实验四 IIR数字滤波器的设计(1) (2)

合集下载

实验四IIR数字滤波器的设计实验报告

实验四IIR数字滤波器的设计实验报告

实验四I I R数字滤波器的设计实验报告Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】数字信号处理实验报告实验四 IIR数字滤波器的设计学生姓名张志翔班级电子信息工程1203班学号指导教师实验四 IIR数字滤波器的设计一、实验目的:1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。

2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

3. 熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。

二、实验原理:1.脉冲响应不变法用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则2.双线性变换法S平面与z平面之间满足以下映射关系:s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容及步骤:实验中有关变量的定义:fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期(1) =, δ=, =, At =20Db,T=1ms;设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。

MATLAB源程序:wp=2*1000*tan(2*pi*300/(2*1000));ws=2*1000*tan(2*pi*200/(2*1000));[N,wn]=cheb1ord(wp,ws,,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn[B,A]=cheby1(N,,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('频率');ylabel('幅度/dB')程序结果num =den = 1系统函数:123412340.0304 -0.1218z 0.1827z-0.1218z0.0304z H(z)=1.0000+1.3834z+1.4721z+ 0.8012z+0.2286z--------++幅频响应图:分析:由图可知,切比雪夫滤波器幅频响应是通带波纹,阻带单调衰减的。

实验四IIR数字滤波器的设计(1)(2)课案

实验四IIR数字滤波器的设计(1)(2)课案

实验四 IIR 数字滤波器的设计及网络结构一、实验目的1.了解IIR 数字滤波器的网络结构。

2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。

3.学习编写数字滤波器的设计程序的方法。

二、实验内容数字滤波器:是数字信号处理技术的重要内容。

它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。

1.数字滤波器的分类滤波器的种类很多,分类方法也不同。

(1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。

(3)按时域特性划分:FIR 、IIR2.IIR 数字滤波器的传递函数及特点数字滤波器是具有一定传输特性的数字信号处理装置。

它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。

如果加上A/D 、D/A 转换,则可以用于处理模拟信号。

设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示:1()()()M Ni j i j y n b x n i a y n j ===-+-∑∑(5-1)其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。

与之相对应的差分方程为:10111....()()()1....MM NN b b z b z Y z H Z X z a z a z ----++==++ (5-2)由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。

(2) 系统传递函数H(z)在有限z 平面上有极点存在。

(3) 结构上存在着输出到输入的反馈,也就是结构上是递归型的。

3.IIR 滤波器的结构IIR 滤波器包括直接型、级联型和并联型三种结构:① 直接型:优点是简单、直观。

但由于系数bm 、a k 与零、极点对应关系不明显,一个bm 或a k 的改变会影响H(z)所有零点或极点的分布,所以一方面,bm 、a k 对滤波器性能的控制关系不直接,调整困难;另一方面,零、极点分布对系数变化的灵敏度高,对有限字长效应敏感,易引起不稳定现象和较大误差。

实验四IIR数字滤波器设计实验报告

实验四IIR数字滤波器设计实验报告

实验四IIR数字滤波器设计实验报告
为了实现信号的滤波处理,IIR(或称为滤波器)数字滤波器是一种常用的信号处理
技术。

本次实验就是探究IIR数字滤波器的设计和分析。

在实验开始前,对于IIR数字滤波器有所了解,它是一种无限级别功能的数字滤波器,其功能强大,可以实现任意自定义系数的滤波器。

在预处理实验中,便首先采用Matlab
工具搭建了IIR数字滤波器的框架,考虑到本次滤波处理内容,本次采用的是Chebyshev
类型的等离子体,其滤波效果要求超过50dB,进一步完善了对于设计工作的要求。

经过Chebyshev Type I等离子体的设计,确定了系统的结构,并设定了15个滤波器,接着从设定的各项参量入手,从而确定系统各项参量,运用梯形图确定根位置,并使用MATLAB中的filter函数进行系统模拟,得到经历处理后系统输出信号与未经处理时对比,结果显示滤波效果达到了相应预期要求。

在实验中,IIR数字滤波器的设计让我深刻体会到了系统滤波的重要性以及十分强大
的功能。

而它的实现,又显示了精确的数字处理技术在信号处理中的重要作用,使得研究
信号处理时,得以有效和准确地对信号进行分辨和滤波处理。

实验四IIR滤波器的设计与信号滤波- 《信号与系统》课程实验指导书

实验四IIR滤波器的设计与信号滤波- 《信号与系统》课程实验指导书

实验四 IIR 滤波器的设计与信号滤波1、实验目的(1)熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。

