持功能。

当CR =1、CP= 0或1 CR 、S 1S 0 =00时,双向移位寄存器保持原状态不变。

③ 并行送数功能。

当CR =1、S 1S 0 =11时,在CP 上升沿作用下,使D 0-D 3 端输入的数码d 0-d 3并行送入寄存器,显然是同步并行送数。

④ 右移串行送数功能。

当CR =1、S 1S 0 =01时,在CP 上升沿作用下,执行右移功能,D SR 端输入的数码依次送入寄存器。

⑤ 左移串行送数功能。

当CR =1、S 1S 0 =10时,在CP 上升沿作用下,执行左移功能,D SL 端输入的数码依次送入寄存器。

四、实验内容1.验证74LS194 双向移位寄存器的逻辑功能(70分)D 0、D 1、 D 2、D 3分别接数据开关K 1、K 2、K 3、K 4。

电子线路基础数字电路试验6移位寄存器

电子线路基础数字电路试验6移位寄存器

实验六移位寄存器一、实验目的1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。

2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。

二、实验原理1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。

根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图9—1所示。

图9—1 CC40194的逻辑符号及引脚功能其中D、D、D、D为并行输入端; Q、Q、Q、Q为并行输出端;SR为30223011 C为直接为操作模式控制端;为左移串行输入端;S、S右移串行输入端,SL R10无条件清零端;CP为时钟脉冲输入端。

CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q~Q),30左移(方向由Q~Q),保持及清零。

03C端的控制作用如表9—和l。

S、S R10—表9l2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。

本实验研究移位寄存器用作环形计数器和数据的串、并行转换。

(1)环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图9—2所示,把输出端Q和右移串行输入端S相连接,设初始状态QQQQ=1000,31R302则在时钟脉冲作用下QQQQ将依次变为0100→0010→0001→1000→……,如3201表9—2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。

图9—2电路可以由各个输出端输出在时间上有先后顺序的脉冲。

因此也可作为顺序脉冲发生器。

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告1. 背景在数字电路中,移位寄存器是一种常见的基本电路元件。

它可以将输入数据按照一定规则进行移位操作,并输出处理后的数据。

移位寄存器通常由触发器构成,分为串行移位寄存器和并行移位寄存器。

在实际应用中,移位寄存器常用于数据存储、数据传输、脉冲发生器等方面。

本实验旨在通过设计移位寄存器电路及其应用电路的实验,加深对移位寄存器工作原理的理解,掌握其应用。

2. 实验目的1.了解移位寄存器的基本原理;2.学会设计移位寄存器电路及其应用电路;3.掌握移位寄存器的应用方法。

3. 实验原理与方法3.1 移位寄存器原理移位寄存器将输入数据按照一定规则进行移位操作,并输出处理后的数据。

常见的移位规则包括:左移、右移、循环左移、循环右移等。

移位寄存器通常由触发器构成,触发器的状态决定了寄存器中存储的数据。

本实验主要探究两种常用的移位寄存器:串行移位寄存器和并行移位寄存器。

3.1.1 串行移位寄存器串行移位寄存器中,数据是按照位的顺序逐个进行移位的。

串行移位寄存器可以通过级联多个D触发器实现,每个D触发器的输出与下一个D触发器的输入相连。

3.1.2 并行移位寄存器并行移位寄存器中,数据的位同时进行移位。

并行移位寄存器可以通过级联多个D 触发器实现,每个D触发器的输入都与移位数据的对应位相连。

3.2 实验所用材料与方法3.2.1 材料•移位寄存器芯片•发光二极管(LED)•电路连接线3.2.2 方法1.实验预备:准备实验所需的移位寄存器芯片、LED和电路连接线。

