多边形的扫描转换边填充算法
扫描线多边形填充算法

扫描线多边形填充算法扫描线多边形填充算法(Scanline Polygon Fill Algorithm)是一种计算机图形学中广泛使用的算法,用于将一个封闭的多边形形状涂色填充。
它通过扫描线的方式,从上到下将多边形内的像素按照预设的填充颜色来进行填充。
本文将详细介绍扫描线多边形填充算法的原理、流程和实现细节。
1.算法原理:扫描线多边形填充算法基于扫描线的思想,在水平方向上扫描每一行像素,并检测多边形边界与扫描线的交点。
通过将扫描线从上到下扫过整个多边形,对于每一行像素,找出与多边形边界交点的水平线段,然后根据填充颜色将像素点进行填充。
2.算法流程:-找出多边形的最小和最大Y坐标,确定扫描线的范围。
-从最小Y坐标开始,到最大Y坐标结束,逐行进行扫描。
-对于每一行,找出与多边形边界交点的水平线段。
-根据填充颜色,为每个水平线段上的像素点进行填充。
3.算法实现:-首先,需要根据给定的多边形描述边界的顶点坐标,计算出每条边的斜率、最小和最大Y值以及每条边的X坐标交点。
-然后,对于每一扫描线,找出与多边形边界交点的水平线段,即找出交点的X坐标范围。
-最后,根据填充颜色,将该范围内的像素点进行填充。
4.算法优化:- 针对复杂多边形,可以使用活性边表(AET,Active Edge Table)来管理边界信息,加快查找交点的速度。
-可以使用桶排序来排序边界事件点,提高扫描速度。
-根据多边形边的特征,对算法进行优化,减少不必要的计算和内存消耗。
5.算法应用:-扫描线多边形填充算法广泛应用于计算机图形学中的图形渲染、图像处理等领域。
-在游戏开发、CAD绘图、虚拟现实等应用中,扫描线多边形填充算法被用于快速绘制和渲染复杂多边形。
总结:扫描线多边形填充算法是一种经典的计算机图形学算法,通过扫描线的方式对多边形进行填充。
它可以高效地处理各种形状的多边形,包括凸多边形和凹多边形。
算法虽然简单,但在实际应用中具有广泛的用途。
计算机图形学——多边形的扫描转换(基本光栅图形算法)

计算机图形学——多边形的扫描转换(基本光栅图形算法)⼀、多边形扫描转换在光栅图形中,区域是由【相连的】像素组成的集合,这些像素具有【相同的】属性值或者它们位于某边界线的内部1、光栅图形的⼀个基本问题是把多边形的顶点表⽰转换为点阵表⽰。
这种转换成为多边形的扫描转换。
2、多边形的扫描转换与区域填充问题是怎样在离散的像素集上表⽰⼀个连续的⼆维图形。
3、多边形有两种重要的表⽰⽅法:(1)顶点表⽰:⽤多边形的定点序列来表⽰多边形优点:直观、⼏何意义强、占内存少、易于进⾏⼏何变换缺点:没有明确指出那些象素在多边形内,故不能直接⽤于上⾊(2)点阵表⽰:是⽤位于多边形内的象素集合来刻画多边形缺点:丢失了许多⼏何信息(eg:边界、顶点等)但是【点阵表⽰是光栅显⽰系统显⽰时所需的表现形式。
】多边形的扫描转换就是把多边形的顶点表⽰转换为点阵表⽰,即从多边形的给定边界出发,求出位于其内部的各个像素,并将帧缓冲器内的各个对应元素设置相应的灰度或颜⾊。
实际上就是多边形内的区域的着⾊过程。
4、多边形分类⼆、X扫描线算法X扫描线算法填充多边形的基本思想是按扫描线顺序,计算扫描线与多边形的相交区间,再⽤要求的颜⾊显⽰这些区间的象素,即完成填充⼯作。
区间的端点可以通过计算扫描线与多边形边界线的交点获得。
如扫描线y=3与多边形的边界相交于4点(2,3)、(4,3)、(7,3)、(9,3)这四个点定义了扫描线从x=2到x=4,从x=7到x=9两个落在多边形内的区间,该区间内像素应取填充⾊。
算法的核⼼是按x递增顺序排列交点的x坐标序列。
由此可得到扫描线算法步骤如下:算法步骤:1.确定多边形所占有的最⼤扫描线数,得到多边形定点的最⼩最⼤值(y min和y max);2.从y min到ymax每次⽤⼀条扫描线进⾏填充;3.对⼀条扫描线填充的过程分为四个步骤:a)求交点;b)把所有交点按递增顺序排序;c)交点配对(第⼀个和第⼆个,第三个和第四个);d)区间填⾊。
描述多边形扫描转换的扫描线算法的基本步骤