(2)掌握数字滤波器的计算机仿真方法。

(3)通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。

2、实验原理利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。

如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率s p w w 和的转换,对s p αα和指标不作变化。

边界频率的转换关系为)21tan(2w T =Ω。

接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N 和dB 3截止频率c Ω;根据阶数N 查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数)(p H a ;最后,将c s p Ω=代入)(p H a 去归一,得到实际的模拟滤波器传输函数)(s H a 。

之后,通过双线性变换法转换公式11112--+-=z z T s ,得到所要设计的IIR 滤波器的系统函数)(z H 。

利用所设计的数字滤波器对实际的心电图采样信号进行数字滤波器。

3、实验步骤及内容(1)复习有关巴特沃斯模拟滤波器的设计和用双线性变换法设计IIR 数字滤波器的内容,用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。

设计指标参数为:在通带内频率低于π2.0时,最大衰减小于dB 1;在阻带内[]ππ,3.0频率区间上,最小衰减大于dB 15。

(2)以π02.0为采样间隔,绘制出数字滤波器在频率区间[]2/,0π上的幅频响应特性曲线。

(3)用所设计的滤波器对实际心电图信号采样序列(实验数据在后面给出)进行仿真滤波处理,并分别绘制出滤波前后的心电图信号波形图,观察总结滤波作用与效果。

实验四IIR数字滤波器设计及软件实现

实验四IIR数字滤波器设计及软件实现

实验四IIR数字滤波器设计及软件实现实验四涉及IIR数字滤波器设计及软件实现。

IIR数字滤波器是一种基于IIR(Infinite Impulse Response)的滤波器,采用了反馈结构,具有无限长的脉冲响应。

与FIR(Finite Impulse Response)数字滤波器相比,IIR数字滤波器具有更高的灵活性和更小的计算复杂度。

IIR数字滤波器的设计可以通过以下步骤进行:
1.确定滤波器的类型:低通、高通、带通或带阻。

2.确定滤波器的阶数:滤波器的阶数决定了其频率响应的陡峭程度。

3.设计滤波器的传递函数:传递函数是滤波器的数学模型,可以通过多种方法进行设计,如巴特沃斯、切比雪夫等。

4.将传递函数转换为差分方程:差分方程是IIR数字滤波器的实现形式,可以通过对传递函数进行离散化得到。

5.实现差分方程:差分方程可以通过递归运算的方式实现,使用递归滤波器结构。

IIR数字滤波器的软件实现可以使用各种数学软件或程序语言进行。

常见的软件实现语言包括MATLAB、Python等。

这些语言提供了丰富的数字信号处理库和函数,可以方便地实现IIR数字滤波器。

在软件实现中,需要将差分方程转换为计算机程序,然后输入待滤波的数字信号,并输出滤波后的信号。

此外,还可以对滤波器的参数进行调整,以达到满足特定滤波要求的效果。

总结起来,实验四的内容是设计和实现IIR数字滤波器,通过软件工具进行滤波效果的验证。

这是数字信号处理领域中常见的实验任务,可以帮助学生掌握IIR数字滤波器的设计和实现方法。

实验四__IIR数字滤波器的设计1

实验四__IIR数字滤波器的设计1

实验四 IIR 数字滤波器的设计一:实验目的1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。

2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。

3. 熟悉Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特性。

二:实验原理:1. 脉冲响应不变法用数字滤波器的单位脉冲响应序列)(n h 模仿模拟滤波器的冲激响应)(t h a ,让)(n h 正好等于)(t h a 的采样值,即)()(nT h n h a =,其中T 为采样间隔,如果以)(s H a 及)(z H 分别表示)(t h a 的拉式变换及)(n h 的Z 变换,则)2(1)(m Tj s H T z H m a e z sT ∑∞-∞==+=π2.双线性变换法S 平面与z 平面之间满足以下映射关系:);(,2121,11211ωωσj re z j s sT s T z z z T s =+=-+=+-⋅=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。

双线性变换不存在混叠问题。

双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

IIR 低通、高通、带通数字滤波器设计采用双线性原型变换公式::以低通数字滤波器为例,将设计步骤归纳如下:1. 确定数字滤波器的性能指标:通带临界频率c f 、阻带临界频率r f 、通带波动δ、阻带内的最小衰减At 、采样周期T 、采样频率s f ;2. 确定相应的数字角频率 T f c c πω2=;T f r r πω2=;3. 计算经过预畸的相应模拟低通原型的频率)2(2c c tg T ω=Ω,)2(2r r tg T ω=Ω; 4. 根据Ωc 和Ωr 计算模拟低通原型滤波器的阶数N ,并求得低通原型的传递函数)(s H a ; 5. 用上面的双线性变换公式代入)(s H a ,求出所设计的传递函数)(z H ; 6. 分析滤波器特性,检查其指标是否满足要求。

