已知两点坐标求方位角
已知两点坐标求方位角

二估计坐标与坐标圆背角的基原公式之阳早格格创做统造丈量的主要手段是通过丈量战估计供出统造面的坐标,统造面的坐标是根据边少及圆背角估计出去的.底下介绍估计坐标与坐标圆背角的基原公式,那些公式是矿山丈量工中最基原最时常使用的公式.一、坐标正算战坐标反算公式1.坐标正算根据已知面的坐标战已知面到待定面的坐标圆背角、边少估计待定面的坐标,那种估计正在丈量中称为坐标正算.如图5—5所示,已知A A到B的B的坐标为}(5—1)式中.由图5—5可知}(5—2)式中.将式(5-2)代进式(5-1),则有}(5—3)当A知时,便不妨用上述公式估计出待定面B的坐标.式(5—2)是估计坐标删量的基原公式,式(5—3)是估计坐目标基原公式,称为坐标正算公式.从图5—5x轴上的投影少y轴上的投影少度,边少是有背线段,是正在真天由A量到B得到的正值.而公式中的坐标圆背角不妨从0°到360°变更,根据三角函数定义,坐标圆背角的正弦值战余弦值便有正背二种情况,其正背标记与决于坐标圆背角天圆的象限,如图5—6所示.从式(5—2)知,由于三角函数值的正背决断了坐标删量的正背,其标记归纳成表5—3.图5—5 坐标估计图5—6 坐标删量标记表5—3 坐标删量标记表例 1 已知A;边少°.供B解:根据公式(5—3)有2、坐标反算由二个已知面的坐标估计出那二个面连线的坐标圆背角战边少,那种估计称为坐标反算.由式(5—1)有}(5—4)该式证明坐标删量便是二面的坐标之好.正在图5—5中表示由A面到达B面的纵坐标之好称纵坐标删量;A面到B面的横坐标之好称横坐标删量.坐标删量也有正背二种情况,它们决断于起面战末面坐标值的大小.正在图5—5中如果A面到B面的坐标已知,需要估计AB则有} (5—5)或者公式(5—5)称为坐标反算公式.应当指出,使用公式(5—5)中第一式估计的角是象限角R,应根据⊿x、⊿y 的正背号,决定天圆象限,再将象限角换算为圆背角.果此公式(5—5)中的第一式还可表示为:例2供A、B解:由公式(5-5)有AB位于第四象限.所以根据第四象限的坐标圆背角与象限角的闭系得:AB边少为:坐标正算公式战坐标反算公式皆是矿山丈量中最基原的公式,应用格中广大.正在丈量估计时,由于公式中各元素的数字较多,丈量典型对于数字与位及估计成果做了确定.比圆图根统造面央供边少估计与至毫米;角度估计与至秒;坐标估计与至厘米.二、坐标圆背角的推算公式由公式(5-2)知,估计坐标删量需要边少战该边的坐标圆背角二个果素,其中边少是正在家中曲交丈量或者通过三角教的公式估计得到的,坐标圆背角则是根据已知坐标圆背角战火仄角推算出去的.底下介绍坐标圆背角的推算公式.如图5-7所示,箭头所指的目标为“前进”目标,位于前进目标左侧的瞅测角称为左瞅测角,简称左角;位于前进目标左侧的角称为左瞅测角,简称左角.正在图5—7与5—8中,已知ABBC180°或者小于180°.图5—7中为大于180°的情况,图5—8中为小于180°的情况.图5—7坐标圆背角推算图5—8坐标圆背角推算从图5—7可知,BC边的坐标圆背角为从图5—8可知,BC边的坐标圆背角为综上所述二式则有(5—6)式(5-6)是依照边的前进目标,根据后一条边的已知圆背角估计前一条边圆背角的基原公式.公式证明:导线前一条边的坐标圆背角等于后一条边的坐标圆背角加上左瞅测角,其战大于180°时应减去180°,小于180°时应加上180°.2.瞅测左角时的坐标圆背角估计公式从图5-7 或者图5-8不妨瞅出将该式代进式(5- 6),得当圆背角大于360°时,应减去360°,目标没有变.所以上式形成(5—7)上式证明:导线中,前一条边的坐标圆背角等于后一条边的坐标圆背角减去左瞅测角,其好大于180°时应减去180°,小于180°时应加上180°.使用式(5-6)与(5-7)时,还应注意相映二条边的前进目标必须普遍,估计截止大于360°时,则应减去360°,目标没有变.例3 图5-9 为一条收导线,已知A=101°28´,导线A°32´,M面的左瞅测角°.试推算坐标圆背角图5—9 收导线解:由式(5-6)得则有由式(5-7)得则有。
已知两点坐标计算方位角

已知两点坐标计算方位角方位角是地理学和导航中常用的概念,用于描述一个点相对于另一个点的方向。
通过已知两点的坐标,我们可以计算出它们之间的直线距离和方位角。
本文将介绍如何通过已知两点坐标来计算方位角,并提供详细步骤和示例。
1. 确定两点坐标首先,我们需要明确两点的坐标。
假设点A的坐标为(x1,y1),点B的坐标为(x2,y2)。
