《岩石力学》ppt课件

合集下载

岩石力学课程(课堂PPT)

岩石力学课程(课堂PPT)
上节回顾-Review
岩石力学研究的对象及特点 岩石力学研究的主要内容 岩石力学的研究方法
本节内容——Next
我们将进入岩石力学的重要内容 ——岩石的物理性质的学习中… …
1
岩石/岩体性质
物理性质
包括密度、容重、 含水率、抗冻等性 质
力学性质
包括弹性/变形模 量、抗拉、抗压、 抗剪强度等
2
第二章 岩石的物理性状(性质) Chapter 2 Physical Properties of Rock
14
§2.1 岩体的结构特性
岩体结构面的特征 结构面的成因类型
成因类型
地质类型
沉积结 构面
1层理层面 2软弱夹层 3不整合面、假整合面 4沉积间断面

生 结 构
岩浆岩 结构面
1侵入体与围岩接触面 2岩脉岩墙接触面 3原生冷凝节理

产状
一般与岩层产状 一致,为层间结 构面
岩脉受构造结构 面控制,而原生 节理受岩体接触 面控制
岩体结构面的特征 结构面的规模
Ⅰ级——指大断层或区域性断层。控制工程建设地区的地壳稳定性,

直接影响工程岩体稳定性;
Ⅱ级
Ⅱ、Ⅲ级结构面控制着工程岩体力学 ——作指用延的伸边长界而宽条度件不和大破的区坏域方性式地,质它界面们。的组合
Ⅲ级 ——往指往长构度成数可十米能至滑数移百岩米的体断的层边、界区面域性,节直理接、威延伸较好的层
27
§2.3 岩石的物理性质指标
在前面说到,岩石力学问题的研究首先 应从岩石的基本物理力学性质研究入手,本 节介绍岩石(块)的基本物理性质的主要指 标及测试方法。
散体状 结构
构造影响剧烈的断 层破碎带,强风化 带,全风化带

精品课程《岩石力学》ppt课件(全)

精品课程《岩石力学》ppt课件(全)

具体而言,研究岩石在荷载作用下的应力、变形和破坏 规律以及工程稳定性等问题。
上述定义是把“岩石”看成固体力学中的一种材料,然而
岩石材料不同于一般的人工制造的固体材料,它是
一种典型的“连续介质”,具有复杂的地质构造和赋
存条件的天然地质体。
.
11
三、岩石力学理论的发展简史
1. 初始阶段(19世纪末~20世纪初)
.
8
(2)60年代初意大利Vajont大坝水库高边坡的崩溃 意大利Vajont拱坝,坝高262m,
于1959年建成,是当时世界上 最高的拱坝。1963年10月9日 夜,由于大坝上游山体突然滑 坡,约2.5亿立方的山体瞬时涌 入水库,涌浪摧毁上游及下游 一个小镇与邻近几个村庄,造 成约2500人死亡,整个灾害的 持续时间仅仅5分钟。
.
3
一、引言
1. 人类活动与岩石工程(Rock Engineering)
岩石圈是人类赖以生存的主要载体,人类的大部分活动都 是在岩石圈上进行的:
远古
约4700年前 公元1600年
19世纪
石器,穴居 金字塔(146.5m) 火药采矿 铁路隧道技术
20世纪 大型水电工程
岩基、边坡,地下 洞室,隧道工程等
普罗托吉雅柯诺夫提出的自然平衡拱学说,即普氏理论.
围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于 冒落拱内岩石的重量,仅是上覆岩石重量的一部分.
太沙基(K.Terzahi)理论 围岩塌落成矩形,而不是抛物线型.
优点与缺点
上述理论在一定历史时期和一定条件下还是发挥了一定作用的, 但是围岩的塌落并不是形成围岩压力的惟一来源,也不是所有 的地下空间都存在塌落拱.围岩和支护之间并不完全是荷载和 结构的关系问题,在很多情况下围岩和支护形成一个共同承载 系统,而且维持岩石工程的稳定最根本的还是要发挥围岩的作 用.