描述多边形扫描转换的扫描线算法的基本步骤多边形扫描转换是计算机图形学中一种常用的算法,用于将输入的多边形进行转换和填充。
其基本步骤包括初始化,活性边表的生成,活性边表的更新和扫描线的处理。
1.初始化首先,需要根据输入的多边形构造一个扫描线填充的边表。
这包括对多边形顶点的排序、计算多边形中的水平线交点,并将边表中的数据初始化为初始值。
2.活性边表的生成活性边表是用来存储和管理与扫描线相交的边的数据结构。
生成活性边表的过程包括两个步骤:-遍历多边形的每一条边,将边与当前扫描线的位置进行比较,如果两者相交,则将这条边添加到活性边表中。
-对活性边表中的边按照交点的水平位置进行排序。
这里可以使用插入排序等算法。
3.活性边表的更新活性边表需要在每次扫描线移动时进行更新。
这包括对活性边表中的边进行更新,以反映新的交点或边的状态的变化。
-对于与当前扫描线相交的边,需要计算其交点,并更新到活性边表中。
-对于已经处理完的边或超出当前扫描线范围的边,从活性边表中移除。
4.扫描线的处理在每次扫描线移动时,需要对当前的活性边表进行处理。
这包括两个子步骤:-将活性边表中的边按照两两成对的方式遍历,找到当前扫描线和这两条边所定义的三角形的上顶点和下顶点。
-将这个三角形的内部填充,并进行显示或存储等处理。
5.继续扫描线的移动在处理完一条扫描线后,需要将扫描线的位置向上移动一个单位,并继续执行第3步和第4步,直到所有的扫描线都被处理完毕。
总结:多边形扫描转换的基本步骤包括初始化、活性边表的生成、活性边表的更新和扫描线的处理。
这个算法通常用于实现对多边形的填充。
在每次扫描线移动时,活性边表需要进行更新,以反映新的交点或变化的边的状态。
扫描线的处理包括遍历活性边表中的边,并根据扫描线和这两条边所定义的三角形的顶点来进行填充。
最后,重复执行扫描线的移动和对活性边表的更新和处理,直到所有的扫描线都被处理完毕。
多边形的扫描转换算法

多边形的扫描转换算法概述多边形的扫描转换算法是计算机图形学中用于将多边形转换为像素的常用算法。
它通过扫描线的方式来确定多边形与像素的相交关系,并将多边形的内部区域填充为指定的颜色。
本文将详细介绍多边形的扫描转换算法的原理、步骤和应用。
原理多边形的扫描转换算法基于扫描线的概念,将多边形的边界线与一条水平线或垂直线进行比较,从而确定多边形的内部和外部区域。
算法的关键在于边界线的处理和内部区域的填充。
步骤多边形的扫描转换算法一般包括以下步骤:1.初始化扫描线的位置和内部区域的填充颜色。
2.遍历多边形的边界线,将其与扫描线比较,确定内部和外部区域。
3.根据内部区域的状态,进行填充颜色。
4.更新扫描线的位置,继续扫描下一条线段,直至完成对所有边界线的处理。
算法详解初始化扫描线在开始进行多边形的扫描转换之前,需要初始化扫描线的位置和内部区域的填充颜色。
一般情况下,扫描线的位置可以从多边形的最低点开始,逐渐向上扫描。
内部区域的填充颜色可以根据具体需求进行选择。
边界线处理多边形的边界线可以由多个线段组成,需要按照一定的顺序进行处理。
一种常用的处理方式是按照边界线的上端点的纵坐标从小到大排序,然后依次处理每条线段。
对于每条线段,通过比较线段的上端点和下端点的纵坐标与扫描线的位置,可以确定线段与扫描线的相交关系。
根据线段的斜率可以进一步确定线段与扫描线的交点。
内部区域填充确定了线段与扫描线的相交关系后,就可以确定内部和外部区域。
一般情况下,内部区域被定义为线段上方的区域,而外部区域被定义为线段下方的区域。
根据内部区域的状态,可以进行填充颜色。
如果内部区域是连续的,则可以使用扫描线的颜色进行填充。
如果内部区域有间隙,则需要采用其他填充算法,如边界填充算法或种子填充算法。
更新扫描线处理完当前线段后,需要更新扫描线的位置,继续扫描下一条线段。
一般情况下,扫描线的位置会逐渐向上移动,直至到达多边形的最高点。
应用多边形的扫描转换算法在计算机图形学中有广泛的应用。
图形学实验报告四 多边形填充算法

扫描线种子填充:
public void FillField(int x, int y, Color newColor, uint oldColor, Graphics g) {
if ("".Equals(txtx.Text) || "".Equals(txty.Text)) { return; } else { x = Convert.ToInt32(txtx.Text); y = Convert.ToInt32(txty.Text); } int xl, xr; bool spanNeedFill; myStack.Clear();
个交点。如右图,对 y=8 的扫描线排序 x 坐标得到的表是(2,4,9,13),然后对交点 2 与 4 之间、9 与 13 之间 的所有象素点进行填充。 边界上的象素:“左闭右开”,“下闭上开”(将左边界和下边界的点算为内部,而将右边界和上边界 算为外部) 顶点:“上开下闭”。
几种特殊情况: 1.扫描线交于一顶点,共享的两条边分另处于扫描线的两边,这时交点只取一个,如扫描线 y=3,该点被填 充一次。2.共享交点的两条边处于扫描线的上方,这时交点取二个,如扫描线 y=1,该点被填充一次。 3.共享交点的两条边处于扫描线的下方,这时交点取 0 个,如扫描线 y=9,无交点,不填充。 4.水平边在算法中不起任何作用,可不考虑。 活性边表(提高效率): 为了减少求交的计算量,要利用一条边与相继的两条扫描线的交点的连贯性。在处理一条扫描线时只对活 性边(与它相交的多边形的边)进行求交运算。把交点按 x 增加方向存在一个链表(活性边表)中。活性边: 与当前扫描线相交的边。 活性边表(AEL) :按交点 x 的增量顺序存放在一个链表中,该链表称作活性边表(AEL) 。
计算机图形学_ 光栅图形学算法(一)_24 多边形扫描转换X扫描线算法_

x
d、区间填色:把这些相交区间内的 像素置成不同于背景色的填充色
当扫描线与多边形顶点相交时,交点的取舍问题(交点的个数 应保证为偶数个)
y 12 11 10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 101112 x
解决方案:
y
(1)若共享顶点的两条边分别落
12 11
x
算法的核心是按X递增顺序
排列交点的X坐标序列。由 y P7
此,可得到X-扫描线算法步
12 11
骤如下:
10 9
P6
P5
8
(3)对一条扫描线填充的过
7 6
P1
P3
5
程可分为四个步骤:
4 3
2
a、求交:计算扫描线与多边
1
1 2P23 4 5 6 7 8P4 9 101112 x
形各边的交点
b、排序:把所有交点按递增 顺序进行排序
任意两顶点间的连线均在多边形内
(2)凹多边形 任意两顶点间的连线有不在在多边形内
(3)含内环的多边形 多边形内包含多边形
现在的问题是,知道多边形的边界,如何找到多边形内部 的点,即把多边形内部填上颜色
P2
P3
P4
P1 P6
P5
顶点表示
点阵表示
1、X-扫描线算法
X-扫描线算法填充多边形的基本思想是按扫描线顺序,计算 扫描线与多边形的相交区间,再用要求的颜色显示这些区间 的像素,即完成填充工作
区间的端点可以通过计算扫 描线与多边形边界线的交点 获得
扫描线
交点 交点
交点
交点
如扫描线y=3与多边形的边界相 y
交于4点:
11
多边形扫描转换算法

多边形扫描转换算法多边形扫描转换算法是一种计算机图形学中常用的算法,用于将一个多边形转换为一组水平线段,以便进行填充或渲染。
该算法的基本思想是将多边形沿着水平方向进行扫描,找出多边形与水平线段的交点,并将这些交点按照从左到右的顺序进行排序,最终得到一组水平线段。
多边形扫描转换算法的实现过程可以分为以下几个步骤:1. 找出多边形的顶点首先需要找出多边形的顶点,这些顶点可以通过遍历多边形的边来得到。
在遍历边的过程中,需要注意将相邻的边进行合并,以便得到多边形的完整轮廓。
2. 找出多边形与水平线段的交点在进行扫描转换时,需要将多边形沿着水平方向进行扫描,找出多边形与水平线段的交点。
这些交点可以通过遍历多边形的边来得到,对于每条边,需要判断其是否与当前扫描线相交,如果相交,则计算出交点的坐标。