这些坐标可以通过地图、导航系统或其他方式获取。
2. 计算直线距离直线距离是指点A到点B之间的最短距离。
我们可以利用两点之间的距离公式来计算直线距离:d = √((x2 - x1)² + (y2 - y1)²)其中,d表示直线距离,√表示平方根。
3. 计算方位角方位角是指点A相对于点B的方向。
为了计算方位角,我们可以利用以下公式:θ = atan2(y2 - y1, x2 - x1)其中,θ表示方位角,atan2表示求反正切。
需要注意的是,不同的计算机语言和工具可能对atan2函数的参数顺序有所差异。
4. 将方位角转化为度数方位角通常以弧度表示,但为了方便理解,我们常常将其转化为度数。
转化的公式如下:angle = (θ * 180) / π其中,angle表示方位角的度数,π表示圆周率。
举例说明:假设点A坐标为(2,3),点B坐标为(5,7)。
我们可以按照上述步骤计算方位角。
首先,计算直线距离:d = √((5 - 2)² + (7 - 3)²)= √(9 + 16)= √25= 5然后,计算方位角:θ = atan2(7 - 3, 5 - 2)= atan2(4, 3)最后,将方位角转化为度数:angle = (θ * 180) / π通过计算,我们可以得到点A相对于点B的方位角为51.34度。
总结:通过已知两点的坐标,我们可以计算出它们之间的直线距离和方位角。
直线距离可以通过两点之间的距离公式计算,方位角则可以通过atan2函数来求解。
全站仪闭合导线方位角及距离计算方法步骤

闭合导线测量计算方法①.方位角计算(左角)已知A,B两点坐标,且AB的方位角为30°即αAB = 30°,可求出其它方位角如下:αBC = αAB + ∠B ±180° = 30°+ 60° + 180° = 270°αCD = αBC + ∠C ±180° = 270°+ 70°- 180° = 160°αDE = αCD + ∠D ±180° =160°+ 100° - 180° = 80°αEB = αDE + ∠E ±180° = 80° + 130° - 180° = 30°②.方位角计算(右角)已知A,B两点坐标,且AB的方位角为30°即αAB = 30°,可求出其它方位角如下:αBC = αAB + ∠B ±180° = 30°+ 60° + 180° = 270°αCD = αBC - ∠C ±180° = 270° - 290° + 180°= 160°αDE = αCD - ∠D ±180° =160°- 260° - 180° = 80°αEB = αDE - ∠E ±180° = 80° - 230° - 180° = 30°总结:角在左边用加法,角在右边用减法(左加右减);在求方位角时,两个角相加或相减得出来的得数大于180°则减去180°,若小于180°则加上180°(大减小加)。
坐标方位角计算公式过程

坐标方位角计算公式过程
一、坐标方位角的定义。
在平面直角坐标系中,从某点的坐标纵轴方向的北端起,顺时针量到目标方向线间的水平夹角,称为该点的坐标方位角,其取值范围是0° - 360°。
二、坐标方位角计算公式推导过程。
1. 已知两点坐标计算坐标方位角。
- 设A(x1,y1)、B(x2,y2)为平面直角坐标系中的两点。
- 首先计算Δx=x2 - x1,Δy=y2 - y1。
- 然后根据正切函数计算反正切值tanα=(Δ y)/(Δ x),这里得到的α是一个锐角(- 90^∘<α<90^∘)。
- 接下来需要根据Δ x和Δ y的正负来确定坐标方位角β:
- 当Δ x>0,Δ y≥slant0时,坐标方位角β=α。
- 当Δ x = 0,Δ y>0时,坐标方位角β = 90^∘。
- 当Δ x<0时,坐标方位角β=α + 180^∘。
- 当Δ x>0,Δ y<0时,坐标方位角β=α+360^∘(也可写成β = α - 360^∘,目的是将其转化到0° - 360°范围内)。
例如,已知A点坐标为(1,1),B点坐标为(3,3),则Δ x=3 - 1=2,Δ y=3 - 1 = 2,tanα=(2)/(2)=1,α = 45^∘,因为Δ x>0,Δ y≥slant0,所以坐标方位角β = 45^∘。
再如,已知A点坐标为(1,1),B点坐标为(-1,3),Δ x=-1 - 1=-2,Δ y=3 - 1=2,tanα=(2)/(-2)=- 1,α=-45^∘,由于Δ x<0,所以坐标方位角β=-45^∘+180^∘=135^∘。
知道两个坐标怎么算方位角