岩石力学第2章岩石的基本物理力学性质PPT课件

岩石力学第2章岩石的基本物理力学性质PPT课件
格里菲斯强度理论
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在

最新2019-CH2第二章岩石力学-PPT课件

最新2019-CH2第二章岩石力学-PPT课件

ss s 1 3 m 2 in C j f3 /1 ( f2 f)
用图解法亦可得该结论
(3)多节理的力学效应 (叠加)
两组以上的节理同样处理,分三种情况: A仅有一组节理符合 12条件时,沿该节理破坏;
B两组节理最符合 12 时,考察 s1 s3 大小,沿应力圆直
2218 02j 21
s 22j si 1n (m cjcoj)tsin j
t
m
结论
• 1 或 2
岩体强度取决于岩石强度,而与节理面的存在无关
• 12
岩体会首先沿着节理破坏,岩体强度取决于结构面 强度ቤተ መጻሕፍቲ ባይዱ
三、结构面的力学效应
对结构面表面光滑平整和 表面粗糙两种情形,则显 然,表面光滑时较容易发 生滑坡;表面粗糙时则边 坡稳定性显著提高,不容 易发生滑坡。 因此,结构面表面的粗糙 度,对这类工程的稳定性, 有显著影响。
粗糙度大——抗滑力大
3、结构面的延展尺度和规模
延展尺度: 主要指结构面本身的长度。可分为 1. 细小——延展尺度<1米; 2. 中等——延展尺度 1米 – 10米; 3. 巨大——延展尺度>10米.
散体结构
(1)整体结构
岩性单一,节理不发育,无软弱结构面或夹泥, 层面 结合良好,渗流对岩体特性影响不大,结构尺 寸大于工程尺寸。
完整性系数 > 0.75 结构面间距 > 1.0 m 岩土工程特征:整体性强度高,岩体稳定,可视为 均质、各向同性的连续介质。
(2)块状结构
节理发育,有若干软弱夹层或贯通微张裂隙将岩体切割成柱 状、块状或菱形等结构体。工程范围内,有两组以上节理明显 发育,构成影响工程稳定性的可能危险岩块,其尺寸小于工程 几何尺寸。

《岩石力学》课件(完整版)-第三章岩石动力学基础

《岩石力学》课件(完整版)-第三章岩石动力学基础

能量吸收是指岩石在冲 击或振动载荷作用下吸 收能量的能力,与岩石 的破碎和变形有关。
疲劳是指岩石在循环载 荷作用下发生损伤和破 坏的现象,对地下工程 和边坡工程的稳定性有 重要影响。
03
岩石动力学的基本理论
弹性力学基础
01
弹性力学基本概念
弹性力学是研究弹性物体在外力作用下的应力、应变和位移的学科。它
理论分析方法。这些方法可用于求解各种复杂弹性力学问题。
塑性力学基础
塑性力学基本概念
塑性力学是研究塑性物体在外力作用下的应力、应变和位移的学科。塑性物体在达到屈服 点后会发生不可逆的变形,其应力-应变关系不再满足胡克定律。
塑性力学的基本方程
包括屈服准则、流动法则、增量理论和边界条件等。这些方程描述了塑性物体内部的应力 、应变和位移之间的关系,以及物体与周围介质之间的相互作用。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
离散元法
离散元法是一种将连续介质离散化为一系列刚性或弹性 单元体的方法。
数据分析
对实验获取的大量数据进行处理和分 析,提取岩石的动力学特性,如阻尼 比、质量放大系数等。
结果解释
根据实验结果,解释岩石在动态载荷 作用下的破坏机制和演化过程,为工 程设计和安全评估提供依据。
实验研究的挑战与展望
挑战
岩石动力学实验技术难度大,需要克服实验条件苛刻、测量精度要求高等问题。 同时,岩石材料的非线性、各向异性等特性也给实验结果分析带来困难。

岩石力学优秀课件

岩石力学优秀课件
若应力圆(stress circle )与抗剪强度(shear strength )直 线相割,则表示岩石已产生破裂,而且沿剪切面已经产生了滑动。
极限应力圆与抗剪强度(shear strength )直线相切的两 点D1 、D1' 表示岩石内将出现一组共轭剪切破坏裂面的临界状态。
从图中可以看出,这一组剪切破裂面上的剪应力并非是 最大剪应力(maximum shear stress )。
f 0 f n
上式中: | f |:岩石剪切面的抗剪强度(shear strength );
0 :岩石固有剪切强度(inherent shear strength ),它与粘聚力
C相当;
f n :剪切面上的摩擦阻力; n :剪切面上的正应力;
f :岩石内摩擦系数 f = tg 。
取、 为直角坐标系的横轴、纵轴,则上式为一直线
t
t
2
tg 1 c 3 2 t
这是双曲线型包络线形式下的剪切强度曲线方程。
第三节 软弱面或各向异性岩层 的破坏准则及稳定条件
岩石的破坏包括破裂(failure )和摩擦滑动(slide )两 种情况。
破裂是完整岩石中发生破坏的唯一机制。破裂的条件可以由 库 仑 准 则 给 出 。 倘 若 岩 石 中 预 先 就 存 在 着 软 弱 面 ( plane of weakness ),比如存在着断层,情况就变了,这时岩石发生破 坏的机制可能是沿断层面的摩擦滑动,也可能是穿过断层面的破 裂。究竟发生哪一种类型的破坏,要视岩石内部哪种情况首先满 足库仑准则。
图5-2 共扼剪裂面与主应力关系 图5-3 剪裂面上应力与主应力关系
三、库伦一纳维尔破坏准则的第二种表示方法
库伦一纳维尔破坏准则也可采用主应力 1 、 3 来表示,剪裂

