电子技术实验报告6—移位寄存器及其应用

合集下载

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告1. 背景在数字电路中,移位寄存器是一种常见的基本电路元件。

它可以将输入数据按照一定规则进行移位操作,并输出处理后的数据。

移位寄存器通常由触发器构成,分为串行移位寄存器和并行移位寄存器。

在实际应用中,移位寄存器常用于数据存储、数据传输、脉冲发生器等方面。

本实验旨在通过设计移位寄存器电路及其应用电路的实验,加深对移位寄存器工作原理的理解,掌握其应用。

2. 实验目的1.了解移位寄存器的基本原理;2.学会设计移位寄存器电路及其应用电路;3.掌握移位寄存器的应用方法。

3. 实验原理与方法3.1 移位寄存器原理移位寄存器将输入数据按照一定规则进行移位操作,并输出处理后的数据。

常见的移位规则包括:左移、右移、循环左移、循环右移等。

移位寄存器通常由触发器构成,触发器的状态决定了寄存器中存储的数据。

本实验主要探究两种常用的移位寄存器:串行移位寄存器和并行移位寄存器。

3.1.1 串行移位寄存器串行移位寄存器中,数据是按照位的顺序逐个进行移位的。

串行移位寄存器可以通过级联多个D触发器实现,每个D触发器的输出与下一个D触发器的输入相连。

3.1.2 并行移位寄存器并行移位寄存器中,数据的位同时进行移位。

并行移位寄存器可以通过级联多个D 触发器实现,每个D触发器的输入都与移位数据的对应位相连。

3.2 实验所用材料与方法3.2.1 材料•移位寄存器芯片•发光二极管(LED)•电路连接线3.2.2 方法1.实验预备:准备实验所需的移位寄存器芯片、LED和电路连接线。

2.按照移位寄存器原理,设计移位寄存器电路并进行布线连接。

3.使用示波器检查电路的正确性。

4.进行实验验证,观察移位寄存器的运行情况,并记录实验结果。

4. 实验结果与分析本实验设计了一个4位串行移位寄存器电路,并进行了验证实验。

首先,按照原理部分的描述,我们选择了一个基于D触发器的4位串行移位寄存器芯片。

通过连接四个D触发器,将其串联起来,即可构成一个4位的串行移位寄存器。

移位寄存器实验报告

移位寄存器实验报告

移位寄存器实验报告移位寄存器和计数器的设计实—期:专业班级:_姓名:_____________ 学号:一、实验目的1. 了解二进制加法计数器的工作过程。

2. 掌握任意进制计数器的设计方法。

实验内容(一)用D触发器设计左移移位寄存器(二)利用74LS161和74LS00设计实现任意进制的计数器设计要求:以实验台号的个位数作为所设计的任意进制计数器(0、1、2任选)三、实验原理图1. 由4个D触发器改成的4位异步二进制加法计数器(输入二进制:11110000)2. 测试74LS161的功能输入端 输出时 清 置 P T Qn钟 J —| —A零 数3. 熟悉用74LS161设计十进制计数器的方法。

①利用置位端实现十进制计数器。

16 15 14 13 12 1 1 10 9 74LS16112 3 4 5 16 7 8 捺出 LD數据输入Ci- GND 允许”邃 <―二^允详置人出 Qo Qi O2 Q?② 利用复位端实现十进制计数器。

四、实验结果及数据处理1. 左移寄存器实验数据记录表要求:输入二进制:11110000移位寄存器状态XX X X 清零+ 1X X 置数+1 1 1 1计数X 1 1 0 X 不计数X 1 1 X 0 不计数1 1— CP-共阴极共阴机数码管数码管C BI s1D C B A74LS161q 小 Ditl IT 「「-1(741SQ0]移位脉冲的次Q4Q3Q2Q1 000001000120011301114111151110 6110071000 800002. 画出你所设计的任意进制计数器的线路图(计数器从零开始计数),并简述设计思路8 进制利用复位法实现8进制计数器,8=1000B将A端同与非门相连,当A端=1时,使复位端获得信号,复位,从而实现8进制。