知道两个坐标怎么算方位角在地理学和导航领域中,方位角是指从一个点到另一个点的方向角度。
它可以帮助我们确定某个点相对于参考点的方向。
计算方位角的方法可以使用三角函数和平面几何原理来解决。
下面将介绍如何计算给定两个坐标之间的方位角。
在计算方位角之前,需要了解一些基础知识。
坐标系统是描述地理位置的系统,常用的有经纬度和笛卡尔坐标系。
在本文中,我们将使用笛卡尔坐标系来进行计算。
首先,假设有两个点A和B,它们的坐标分别为A(x1, y1)和B(x2, y2)。
我们的目标是计算从点A指向点B的方位角。
步骤1:计算相对坐标差值首先需要计算点B相对于点A的坐标差值。
可以通过下列公式计算:Δx = x2 - x1Δy = y2 - y1这里Δx和Δy分别表示点B相对于点A的水平和垂直方向上的位移。
步骤2:计算方位角通过计算步骤1得到的坐标差值,我们可以使用反正切函数计算方位角。
具体计算如下:θ = atan2(Δy, Δx)在这个公式中,θ表示从点A指向点B的方位角度。
函数atan2()可以根据Δy和Δx的值计算对应的反正切值。
注意,在计算过程中可能需要将结果转换为度数制(通常以°为单位)。
步骤3:转换方位角范围在计算得到方位角后,需要将其转换到合适的范围内。
常见的范围是从0°到360°,使角度值更加直观和易于理解。
如果计算结果超出此范围,可以执行下列转换:若θ < 0,则θ = θ + 360若θ > 360,则θ = θ - 360这样就可以确保方位角的范围在0°到360°之间。
通过上述步骤,我们可以得到从一个点指向另一个点的方位角。
这个方位角可以用来描述两点之间的相对方向,对于导航、航海等应用非常重要。
需要注意的是,这个方法仅适用于平面上的计算。
对于地球表面上两个坐标的方位角计算,需要考虑地理坐标系和球面几何的复杂性,可能需要使用更加复杂的算法进行计算。
方位角计算公式范文

方位角计算公式范文方位角是指从一个参考方向(通常是正北方向)起,按顺时针方向测量到其中一方向线的角度。
方位角通常用度数表示,范围从0度到360度。
下面介绍常见的方位角计算公式:1.方位角计算公式(两点坐标):假设已知起点坐标A(x1,y1)和终点坐标B(x2,y2),方位角θ的计算公式如下:θ = atan2(y2 - y1, x2 - x1)其中,atan2函数是一个双变量反正切函数,返回值为[-π, π]之间的角度值。
注意:上述公式计算得到的θ是以正北方向为参考的方位角。
如果要将方位角转换为以其他方向为参考的角度(如正东方向为0度),可以将θ减去相应的修正值。
2.方位角计算公式(两点经纬度):假设已知起点的经度(lon1)、纬度(lat1)和终点的经度(lon2)、纬度(lat2),方位角θ的计算公式如下:θ = atan2(sin(Δlon) * cos(lat2), cos(lat1) * sin(lat2) -sin(lat1) * cos(lat2) * cos(Δlon))其中,Δlon = lon2 - lon1是两点经度差。
注意:上述公式计算得到的θ是以正北方向为参考的方位角。
如果要将方位角转换为以其他方向为参考的角度(如正东方向为0度),可以将θ减去相应的修正值。
3.方位角计算公式(方向余弦矩阵):方向余弦矩阵(Direction Cosine Matrix)是一种将方位角和俯仰角等转化为三维空间坐标旋转的方式。
方向余弦矩阵的计算公式如下:D=[ cos(θ) * cos(φ), sin(θ) * cos(φ), -sin(φ) ][ -sin(θ), cos(θ), 0 ][ cos(θ) * sin(φ), sin(θ) * sin(φ), cos(φ) ]其中,θ是方位角,φ是俯仰角。
D是一个3行3列的矩阵,表示坐标变换矩阵。
上述是常见的方位角计算公式,根据不同的应用场景和问题,可能还会有其他的计算公式。
excel已知两点坐标求方位角

Excel已知两点坐标求方位角在Excel中,当我们已知两个点的坐标时,可以通过一定的数学计算求解这两个点之间的方位角。
方位角是指一个点相对于参考点的角度,通常以北为参考方向,由正北顺时针计算。
本文将通过Excel的计算功能,详细介绍已知两点坐标求方位角的步骤。
步骤一:确定两点的坐标首先,需要确定已知两个点的坐标。
假设点A的坐标为(Ax, Ay),点B的坐标为(Bx, By)。
这两个点可以是二维平面上的任意两个点。
步骤二:计算斜率通过已知两点的坐标,我们可以计算出这两个点连线的斜率。