2.按照移位寄存器原理,设计移位寄存器电路并进行布线连接。

3.使用示波器检查电路的正确性。

4.进行实验验证,观察移位寄存器的运行情况,并记录实验结果。

4. 实验结果与分析本实验设计了一个4位串行移位寄存器电路,并进行了验证实验。

首先,按照原理部分的描述,我们选择了一个基于D触发器的4位串行移位寄存器芯片。

通过连接四个D触发器,将其串联起来,即可构成一个4位的串行移位寄存器。

移位寄存器实验报告

移位寄存器实验报告

移位寄存器实验报告移位寄存器和计数器的设计实验室:实验台号:日期:专业班级:姓名:学号:一、实验目的1. 了解二进制加法计数器的工作过程。

2. 掌握任意进制计数器的设计方法。

二、实验内容(一)用D触发器设计左移移位寄存器(二)利用74LS161和74LS00设计实现任意进制的计数器设计要求:以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)。

三、实验原理图1.由4个D触发器改成的4位异步二进制加法计数器(输入二进制:11110000)2.测试74LS161的功能3.熟悉用74LS161设计十进制计数器的方法。

①利用置位端实现十进制计数器。

②利用复位端实现十进制计数器。

四、实验结果及数据处理1.左移寄存器实验数据记录表要求:输入二进制:111100002.画出你所设计的任意进制计数器的线路图(计数器从零开始计数),并简述设计思路。

8进制利用复位法实现8进制计数器,8=1000B,将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。

五、思考题1. 74LS161是同步还是异步,加法还是减法计数器?答:在上图电路中74LS161是异步加法计数器。

2. 设计十进制计数器时将如何去掉后6个计数状态的?答:通过置位端实现时,将Q0、Q3 接到与非门上,输出连接到置位控制端。

当Q3=1,Q2=0,Q1=0,Q0=1,即十进制为9时,与非门输入端Q0、Q3同时为高电平,位控制端为低电位,等到下一个CP上升沿到来时,完成置数,全部置为0。

3. 谈谈电子实验的心得体会,希望同学们提出宝贵意见。

答:通过这学期的电子实验,我对电子电路有了更加深入地了解。

初步了解了触发器、寄存器、计数器等电子元件的使用。

将理论与实践相结合,更加深入的了解了电子技术,学到了很多,对这学期的电子实验十分满意。

实验6移位寄存器及其应用

实验6移位寄存器及其应用

实验六 移位寄存器及其应用一、实验目的1、 掌握移位寄存器功能的测试方法2、 掌握4位双向移位寄存器的逻辑功能 二、实验仪器及设备1、 EEL-II 型电工电子实验台2、 集成器件74LS194 三、实验内容1、 在数字实验箱中插入74LS194,按图6.1接线V CC S 1S 0D SR A D SL B C D GNDQ A Q B Q C Q DCRCP逻辑电平显示器数 据 开 关+5v复位按钮SB单次脉冲74LS194图6.1 74LS194管脚排列图和逻辑功能测试图2、 接线完毕,检查无误后,进行基本功能测试 复位:CR =0,电路复位,Q A Q B Q C Q D =0000 保持:CR 非=1,S 1=S 0=0,Q A ~Q D 状态不变使CR =1,S 1、S 0(工作状态控制端)任意,CP=0或CP=1,则Q A ~Q D 状态也不变表6.1 74LS194双向4位移位寄存器功能表并行置数:置CR=1,S1=S0=10,数据输入端DCBA置为0101,输入单次脉冲,则Q D Q C Q B Q A=0101,如果改变DCBA数据,再按单次脉冲,新数据将置入。

右移位:置CR=1,S1=0,S0=1,D SR=1,D SL=*,输入单次脉冲,则Q A=1,Q B=Q An,Q C=Q Bn,Q D=Q Cn左移位:置CR=1,S1=1,S0=0,D SR=*,D SL=1,输入单次脉冲,则Q D=1,Q C=Q Dn,Q B=Q Cn,Q A=Q Bn3、循环右移应用如将上图中的D SR端接到Q D端,并将寄存器Q D~Q A置为1000,且满足右移条件,在寄存器会右移一个“1”,每4个时钟脉冲完成一次循环。