岩体力学第二章岩石的基本物理力学性质PPT课件

岩体力学第二章岩石的基本物理力学性质PPT课件

岩石的强度和破坏
强度
岩石抵抗外力破坏的能力, 通常分为抗压、抗拉和抗 剪强度。
破裂准则
描述岩石在不同应力状态 下从弹性到破坏的过渡规 律。
破裂模式
岩石破坏时的形态和方式, 如脆性、延性、剪切等。
04
岩石的物理力学性质与岩体力学应用
岩石的物理力学性质在岩体工程设计中的应用
岩石的物理性质在岩体工程设计中具有重要影响, 如密度、孔隙率、含水率等参数,决定了岩体的承 载能力和稳定性。
岩石的物理力学性质在岩体工程治理中的应用
在岩体工程治理中,需要根据岩石的 物理力学性质制定相应的治理方案。
在治理过程中,还需要根据岩石的变形和 破坏模式,采取相应的监测和预警措施, 以确保工程治理的有效性和安全性。
如对于软弱岩体,可以采用加固、注浆等措 施提高其承载能力和稳定性;对于破碎岩体 ,可以采用锚固、支撑等措施防止其崩塌和 滑移。
弹性波速
表示岩石中弹性波传播速度, 与岩石的密度和弹性模量等有 关。
岩石的塑性和流变
01
02
03
塑性
当应力超过岩石的屈服点 时,岩石会发生塑性变形, 不再完全恢复到原始状态。
流变
在长期应力作用下,岩石 的变形不仅与当前应力状 态有关,还与应力历史有 关。
蠕变
在恒定应力作用下,岩石 变形随时间逐渐增加的现 象。
岩体力学第二章岩石的基本物 理力学性质ppt课件

CONTENCT

• 引言 • 岩石的物理性质 • 岩石的力学性质 • 岩石的物理力学性质与岩体力学应
用 • 结论
01
引言
岩石的基本物理力学性质在岩体力学中的重要性
岩石的基本物理力学性质是岩体力学研究的基础,对于理解岩体 的变形、破坏和稳定性至关重要。

岩石力学.ppt

岩石力学.ppt

2019/11/25
岩石力学
21
漏失实验过程:关井,用水泥车通过钻杆泵入泥 浆,记录压力和时间或泵入量。当压力偏离直线时, 停泵。
典型的漏失实验曲线如下图所示:
2019/11/25
岩石力学
22
2019/11/25
岩石力学
23
如果想从漏失实验中获取更多的地层信息,实验
过程应如图9-4所示:
2019/11/25
服垂直裂缝面的地应力。
2019/11/25
岩石力学
31
在以上假设的前提条件下,Eaton得到破裂压力 预测模式为:
Eaton法适用于地层沉积较新,受构造影响小的连 续沉积盆地。面对于地层年代较老,构造运动影响大
的区域,其预测效果欠佳。
2019/11/25
岩石力学
32
2、Stephtn法(1982)
当井眼压力足够高时,井壁会劈开一条裂缝,这 一过程称为水力压裂。
2019/11/25
岩石力学
12
二、水力压裂裂缝扩展规律
裂缝总是沿着最有利的方向扩展和传播,一般的 情况下裂缝沿垂直于最小主地应力的方向扩展。由于 最小主地应力一般都是水平方向,因此裂缝一般是垂 直缝,对于直井,裂缝如下图所示。
2019/11/25
张开,形成高渗透性地油流通道,如图9-2所示。
2019/11/25
岩石力学
18
2019/11/25
岩石力学
19
3、利用水力压裂进行地应力现场测量 分析水力压裂过程可获得许多地层的力学信息,
尤其是地应力的大小与方向。
2019/11/25
岩石力学
20
第二节 钻井过程中的地层破裂压力
一、漏失试验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