斜率表示了直线的倾斜程度,它等于两点之间纵坐标的差值除以横坐标的差值。
斜率 = (By - Ay) / (Bx - Ax)步骤三:计算方位角已知斜率后,我们可以通过以下公式计算出方位角:方位角 = ATAN2(By - Ay, Bx - Ax) * (180 / PI())其中,ATAN2函数是Excel中常用的反正切函数,它可以接受纵坐标差和横坐标差作为参数。
乘以(180 / PI())是为了将弧度转换为角度。
如果计算结果为负值,需要将其加上360,使其保持在0-360度的范围内。
示例假设有两个点的坐标分别为点A(0, 0)和点B(5, 5),我们可以按照上述步骤进行计算。
首先计算斜率:斜率 = (5 - 0) / (5 - 0) = 1然后计算方位角:方位角 = ATAN2(5 - 0, 5 - 0) * (180 / PI()) = 45度因此,点A相对于点B的方位角为45度。
结论通过Excel的数学计算功能,我们可以很方便地求解已知两点坐标求方位角的问题。
这在一些地理信息系统、导航系统或测绘领域中具有重要的应用价值。
希望本文对你有所帮助!。
方位角计算公式.

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 计算坐标与坐标方位角的基本公式
控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的。
下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式。
一、坐标正算和坐标反算公式 1.坐标正算
根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。
如图5—5所示,已知A 点的坐标为A x 、A y
,A 到B 的边长和坐标方位角分别为AB S 和
AB α,则待定点B 的坐标为
AB
A B AB A B y y y x x x ∆+=∆+= } (5—1)
式中 AB x ∆ 、AB y ∆——坐标增量。
由图5—5可知
AB
AB AB AB AB AB S y S x ααsin cos =∆=∆ } (5—2)
式中 AB S ——水平边长;
AB α——坐标方位角。
将式(5-2)代入式(5-1),则有
AB
AB A B AB AB A B S y y S x x ααsin cos +=+= } (5—3)
当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。
式(5—2)是计算坐标增量的基本公式,式(5—3)是计算坐标的基本公式,称为坐标正算公式。
从图5—5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,AB y ∆是边长AB S 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。
而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种 情况,其正负符号取决于坐标方位角所在的象限,如图5—6所示。
从式(5—2)知,由于
三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3。
图5—5 坐标计算 图5—6 坐标增量符号 表5—3 坐标增量符号表
坐标方位角 (°) 所在象限
坐标增量的正负号 ⊿x ⊿y 0~90 90~180 180~270 270~360
Ⅰ Ⅱ Ⅲ Ⅳ + - - +
+ + - -
例1 已知A 点坐标A x =100.00m ,A y =300.10m ;边长AB s =100m ,方位角AB α=330°。
求B 点的坐标B x 、B y 。
解:根据公式(5—3)有
m
s y y m s x x AB AB A B AB AB A B 6.249330sin 1001.300sin 1.186330cos 100100cos =︒⋅+=+==︒⋅+=+=αα
2、坐标反算
由两个已知点的坐标计算出这两个点连线的坐标方位角和边长,这种计算称为坐标反算。
由式(5—1)有
A
B AB A B AB y y y x x x -=∆-=∆ } (5—4)
该式说明坐标增量就是两点的坐标之差。
在图5—5中AB x ∆ 表示由A 点到达B 点的纵坐标之差称纵坐标增量; AB y ∆表示由A 点到B 点的横坐标之差称横坐标增量。