4、用74LS194组成8位移位寄存器原理如图6.2所示。

逻辑状态显示器图6.2 用74LS194组成8位移位寄存器原理图四、实验报告整理各项测试结果。

实验六 移位寄存器

实验六 移位寄存器

实验六移位寄存器一:实验目的1. 掌握移位寄存器的工作原理,逻辑功能2. 掌握集成移位寄存器74LS194的逻辑功能及应用二:实验器材74LS00 74LS74 74LS194 CD4008B三:实验原理寄存器用于寄存一组二值代码,它被广泛应用于各类数字系统和计算机中,一个触发器能储存1位二值代码,N个触发器组成的寄存器能储存N位二值代码。

移位寄存器除了具有存储代码功能以外,还具有移位功能。

所谓移位功能,是指寄存器里存储的代码能在移位脉冲的作用下依次左移或右移。

因此,移位寄存器不但可以用来寄存代码,还可以用来实现数据的串行---并行转换,数值的运算和处理。

四.实验内容(一)验证74LS194的逻辑功能,按功能表进行。

结论:74LS194的逻辑功能与实验结果相一致并且与逻辑功能表相符合.二)如图6.3所示,两个二制数A,B,分别存入74LS194(A),74LS194(B),现在要对它们进行按位相加,其和放入74LS194(A)中。

试采用全加器CD4008B和D触发器74LS74组成能实现上述要求的电路,输出用二极管指示。

有图知,满足其特性。

分析以上记录的真值表可知在预设的A为 1010,B为1001情况下,芯片U1用来对A进行移位处理、存放和显示输出结果,U2用来对B进行移位,U3为全加器,本题中设置为一位全加器,故其进位应为S2,全加器将本位的输出和用来控制A右移移位进去的数字,并用D锁存器来存储A、B全加所得和向高位的进位,并将进位结果参与下一次全加运算。

分析真值表可知,每来一个脉冲,A、B实现一次移位,全加器进行一次全加,锁存器存入所得进位数。

四个脉冲到来之后,输出结果即为A、B全加二进制结果,由表中数据得出A+B=10011,符合实验结果;之后由于B已经移出去了,实现的是A 中数与0000的全加的循环移位。

(三)设计二进制转换成十进制的数码转换电路,使上述电路在相加后可以完成用数码管显示相加结果。

双向移位寄存器实验指导书

双向移位寄存器实验指导书

4) 回到波形编辑窗口,对所有输入端口设置输入波形,具体可以通过左边的工 具栏,或通过对信号单击鼠标右键的弹出式菜单中完成操作,最后保存次波形文 件。
4. 进行功能仿真 1) 单击 Assignments\Settings…,在弹出对话框中做以下设置:
-5-
制作人:程鸿亮
长安大学 电子与控制工程学院 电子科学与技术系
SPEAKER CLOCK0 CLOCK2 CLOCK5 CLOCK9
引脚号 C13 C7 H3 U3 P3 F4 C10 C16 G20 R20 AB16 AB17 AB18 AB19 AB20 AB7 AB8 AB11 A10 A9 A8 A7 A6 A5 A4 A3 AB9 AB10 B5 Y10
⒈⒉⒊⒋⒌⒍⒎⒏ ⒐⒑⒒⒓⒔⒕⒖⒗
四、实验步骤: 1. 打开 QuartusII 软件,建立一个新的工程: 1) 单击菜单 File\New Project Wizard…
2) 输入工程的路径、工程名以及顶层实体名。 3) 单击 Next>按钮,出现以下窗口
由于我们建立的是一个空的项目,所以没有包含已有文件,单击 Next>继续。 4) 设置我们的器件信息:
如图所示,Simulation mode 设置为 Functional,即功能仿真。指定仿真波形文件 后单击 OK 完成设置。 2) 单击 Processing\Generate Functional Simulation Netlist 以获得功能仿真网络表。 3) 单击 Processing\Start Simulation 进入仿真页面:
E8
I/O29
E7
I/O30
D11
I/O31
D9
I/O32
D8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六移位寄存器
学院:信息科学与技术学院
专业:电子信息工程
姓名:刘晓旭
学号:2011117147
一:实验目的
1.掌握移位寄存器的工作原理,逻辑功能
2.掌握集成移位寄存器74LS194的逻辑功能及应用
二:实验器材
74LS00 74LS74 74LS194 CD4008B
三:实验原理
寄存器用于寄存一组二值代码,它被广泛应用于各类数字系统和计算机中,一个触发器能储存1位二值代码,N个触发器组成的寄存器能储存N位二值代码。