数字信号处理实验报告四IIR数字滤波器设计及软件实现

数字信号处理实验报告四IIR数字滤波器设计及软件实现

数字信号处理实验报告四IIR数字滤波器设计及软件实现实验目的:本实验的目的是了解IIR数字滤波器的设计原理和实现方法,通过MATLAB软件进行数字滤波器设计和信号处理实验。

一、实验原理IIR数字滤波器是一种使用有限数量的输入样本和前一次输出值的滤波器。

它通常由差分方程和差分方程的系数表示。

IIR滤波器的特点是递归结构,故其频率响应是无限长的,也就是说它的频率响应在整个频率范围内都是存在的,而不像FIR滤波器那样只有在截止频率处才有响应。

根据设计要求选择合适的滤波器类型和滤波器结构,然后通过对滤波器的模型进行参数化,设计出满足滤波要求的IIR滤波器。

常见的IIR滤波器设计方法有模拟滤波器设计方法和数字滤波器设计方法。

在本实验中,我们主要使用数字滤波器设计方法,即离散时间滤波器设计方法。

二、实验内容(一)设计IIR数字滤波器的步骤:1.确定滤波器类型:根据滤波要求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

2.确定滤波器的阶数:根据滤波要求确定滤波器的阶数。

阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。

3. 设计滤波器原型:根据滤波要求,设计滤波器的原型。

可以选择Butterworth滤波器、Chebyshev滤波器、Elliptic滤波器等作为原型。

4.选择滤波器结构:根据计算机实现条件和算法复杂度,选择合适的滤波器结构。

常见的滤波器结构有直接形式I、直接形式II、级联形式等。

5.参数化滤波器模型:根据原型滤波器的差分方程,选择合适的参数化方法。

常见的参数化方法有差分方程法、极点/零点法、增益法等。

6.根据参数化的滤波器模型,计算出所有的滤波器系数。

(二)用MATLAB软件实现IIR数字滤波器设计:1.打开MATLAB软件,并创建新的脚本文件。

2. 在脚本文件中,使用MATLAB提供的滤波器设计函数,如butter、cheby1、ellip等,选择合适的滤波器类型进行设计。

实验四 IIR数字滤波器的设计2013-5-1

实验四 IIR数字滤波器的设计2013-5-1

实验四IIR数字滤波器的设计实验涉及的MATLAB子函数impinvar功能:用脉冲响应不变法实现模拟到数字的滤波器变换。

调用格式:[bd,ad]=impinvar(b,a,Fs);将模拟滤波器系数b、a变换成数字的滤波器系数bd、ad,两者的冲激响应不变。

[bd,ad]=impinvar(b,a);采用Fs的缺省值1Hz。

1.buttord功能:确定巴特沃斯(Butterworth)滤波器的阶数和3 dB截止频率。

调用格式:[n ,wn ]=buttord(wp ,ws ,Rp ,As);计算巴特沃斯数字滤波器的阶数和3 dB 截止频率。

其中,0≤wp(或ws)≤1,其值为1时表示0.5Fs 。

Rp 为通带最大衰减指标,As 为阻带最小衰减指标。

[n ,wn ]=buttord(wp ,ws ,Rp ,As ,‘s ’);计算巴特沃斯模拟滤波器的阶数和3 dB 截止频率。

wp 、ws 可以是实际的频率值或角频率值,wn 将取相同的量纲。

Rp 为通带最大衰减指标,As 为阻带最小衰减指标。

当wp>ws 时,为高通滤波器;当wp 、ws 为二元向量时,为带通或带阻滤波器,此时wn 也为二元向量。

2.cheb1ord功能:确定切比雪夫(Chebyshev)Ⅰ型滤波器的阶数和通带截止频率。

调用格式:[n ,wn ]=cheb1ord(wp ,ws ,Rp ,As);计算切比雪夫Ⅰ型数字滤波器的阶数和通带截止频率。

其中,0≤wp(或ws)≤1,其值为1时表示0.5Fs 。

Rp 为通带最大衰减指标,As 为阻带最小衰减指标。

[n ,wn ]=cheb1ord(wp ,ws ,Rp ,As ,¢s¢);计算切比雪夫Ⅰ型模拟滤波器的阶数和通带截止频率。

wp 、ws 可以是实际的频率值或角频率值,wn 将取相同的量纲。

Rp 为通带最大衰减指标,As 为阻带最小衰减指标。

当wp>ws 时,为高通滤波器;当wp 、ws 为二元向量时,则为带通或带阻滤波器,此时wn 也为二元向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 IIR 数字滤波器的设计及网络结构一、实验目的1.了解IIR 数字滤波器的网络结构。