坐标增量也有正负两种情况,它们决定于起点和终点坐标值的大小。
在图5—5中如果A 点到B 点的坐标已知,需要计算AB 边的坐标方位角AB α和边长时
AB S ,
则有
AB
AB
A B A B AB x y x x y y ∆∆=
--=
αtan
AB
AB
AB AB AB y x S ααsin cos ∆=∆=
} (5—5)
或 ()()22AB AB AB y x S ∆+∆=
公式(5—5)称为坐标反算公式。
应当指出,使用公式(5—5)中第一式计算的角是象限角R ,应根据⊿x 、⊿y 的正负号,确定所在象限,再将象限角换算为方位角。
因此公式(5-—5)中的第一式还可表示为:
AB
AB A B A B AB x y
x x y y R ∆∆=--=arctan arctan
例2.已知A x =300m, A y =500m,B x =500m,B y =300m,求A 、B 二点连线的坐标方位角AB
α和边长AB S 。
解:由公式(5-5)有
)1arctan(300
500500
300arctan arctan
-=--=--=A B A B AB x x y y R
因为AB x ∆为正 、AB y ∆为负,直线AB 位于第四象限。
所以︒=45NW R AB 根据第四象限的坐标方位角与象限角的关系得:
︒=︒-︒=31545360AB α
AB 边长为:
m y y x x S A B A B AB 8.282)500300()300500()()(2222=-+-=-+-=
坐标正算公式和坐标反算公式都是矿山测量中最基本的公式,应用十分广泛。
在测量计算时,由于公式中各元素的数字较多,测量规范对数字取位及计算成果作了规定。
例如图根控制点要求边长计算取至毫米;角度计算取至秒;坐标计算取至厘米。
二、坐标方位角的推算公式
由公式(5-2)知,计算坐标增量需要边长和该边的坐标方位角两个要素,其中边长是 在野外直接测量或通过三角学的公式计算得到的,坐标方位角则是根据已知坐标方位角和水平角推算出来的。
下面介绍坐标方位角的推算公式。
如图5-7所示,箭头所指的方向为“前进”方向,位于前进方向左侧的观测角称为左观测角,简称左角;位于前进方向右侧的角称为右观测角,简称右角。
1.观测左角时的坐标方位角计算公式
在图5—7与5—8中,已知AB 边的方位角为AB α,左β为左观测角,需要求得BC 边的方位角BC α。
左β是外业观测得到的水平角,从图上可以看出已知方位角AB α与左观测角
左β之和有两种情况:即大于180°或小于180°。
图5—7中为大于180°的情况,图5—8
中为小于180°的情况。
图5—7坐标方位角推算 图5—8坐标方位角推算 从图5—7可知,BC 边的坐标方位角为
ο180-+=左βααAB BC
从图5—8可知,BC 边的坐标方位角为
ο180++=左βααAB BC
综上所述两式则有 ο180±+=左后前
βαα (5—6)
式(5-6)是按照边的前进方向,根据后一条边的已知方位角计算前一条边方位角的基本公式。
公式说明:导线前一条边的坐标方位角等于后一条边的坐标方位角加上左观测角,其和大于180°时应减去180°,小于180°时应加上180°。
2.观测右角时的坐标方位角计算公式 从图5-7 或图5-8可以看出 右左
ββ-=ο360
将该式代入式(5- 6),得 οο360)180(+±-=右后前
βαα
当方位角大于360°时,应减去360°,方向不变。
所以上式变为
ο180±-=右后前βαα (5—7)
上式说明:导线中,前一条边的坐标方位角等于后一条边的坐标方位角减去右观测角,
其差大于180°时应减去180°,小于180°时应加上180°。
使用式(5-6)与(5-7)时,还应注意相应两条边的前进方向必须一致,计算结果大于360°时,则应减去360°,方向不变。
例3 图5-9 为一条支导线,已知A 点的坐标方位角BA α =101°28´,导线A 点的左观测角左β =108°32´,M 点的右观测角 右β =75°。
试推算坐标方位角 AM α、MN α。
图5—9 支导线 解 :由式(5-6)得
ο180±+=左βααBA AM
则有 ο
ο
ο
ο
30180'32108'28101=-+=AM α 由式(5-7)得
ο180±-=右βααAM MN
则有 ο
οοο1351807530=+-=MN α
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。