移位寄存器除了具有存储代码功能以外,还具有移位功能。

所谓移位功能,是指寄存器里存储的代码能在移位脉冲的作用下依次左移或右移。

因此,移位寄存器不但可以用来寄存代码,还可以用来实现数据的串行---并行转换,数值的运算和处理。

四.实验内容
(一)验证74LS194的逻辑功能,按功能表进行。

对D 0,D 1,D 2,D 3预置数,使D 0D 1D 2D=1001,如图(1)
图1 向左移位时,此时令S 0=0,S 1=1,D IL =1,该时刻的电路图如图(2) 图2
向右移位时,此时令令S 0=1,S 1=0,D IL =1,该时刻的电路图如图(3) 图3
结论:74LS194的逻辑功能与实验结果相一致并且与逻辑功能表相符合. 二)如图6.3所示,两个二制数A,B,分别存入74LS194(A),74LS194(B),现在要对它们进行按位相加,其和放入74LS194(A)中。

试采用全加器CD4008B 和D 触发器74LS74组成能实现上述要求的电路,输出用二极管指示。

由图示可以连出电路图,如图(4)所示:
图4
置入数据时:S0=S1=RD’=1
A片 A=1,B=0,C=1,D=0
B片 A=1,B=0,C=0,D=1
S0=1,S1=0,RD=1,右移;则电路如图(5)(6)(7)(8)(9)所示:
图(5)
图6
图7
图8
图9
有图知,满足其特性。

分析以上记录的真值表可知在预设的A为 1010,B 为1001情况下,芯片U1用来对A进行移位处理、存放和显示输出结果,U2用来对B进行移位,U3为全加器,本题中设置为一位全加器,故其进位应为S2,全加器将本位的输出和用来控制A右移移位进去的数字,并用D锁存器来存储A、B全加所得和向高位的进位,并将进位结果参与下一次全加运算。

分析真值表可知,每来一个脉冲,A、B实现一次移位,全加器进行一次全加,锁存器存入所得进位数。

四个脉冲到来之后,输出结果即为A、B全加二进制结果,由表中数据得出A+B=10011,符合实验结果;之后由于B已经移出去了,实现的是A中数与0000的全加的循环移位。

(三)设计二进制转换成十进制的数码转换电路,使上述电路在相加后可以完成用数码管显示相加结果。

如图(10)所示:
图10
(四)按照6.1搭接电路,观察比较串入-并出,并入-串出两种工作方式的输出序列。

1.串入-串出
电路图如图11所示:
图11
则,串入=1,串出=1
(2)串入-并出如图12
图12即串入D=1,并出=1111
输入不同的数据D时其记录数据如表3:
表3
(3)并入-串出如图13
图13
其功能表如下:
(五)设计寄存器进行N分频
电路如图14所示:
图14
三分频:
五分频:
七分频:
八分频:
(六)用循环移位做跑马灯
电路如图15:
图15
当开关接高电平时:跑马灯开始工作。

如图16
图16
希望以上资料对你有所帮助,附励志名3条:
1、积金遗于子孙,子孙未必能守;积书于子孙,子孙未必能读。

不如积阴德于冥冥之中,此乃万世传家之宝训也。

2、积德为产业,强胜于美宅良田。

3、能付出爱心就是福,能消除烦恼就是慧。

相关文档
最新文档