pp'C co 1 1 t s sii n n(a r)1 2 ssi in nC co t
Rpa[(pC pc' o C )ct1(o stin)]12 ssiin n
rpp'Cco(ta r)12 ssii n nCcot
p' pCco t1sin (a)1 2 ssi in nCco t
岩石坚固性系数(普氏系数)f:
f c 10
.
P
P
裂纹扩展示意图
大理石
1—端面有摩擦; 2—端面有插入物; 3—端面有润滑。
.
粗砂岩
P P
试件尺寸对完整岩石强度的影响
.
试件相对含水率对岩石抗压强度的影响 P
P
石英质页岩
.
石英质砂岩
岩石抗拉强度
P
直接拉伸法
t
P 10 A
式中:σt——岩石抗拉强度,MPa; P——试件拉伸破坏载荷,kN; A——试件横截面积,cm2。
p' pCco t1sin (a)1 2 ssi in nCco t
Rp
.
巷道破裂带内破裂面(滑移线)
0t
rae
an
4 2
arRp
.
巷道围岩的支护与加固
.
.
.
.
.
.
.
巷道锚固
.
锚固巷道失稳
.
煤层巷道锚固
.
岩层巷道锚固
.
.
托板
.
玻璃钢锚杆
.
锚索及锚(锁)具
.
7股高强度钢绞线技术参数
① σr、σθ皆为主应力,径向、切向 均为主平面,σr与σθ之和为常量2p。
②应力值的大小与物性常数E、μ无关。
③周边r=a上, σr=0,σθ=2p(最大值), 且与巷道半径无关。
④应力集中系数——次生应力与原岩应力的比值。
⑤当取σr=1.04p,σθ=0.96p 和σr=1.10p,σθ=0.90p时, 影响半径 r=5a 和 r≈3a。
m
3Pl 2bh2
σ m—岩石抗弯强度(抗拉强度)。
.
岩石的点载荷试验
.
测定岩石强度的捣碎仪和体积仪
试样直径—20~40mm; 试件数量:5个; 测定组数:3~5组; 重锤质量:2.4kg。
f 20 n l
f—岩石强度指数; n—锤击次数; l—岩粉高度,mm。
.
岩石变角剪试验
NPcos10
E
ε
e
E
ε e
εr
P
Eεε e
εr εp
式中:E—岩石的弹性模量, GPa;
Eε—岩石的变形模量, GPa; εe—瞬时弹性应变; εr—后效弹性应变; εp—塑性应变。
.
岩石的载荷—位移全程曲线
P
P
Tennessee大理石峰后卸载、加载时,载荷—位移关系曲线(岩石全程曲线) (据Wawersik和Fairhurst,1970)
加工精度:GB/T23561.13—2010 《煤岩物理力学性质测定方法》
岩石的基本物理性质指标 岩石视密度:沉积岩ρ视=2500~2700(kg/m3),通常为2600(kg/m3);
煤层ρ视=1200~1400(kg/m3),通常为1300(kg/m3)。
.
单轴压缩下岩石的变形性质
P
岩石的模量
(线性方程)
.
Rankine 强度准则(1857)
1 3ta2( 4 n 2)2 C ta 4 n 2 () 3 1ta2( 4 n 2)2 C ta 4 n 2 ()
式中: 1 ——被动土压力(竖向应力); 3 ——主动土压力(水平应力); C——土体内聚力;
——土体内摩擦角;
tan( ) ——被动土压力系数;
σc :C :σt =8:2:1
.
层理、节理对岩体力学性质的影响
.
围压对岩体力学性质的影响
.
层理产状对岩体力学性质的影响
.
煤柱原位试验
.
煤的试样尺寸对强度的影响
(据Z.T.Bieniawski,1982)
.
褶皱岩层中的节理
.
岩层产状
岩层粗糙度测定
岩层结构面张开度
.
标准粗糙度断面图
岩体结构的描述
公称直径 (mm)
强度等级 (MPa)
15.24
2000
抗拉力 (kN)
280.0
17.80 21.60
2000
382.0
1770 1860
504.0 530.0
.
公称截面积 (mm) 140.00
190.00
285.00
综采液压支架
.
综采支架失稳
.
岩石力学研究的三大主题
物性
围岩的物理 力学性质