五、思考题1. 74LS161是同步还是异步,加法还是减法计数器?答:在上图电路中74LS161是异步加法计数器。

同步移位寄存器实训报告

同步移位寄存器实训报告

一、实训目的1. 理解同步移位寄存器的概念和原理。

2. 掌握74LS194移位寄存器的逻辑功能和使用方法。

3. 熟悉移位寄存器在实际电路中的应用。

4. 提高动手实践能力和电路设计能力。

二、实训原理同步移位寄存器是一种具有同步时序的数字电路,它可以将输入的数据以串行或并行的形式存储在寄存器中,并在时钟脉冲的作用下实现数据的移位。

同步移位寄存器具有以下特点:1. 同步时序:所有触发器在同一个时钟脉冲的作用下同时动作。

2. 移位方向:数据可以左移或右移。

3. 数据输入/输出方式:串行输入/串行输出、串行输入/并行输出、并行输入/串行输出、并行输入/并行输出。

74LS194是一种典型的4位双向移位寄存器,它具有以下功能:1. 右移:串行数据从SA输入,同时向右移位。

2. 左移:串行数据从SD输入,同时向左移位。

3. 并行输入:并行数据从d、c、b、a输入。

4. 保持:输出不变。

三、实训器材1. 74LS194移位寄存器芯片1片2. 74LS00门电路芯片1片3. 74LS20反相器芯片1片4. 74LS273锁存器芯片1片5. 电阻、电容、二极管、LED灯等元器件6. 逻辑电平转换器7. 信号发生器8. 示波器9. 数字万用表10. 实验板、连接线等四、实训内容1. 74LS194移位寄存器功能测试(1)测试目的:验证74LS194移位寄存器的逻辑功能。

(2)测试步骤:1. 将74LS194的输入端SD、SA、d、c、b、a连接到逻辑电平转换器,输出端Q0、Q1、Q2、Q3连接到LED灯。

2. 使用信号发生器产生时钟脉冲,连接到74LS194的时钟端CP。

3. 分别测试74LS194的右移、左移、并行输入和保持功能。

4. 观察LED灯的显示情况,验证74LS194的逻辑功能。

2. 74LS194移位寄存器应用电路设计(1)设计目的:设计一个基于74LS194的4位二进制计数器。

(2)设计步骤:1. 分析计数器的要求,确定计数器的位数和计数范围。

实验6移位寄存器及其应用

实验6移位寄存器及其应用

实验六 移位寄存器及其应用一、实验目的1、 掌握移位寄存器功能的测试方法2、 掌握4位双向移位寄存器的逻辑功能 二、实验仪器及设备1、 EEL-II 型电工电子实验台2、 集成器件74LS194 三、实验内容1、 在数字实验箱中插入74LS194,按图6.1接线V CC S 1S 0D SR A D SL B C D GNDQ A Q B Q C Q DCRCP逻辑电平显示器数 据 开 关+5v复位按钮SB单次脉冲74LS194图6.1 74LS194管脚排列图和逻辑功能测试图2、 接线完毕,检查无误后,进行基本功能测试 复位:CR =0,电路复位,Q A Q B Q C Q D =0000 保持:CR 非=1,S 1=S 0=0,Q A ~Q D 状态不变使CR =1,S 1、S 0(工作状态控制端)任意,CP=0或CP=1,则Q A ~Q D 状态也不变表6.1 74LS194双向4位移位寄存器功能表并行置数:置CR=1,S1=S0=10,数据输入端DCBA置为0101,输入单次脉冲,则Q D Q C Q B Q A=0101,如果改变DCBA数据,再按单次脉冲,新数据将置入。

右移位:置CR=1,S1=0,S0=1,D SR=1,D SL=*,输入单次脉冲,则Q A=1,Q B=Q An,Q C=Q Bn,Q D=Q Cn左移位:置CR=1,S1=1,S0=0,D SR=*,D SL=1,输入单次脉冲,则Q D=1,Q C=Q Dn,Q B=Q Cn,Q A=Q Bn3、循环右移应用如将上图中的D SR端接到Q D端,并将寄存器Q D~Q A置为1000,且满足右移条件,在寄存器会右移一个“1”,每4个时钟脉冲完成一次循环。