2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。

3.学习编写数字滤波器的设计程序的方法。

二、实验内容数字滤波器:是数字信号处理技术的重要内容。

它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。

1.数字滤波器的分类滤波器的种类很多,分类方法也不同。

(1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。

(3)按时域特性划分:FIR 、IIR2.IIR 数字滤波器的传递函数及特点数字滤波器是具有一定传输特性的数字信号处理装置。

它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。

如果加上A/D 、D/A 转换,则可以用于处理模拟信号。

设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示:1()()()M Ni j i j y n b x n i a y n j ===-+-∑∑(5-1)其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。

与之相对应的差分方程为:10111....()()()1....MM NN b b z b z Y z H Z X z a z a z ----++==++ (5-2)由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。

(2) 系统传递函数H(z)在有限z 平面上有极点存在。

(3) 结构上存在着输出到输入的反馈,也就是结构上是递归型的。

3.IIR 滤波器的结构IIR 滤波器包括直接型、级联型和并联型三种结构:① 直接型:优点是简单、直观。

但由于系数bm 、a k 与零、极点对应关系不明显,一个bm 或a k 的改变会影响H(z)所有零点或极点的分布,所以一方面,bm 、a k 对滤波器性能的控制关系不直接,调整困难;另一方面,零、极点分布对系数变化的灵敏度高,对有限字长效应敏感,易引起不稳定现象和较大误差。

Matlab 实现:filter( )函数实现IIR 数字滤波器直接形式。

格式为: y=filter(b,a,x)b ,a 为差分方程输入、输出系数向量(或系统函数的分子、分母多项式,降幂),x 为输入序列,y 为输出序列。

其中,传递函数(tf )形式NN MM za z a zb z b b z H ----++++++= 111101)(若则a=[1 a 1 a 2… a N ] b=[b 0 b 1 b 2… b M ]② 级联型:基于因式分解,将系统函数H(z)分解为因子乘积的形式。

(5-3)级联型结构:Matlab 实现: tf2zp( )函数用于求系统函数的零、极点和增益常数,zp2sos ( )函数则根据tf2zp( )函数结果求出各基本节系数。

格式为:[z,p,K]=tf2zp(b,a); sos=zp2sos(z,p,K);b ,a 为差分方程输入、输出系数向量(系统函数的分子、分母多项式,降幂)。

其中,零极点增益形式(zp ):∏∏-=--=---=101101)1()1()(N k kM i izz zz kz H 若则 零点向量 z=[z 1 z 2 … z M-1];极点向量 p=[z 1,z 2,…,z N-1]121212111211()()11MmN N mm k k k Nk k k k k k k bz z z H z K K H z z z a zββαα---=---===++===+++∑∏∏∑k 为系统增益。

二阶分式形式(sos )为: 把H(z)划成二阶因式∏∏==----++++==Nk Nk k k k k k k k z zz z z H z H 112211022110)()(αααβββ 则其二阶因式为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=N N N N N b b b b b a a b b b a a b b b sos 2121022122212022111211101111③ 并联型:基于部分分式展开,将系统函数H(z)分解为部分分式和的形式。

(5-4)并联型结构:Matlab 实现:residue( )函数可以实现并联型结构,有两种格式:[K,r,p]=residue(b,a); [b,a]=residue(b,a);其中,部分分式形式:)(1)1()1()(1)()1(1)1()(N M nz N M k k zn p n r z p r z H ----+-+++-++-=若 则极点向量 p=[p(1) p(2) … p(n)]其对应系数向量 r=[r(1) r(2) … r(n)]余数多项式系数向量 k=[k(1) k(2) … k(M-N+1)] 【实例5-1】已知三阶IIR 数字滤波器的系统函数001001001211121()()11M m N N m m k kk N k k k k k k k b z z H z K K H z z z a z γγαα--=---===+==+=++++∑∑∑∑32121636132353)(------++++=z z z z z z H 求:①直接形式的单位采样响应h(n);②级联型结构的各基本节系数; ③并联型结构的部分分式系数。