3. 对交点进行排序得到多边形与水平线段的交点后,需要将这些交点按照从左到右的顺序进行排序。
这可以通过对交点的x 坐标进行排序来实现。
如果有多个交点具有相同的 x 坐标,则需要按照其 y 坐标进行排序。
4. 将交点组成线段将交点按照从左到右的顺序进行排序后,就可以将它们组成一组水平线段。
对于相邻的两个交点,可以将它们之间的部分作为一条水平线段。
如果两个交点之间没有其他交点,则可以将它们之间的部分作为一条水平线段。
5. 进行填充或渲染得到一组水平线段后,就可以进行填充或渲染。
对于填充操作,可以使用扫描线算法来实现。
对于渲染操作,可以将每条水平线段转换为一组像素点,并将这些像素点进行绘制。
多边形扫描转换算法的优点是可以处理任意形状的多边形,并且可以得到一组水平线段,方便进行填充或渲染。
但是该算法的缺点是需要进行大量的计算,特别是在多边形较复杂时,计算量会非常大,导致性能下降。
为了提高多边形扫描转换算法的性能,可以采用一些优化技术。
例如,可以使用空间分割技术来减少计算量,将多边形分割成多个小块进行处理。
另外,可以使用并行计算技术来加速计算过程,将多个处理器或计算机同时进行计算。
多边形的有效边表填充算法

实验三多边形的有效边表填充算法一、实验目的与要求1、理解多边形的扫描转换原理、方法;2、掌握有效边表填充算法;3、掌握链表的建立、添加结点、删除节点的基本方法;3、掌握基于链表的排序操作。
二、实验内容在实验二所实现工程的基础上,实现以下内容并把实现函数封装在类CMyGL 中。
1、C++实现有效边表算法进行多边形扫描转换2、利用1进行多边形扫描转换和区域填充的实现;三、实验原理请同学们根据教材及上课的PPT独立完成。
四、实验步骤(程序实现)。
1、建立并选择工程项目。
打开VC6.0->菜单File 的New 项,在projects 属性页选择MFC AppWizard(exe)项,在Project name 中输入一个工程名,如“Sample”。
单文档。
2、新建一个图形类。
选择菜单InsertNew class,Class type 选择“Generic Class”,Name 输入类名,如“CMyCG。
3、向新建的图形类中添加成员函数(实际就是加入实验要求实现的图形生成算法的实现代码)。
在工作区中直接鼠标右键单击,选择“Add Member Function…”项,添加绘制圆的成员函数。
void PolygonFill(int number, CPoint *p, COLORREF color, CDC* pDC)添加其他成员函数:CreatBucket();CreatET();AddEdge();EdgeOrder();4、成员函数的实现。
实现有效边表填充算法。
这一部分需要同学们去实现。
参考实现:多边形的有效边表填充算法的基本过程为:1、定义多边形:2、初始化桶3、建立边表4、多边形填充1)对每一条扫描线,将该扫描线上的边结点插入到临时AET表中,HeadE.2)对临时AET表排序,按照x递增的顺序存放。
3)根据AET表中边表结点的ymax抛弃扫描完的边结点,即ymax>=scanline4)扫描AET表,填充扫描线和多边形相交的区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
© 2004 Dept. of Computer Science and Engineer
2018/10/6
主要内容:
直线的扫描转换
圆与椭圆的扫描算法
区域填充 线宽与线型的处理 字符 裁剪
反走样
© 2004 Dept. of Computer Science and Engineer
© 2004 Dept. of Computer Science and Engineer 2018/10/6 4 / 56
多边形的扫描转换
扫描转换矩形(2/2):
-
矩形是简单的多边形,那么为什么要单独处理矩形?
比一般多边形可简化计算; 应用多: 如窗口系统;
-
共享边界如何处理?
原则:左闭右开,下闭上开
属于谁?