4、用74LS194组成8位移位寄存器原理如图6.2所示。

逻辑状态显示器图6.2 用74LS194组成8位移位寄存器原理图四、实验报告整理各项测试结果。

移位寄存器实验心得

移位寄存器实验心得

移位寄存器实验心得在数字电路实验中,移位寄存器是一个非常重要的组件,它在数字信号处理和数据存储中起着至关重要的作用。

通过对移位寄存器的实验,我对其工作原理和应用有了更深入的了解,并且积累了一些宝贵的实验心得。

首先,移位寄存器是一种能够将数据按位进行移动的寄存器,它可以实现数据的左移和右移操作。

在实验中,我使用了几种不同类型的移位寄存器,包括串行移位寄存器和并行移位寄存器。

通过对这些寄存器的实验,我发现它们在数据处理中具有非常灵活的应用方式,能够满足不同的需求。

其次,通过实验我了解到移位寄存器在数字信号处理中的重要性。

在实际应用中,移位寄存器可以用来实现数字信号的平移、延迟和时序控制等功能。

在数字滤波、数字调制解调、数字信号处理等领域,移位寄存器都扮演着不可或缺的角色。

另外,通过实验我还学会了如何使用移位寄存器来实现数据存储和传输。

在实验中,我将移位寄存器和其他逻辑门电路结合起来,实现了数据的存储和传输功能。

这种方法可以在数字系统设计中发挥重要作用,提高数据处理的效率和可靠性。

在实验中,我还发现了一些需要注意的问题。

首先是移位寄存器的时钟信号。

在实际应用中,时钟信号的频率和相位对移位寄存器的工作有着重要影响,需要合理设计和控制。

其次是移位寄存器的级联和级联。

在实验中,我发现级联多个移位寄存器可以实现更复杂的数据处理功能,但是需要注意级联的时序和逻辑关系,以避免出现故障。

总的来说,通过对移位寄存器的实验,我对其工作原理和应用有了更深入的了解,并且积累了一些宝贵的实验心得。

移位寄存器在数字信号处理和数据存储中具有非常重要的作用,它可以实现数据的移动、存储和传输等功能,对于数字系统设计和数字信号处理具有重要意义。

希望通过不断的实验和学习,我能够更深入地理解移位寄存器的工作原理和应用,为将来的工程实践打下坚实的基础。

实验七---移位寄存器及其应用

实验七---移位寄存器及其应用

集成移位寄存器74LS194功能表:
附:74LS194引脚图
四、实验内容
1、测试四位双向移位寄存器74LS194的逻 辑功能:(测试数据记录表5中)
(1)清除功能 (2)送数功能 (3)右移、左移功能 (4)保持功能 注:CR、S1、S0、SL、SD以及D0-D7分别
接数据开关,CP接逻辑开关,Q0-Q7接发 光二极管显示器。
2、根据实验内容2的结果,画出4 位 环形计数器的状态转换图及波形图。
3、分析串/并行、并/串行转换器所 得结果的正确性。
实验七、移位 寄存器
一、实验目的
1、掌握中规模4位双向移位寄存 器的逻辑功能及使用方法。
2、掌握移位寄存器的典型应用。 3、熟悉移位寄存器的调试方法。
二、实验设备
1、电子技术实验箱
一台
2、数字示波器
一台
3、数字万用表
一块
4、芯片:74LS194*2、74LS00
三、理论准备
移位寄存器是一种由触发器链 型连接的同步时序网络 ,每个 触发器的输出连到下一级触发 器的控制输入端,在时钟脉冲 作用下,存贮在移位寄存器中 的信息逐位左移或右移。
2、环形计数器:自拟实验电路及数据 记录表格。
3、实现数据的串/并转换:按图3、图 4连接电路,输入数码自定,自拟记录 表格。
注:串行输入/并行输出及并行输入/ 串行输出转换电路中只做右移部分; 改接电路,用左移方式的内容放在实 验报告中完成(画出电路图)
波形图:
五、实验报告要求
ห้องสมุดไป่ตู้、分析表5的实验结果,总结移位寄 存器的逻辑功能,并写入表格总结功 能一栏中。

移位寄存器实验心得(精品5篇)

移位寄存器实验心得(精品5篇)

移位寄存器实验心得(精品5篇)移位寄存器实验心得篇1以下是一篇移位寄存器实验心得:移位寄存器实验心得移位寄存器是数字电路中的一个基本组件,它可以在一个有限位的寄存器中存储数据,并可以通过移位操作将数据向左或向右移动。