解:MATLAB 源程序为 ①b=[3,5/3,2/3];a=[1,1/6,1/3,-1/6]; x=[1,zeros(1,50)]; y=filter(b,a,x); n=0:50;plot(n,y); ②b=[3,5/3,2/3,0];a=[1,1/6,1/3,-1/6]; [z,p,K]=tf2zp(b,a); sos=zp2sos(z,p,K);③b=[3,5/3,2/3];a=[1,1/6,1/3,-1/6]; [K,r,p]=residue(b,a); KK1=[K(1),K(2)]; zz1=[z(1),z(2)];[b2,a2]=residue(KK1,zz1,0);5.IIR 数字滤波器的具体设计(1)巴氏模拟原型滤波器的设计巴氏模拟低通滤波器幅度平方函数为NCj H 211)(⎪⎪⎭⎫ ⎝⎛ΩΩ+=ΩMATLAB 工具箱函数buttap,buttord 和butter 是巴氏滤波器设计函数。

1)[Z,P,K]=buttap(N)该格式用于计算N 阶巴氏归一化(3dB 截止频率Ωc=1)模拟低通原型滤波器系统函数的零、极点和增益。

得到的系统函数为:)())(()())(()(2121N N a p p p p p p z p z p z p Kp G ------=如果要从计算得到的零、极点得到系统函数的分子和分母向量B 和A ,可以调用结构转换函数[B,A]=zp2tf(Z,P,K)。

2)[N,wc]=buttord(wp,ws,Rp,Rs,’s ’)该格式用于计算巴氏滤波器的阶数N 和3dB 截止频率wc 。

其中: N ——滤波器的阶数。

Wc ——3dB 截止频率的归一化值。

wp 、ws ——通带、阻带边界频率的归一化值。

要求:1ws 0,1wp 0≤≤≤≤,1表示数字频率π。

Rp 、Rs ——通带最大、阻带最小衰减。

s ——可选项,直接设计模拟滤波器,此时wp 和ws 均为实际模拟角频率。

3)[B,A]=butter(N,wc,’ftype ’,’s ’)计算N 阶巴氏数字滤波器系统函数分子和分母多项式的系数向量B 和A 。

【实例5-2】已知通带截止频率kHz f p 5=,通带最大衰减dB a p 5=,阻带截止频率kHz f s 12=,阻带最小衰减dB a s 30=,设计巴特沃斯型模拟低通滤波器。

解:MATLAB 源程序为Wp=2*pi*5000;Ws=2*pi*12000;Rp=5;As=30; [N,Wc]=buttord(Wp,Ws,Rp,Rs,'s'); [B,A]=butter(N,Wc,'s'); freqs(B,A);【实例5-3】设计阶数为3,5,10,15的巴氏模拟原型滤波器。

并画出幅频响应曲线。

解:MATLAB 源程序为 for i=1:4;switch icase 1 N=3; case 2 N=5; case 3 N=10; case 4; N=15; end;[z,p,k]=buttap(N); [b,a]=zp2tf(z,p,k); [h,w]=freqs(b,a,n); Ah=abs(h);subplot(2,2,i),plot(w,Ah);axis([0 2 0 1]); xlabel('w/wc');ylabel('|H(jw)|.^2');title(['filer N=',num2str(N)]);grid;end;【实例5-4】设通带、阻带截止频率fp=0.5kHz 、fs=1.2kHz ,通带、阻带最大衰减Rp=1dB,Rs=30dB ,要求设计巴氏低通滤波器。

解:MATLAB源程序为:>> OmegaP=2*pi*500;OmegaS=2*pi*1200;>> Rp=1;Rs=30;>> [N,OmegaC]=buttord(OmegaP,OmegaS,Rp,Rs,'s'); %确定阶数N>> [z0,p0,k0]=buttap(N);%确定传递函数>> z=z0*OmegaC;%去归一化>> k=k0*OmegaC^N;>> p=p0*OmegaC;>> bs=k*real(poly(z));>> as=real(poly(p));>> freqs(bs,as);(2)IIR数字滤波器的设计模拟滤波器Ha(s) 转换成数字滤波器H(z)应满足要求: (1) 因果稳定的模拟滤波器转换成数字滤波器,仍是因果稳定的;(2)数字滤波器的频率响应模仿模拟滤波器的频响,s 平面的虚轴映射z平面的单位圆,相应的频率之间成线性关系。

脉冲响应不变法和双线性变换法都满足如上要求。

①脉冲响应不变法用数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应h a(t),让h(n)正好等于h a(t)的采样值,即h(n)=h a(nT),其中T为采样间隔。

②双线性变换法s平面与z平面之间满足以下映射关系:1111--+-=z z ss 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。

相关文档
最新文档