© 2004 Dept. of Computer Science and Engineer 2018/10/6 5 / 56
多边形的扫描转换
多边形的表示方法: - 顶点表示:用多边形的顶点序列刻划多边 形;
-
点阵表示:用位于多边形内象素的集合来 刻划多边形;
-
扫线算法;边 缘填充法;
© 2004 Dept. of Computer Science and Engineer 2018/10/6 8 / 56
多边形的扫描转换
逐点判断法
•2)累计角度法 步骤: 从v点向多边形P顶点发出 射线,形成有向角; 计算有相交的和,得出结论;
0,v位于P之外 i i 0 2 , v位于P之内
P0
v P2
结论:逐点判断法程序简单,速度太慢,效率低。
© 2004 Dept. of Computer Science and Engineer 2018/10/6 10 / 56
多边形的扫描转换:扫描线算法:
-
几个概念:
边的连贯性:某条边与当前扫描线相交,也可能与下一条扫描 线相交; 扫描线的连贯性:当前扫描线与各边的交点顺序与下一条扫描 线与各边的交点顺序可能相同或类似; 区间连贯性:同一区间上的像素取同一颜色属性;
2018/10/6 6 / 56
-
© 2004 Dept. of Computer Science and Engineer
多边形的扫描转换
逐点判断法
#define MAX 100
typedef struct{
int PolygonNum; // 多边形顶点个数 Point vertexces[MAX] //多边形顶点数组 } Polygon // 多边形结构 void FillPolygonPbyP(Polygon *P, int polygonColor) { int x,y; for(y = ymin; y <= ymax;y++) for(x = xmin; x <= xmax;x++) if( IsInside( P, x, y ) ) PutPixel(x, y, polygonColor); else PutPixel(x, y, backgroundColor); }/*end of FillPolygonPbyP() */
2018/10/6
2 / 56
区域填充
区域:点阵表示的图形,像素集合; 表示方法:内点表示、边界表示: - 内点表示:-》区域填充算法 枚举处区域内部的所有像素; 内部的所有像素填充同一个颜色; 边界像素填充与内部像素不同的颜色; - 边界表示:枚举出边界上所有的像素-》边界填充算法; 边界上的所有像素填充同一颜色; 内部像素填充与边界像素不同的颜色; 区域填充:对区域重新着色的过程,即从给定位置开始涂描直到指定 的边界条件为止; - 将指定的颜色从种子点扩展到整个区域的过程; - 区域填充算法要求区域是连通的; 一般步骤: - 确定那些像素位于填充图元的内部; - 确定以什么颜色填充这些像素;
© 2004 Dept. of Computer Science and Engineer
2018/10/6
3 / 56
多边形的扫描转换
扫描转换矩形(1/2):
void FillRectangle(Rectangle *rect,int color) { int x,y; for(y = rect->ymin; y <= rect->ymax; y++) for(x = rect->xmin; x <= rect->xmax; x++) PutPixel(x,y,color); }/*end of FillRectangle() */
© 2004 Dept. of Computer Science and Engineer
2018/10/6
11 / 56
多边形的扫描转换:扫描线算法:
扫描线算法:
-
目标:利用相邻像素之间的连贯性,提高算法效率; 处理对象:非自交多边形 (边与边之间除了顶点外无其它交点);
n
预处理; 离散计算方法:编码方法;
© 2004 Dept. of Computer Science and Engineer
2018/10/6
9 / 56
多边形的扫描转换
逐点判断法
•3)编码方法:累计角度方法的离散方法 Step: a.预处理,测试点在边上否? b.V为中点作局部坐标系,对象限按逆时针 (或顺时针)编码; P1 c.顶点编码Ipi, d.边编码。PiPi+1: △PiPi+1=Ipi+1-Ipi e.计算∑ △PiPi+1 (其中△PnPn+1 = △PnP0): 若 ∑ 为0, V在P外;若 ∑ 为+/-4,V 在 P内;
© 2004 Dept. of Computer Science and Engineer 2018/10/6 7 / 56
多边形的扫描转换
逐点判断法
•逐个判断绘图窗口内的像素: •如何判断点在多边形的内外关系? 1)射线法; 2)累计角度法; 3)编码法; •1)射线法 步骤: 1) 从待判别点v发出射线; 2) 求交点个数k; 3) K的奇偶性决定了点与多边形的内 外关系; 4)奇异情况处理;