在本次实验中,我们通过使用移位寄存器来实现一个简单的计数器,并通过对移位寄存器的操作来实现其他功能。

在实验中,我们首先使用了一个4位二进制移位寄存器来实现计数器。

我们通过输入不同的数值,并使用移位操作来控制计数器的计数方式。

通过观察实验结果,我们发现计数器的计数方式与我们所输入的数值和移位操作有关。

接着,我们使用移位寄存器来实现了一个简单的LED显示电路。

我们将移位寄存器中的数据通过一个数码管显示出来,从而实现了LED显示的功能。

在这个实验中,我们学习了如何将数字转换成二进制码,并将其存储在移位寄存器中,然后通过数码管将数据显示出来。

最后,我们使用移位寄存器来实现了一个简单的电子琴电路。

我们将移位寄存器中的数据通过一个电子琴模拟出来,从而实现了电子琴的功能。

在这个实验中,我们学习了如何将数字转换成二进制码,并将其存储在移位寄存器中,然后通过电子琴将数据模拟出来。

通过这次实验,我们不仅学习了移位寄存器的基本原理和操作方法,还加深了对数字电路的理解和认识。

同时,我们也学会了如何将理论知识与实际操作相结合,提高了我们的动手能力和解决问题的能力。

移位寄存器实验心得篇2在进行移位寄存器实验的过程中,我不仅对移位寄存器有了更深入的理解,还掌握了一些实际操作技巧。

以下是我对这次实验的心得体会。

首先,实验开始前,我对于移位寄存器的工作原理感到困惑。

但是在实验过程中,我逐渐明晰了其工作机制。

移位寄存器是一种具有存储功能的电子元件,可以将数据从高位移至低位或低位移至高位,从而实现数据的传递和存储。

这一过程让我对电子元件的工作原理有了更深入的了解。

在实验过程中,我遇到了一些问题,例如在编程时出现了错误。

但是,通过查阅相关资料和反复试验,我逐渐找到了解决问题的方法。

实验五 移位寄存器及其应用

实验五 移位寄存器及其应用

实验五移位寄存器及其应用一、实验目的1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。

2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。

二、实验原理1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。

根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图5-1所示。

图5-1 CC40194的逻辑符号及引脚功能其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串C为直接无条件清零端;行输入端,S L为左移串行输入端;S1、S0为操作模式控制端;RCP为时钟脉冲输入端。

CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q0→Q3),左移(方向由Q3→Q0),保持及清零。

S1、S0和R C端的控制作用如表5-1。

表5-12、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。

本实验研究移位寄存器用作环形计数器和数据的串、并行转换。

(1)环形计数器把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图5-2所示,把输出端Q3和右移串行输入端S R 相连接,设初始状态Q0Q1Q2Q3=1000,则在时钟脉冲作用下Q0Q1Q2Q3将依次变为0100→0010→0001→1000→……,如表5-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。

图5-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生实验报告
系别电子信息学院课程名称电子技术实验
班级10通信A班实验名称实验六移位寄存器及其应用
姓名葛楚雄实验时间2012年5月16日
学号2010010101019 指导教师文毅
报告内容
一、实验目的和任务
1.掌握四位双向移位寄存器的逻辑功能与使用方法。

2.了解移位寄存器的使用—实现数据的串行,并行转换和构成环形计数器。

二、实验原理介绍
1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又能右移的称为双向移位寄存器,只需要改变左右移的控制信号便可实现双向移位要求。

根据寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为74LS194或CC40194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图15-1所示。

图15-1 74LS194(或CC40194)的逻辑符号及引脚排列
其中SR为右移串行输入端,SL为左移串行输入端;功能作用如表15-1所示。

2、移位寄存器应用很广,可构成移位寄存器型计数器、顺序脉冲发生器和串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。

(1)环形计数器
把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如下图所示。

将输出端Q3与输入端SR相连后,在时钟脉冲的作用下Q0Q1Q2Q3将依次右移。

同理,将输出端Q0与输入端SL相连后,在时钟脉冲的作用下Q0Q1Q2Q3将依次左移。

(2)实现数据串、并转换
○1串行/并行转换器
串行/并行转换是指串行输入的数据,经过转换电路之后变成并行输出。

下面是用两片74LS194构成的七位串行/并行转换电路。

电路中S0端接高电平1,S1受Q7控制,两片寄存器连接成串行输入右移工作模式。

Q7是转换结束标志。

当Q7=1时,S1为0,使之成为S1S0=01的串入右移工作方式。

当Q7=0时,S1为1,有S1S0=11,则串行送数结束,标志着串行输入的数据已转换成为并行输出。

○2并行/串行转换器
并行/串行转换是指并行输入的数据,经过转换电路之后变成串行输出。

下面是用两片74LS194构成的七位并行/串行转换电路,如图15-4所示。

与图15-3相比,它多了两个与非门,而且还多了一个转动换启动信号(负脉冲或低电平),工作方式同样为右移。

对于中规模的集成移位寄存器,其位数往往以4位居多,当所需要的位数多于4位时,可以把几片集成移位寄存器用级连的方法来扩展位数。

三、实验内容和数据记录
1、测试74LS194移位寄存器的逻辑功能;
1、测并入功能的要点:
①先清零;②令S1S0=11;
③对D0~D3置数,送数1001;
④在CP作用下即完成。

将输出状态变化记录在预设置的表里。

功能 CP Cr S1 S0 Q0 Q1 Q2 Q3 清零 X 0 X X 0 0 0 0 并入 ↑ 1 1 1 1 0 0 1 保持 ↑ 1 0 0 1 0 0 1 CP1 ↑ 1 0 0 1 0 0 1 CP2 ↑ 1 0 0 1 0 0 1 CP3 ↑ 1 0 0 1 0 0 1 CP4

1
1
1
2、74LS194构成扭环型计数器; 工作原理:
1.先清零,3210Q Q Q Q =0000;
2.S1S0=01,右移工作模式;
3.DSR=/Q3,在CP 的作用下,3210Q Q Q Q 实现右移;
4.3210Q Q Q Q (0000)-(1000)-(1100)-(1110)-(1111)-(0111)-(0011)-(0001)-(0000); 实现8进制循环计数。

相关文档
最新文档