1774 年当选为法国科学院院士 Charles Augustin de Coulomb (1736 - 1806)
.
Ctan 11 1 ssnii n312C cso i ns
Coulomb强度准则
1t2112
t3t2112
t2C
3 -t
t tan
1
1 2
c
(线性方程)
1
1 2
c
三轴压缩下单结构面岩石的强度特征(σ2=σ3)
.
三轴压缩下双结构面岩石的强度特征(σ2=σ3)
.
.
N.Barton准则(峰值抗剪强度准则)(1973)
σ τ
tan JRlCgJC Sb
式中:τ—最大剪应力; σ—正应力; JRC—岩层结构面粗糙度系数; JCS—岩层结构面表面抗压强度; Φb—基础摩擦角。
——岩石内摩擦角, (°)。
.
岩石抗剪强度试验
1——正压力;2——测力计;3——粘接剂;4——球形接头;5——剪力
.
岩石试件三轴压力室结构图
von Karman曲线,1911
.
Tennessee大理石三轴试验的应力应变曲线
.
1 1
P
有效应力定律: 2 2
3 3
μ—孔隙压力
P
1:σ3=34.5MPa; μ=6.9MPa。
注:当JRC=0时,转化为平滑节理的Coulomb准则。
.
.
节理岩层(岩体)的工程分类
.
.
1号箱:RQD=80.06% 闪长岩(9#煤顶板,—2.0m水平)岩芯照片(0~7.17m)
.
原岩应力
原岩应力=自重应力+构造应力
.
地应力及地质构造
.
巷道围岩应力场分布
.
双向等压圆形巷道的弹性应力分析
围岩的 工程结构
结构
地下工程 支护设计
载荷 围岩作用于支护
系统上的载荷
.
地下工程支护设计问题
若把工程结构设计的关键归结于可靠度的确定,那么地下工 程支护设计中的核心问题是支护系统须承担的载荷量值的确定。
西医
中医
若把土木工程结构可靠度
土木工程 设计问题在理论意义上比
做西医的话,那么地下工 程问题更类似于中医。
岩石力学
.
目录
第一章 岩石基本物理力学性质试验与分析 第二章 岩层的力学性状 第三章 原岩应力 第四章 岩层巷道稳定性分析
.
ห้องสมุดไป่ตู้
B.H.G.Brady and E.T.Brown (
2 0 0 6
.
)
相关资料
.
引言 岩石力学:岩石材料力学+岩石工程结构力学的统称。
岩石力学属固体力学范畴。 研究内容:岩石材料及岩石工程结构的物性、结构、载荷、可靠度。
地下工程
西医
中医
.
支架载荷=?
.
.
.
.
.
.
.
.
.
研究固体力学的方法适用于岩石力学研究。 在某种意义上,岩石力学是一门试验力学。
岩石物理性质、力学性质、工程性质,都要通过相应的试验来确定。 如:密度、视密度;变形模量、抗压强度、抗拉强度、强度准则等。
.
.
岩石试样制备及试验标准
岩石试样尺寸: 抗压强度:φ50×100圆柱体; 50×50×50立方体; 抗拉强度:φ50×25圆柱体
工程应用中,r=5a 与 r=∞等价。 通常巷道影响圈的厚度为2a~4a。
p(1
a2 r2
)
r
p(1
a2 r2
)
.
巷道顶板岩层层面应力分布规律
1 2 r 1 2 r co 2 sp 1 a r2 2co 2 s
1 2rsi2n pa r2 2si2n
式中:τ— 顶板岩层剪应力; σ — 顶板岩层法向应力; α — 转角;
P
.
间接拉伸法(Brazil法)
P
t
2P 10
Dt
式中:σt——岩石抗拉强度,MPa; P——试件破坏载荷,kN; D——试件直径,; t——试件厚度, cm。
试件尺寸:φ50×25圆柱体
1—半球座;2—上压模; 3—下压模;4—导杆;5—导杆孔。
.
对心加压圆盘应力分布情况
.
岩石抗弯强度试验装置
.
岩石的变形特征
P
P σ—ε1:岩石轴向应力—轴向应变曲线; σ—ε3:岩石轴向应力—侧向应变曲线; σ—ΔV/V0:岩石轴向应力—体积应变曲线。
.
0.4 岩石单轴抗压强度
P
c
P A
10
式中:σc——岩石单轴抗压强度,MPa;
P——试件压缩破坏载荷,kN;
P
A——试件横截面积,cm2。
试件尺寸:φ50×100圆柱体
相关文档
最新文档