两点间距离、方位角计算公式
工程测量中坐标方位角计算公式

工程测量中如何计算坐标方位角?
工程测量中坐标方位角计算是测量过程中非常重要的一项工作,
它不仅能够精确测算点位之间的距离和方向,还能够在工程项目中起
到指导作用。
那么,在实际操作中,我们应该如何计算坐标方位角呢?
首先,我们需要确定测量点位的基准点和目标点,并使用仪器进
行测量。
在取得测量数据之后,我们可以利用以下公式进行坐标方位
角的计算:
tanθ = (E2 - E1) / (N2 - N1),其中E1和E2为基准点和目标
点的东坐标,N1和N2为基准点和目标点的北坐标。
在进行计算时,需要注意以下几点:
1.计算中的角度应该以北为0度,逆时针旋转为正向。
2.坐标位置的表示需要考虑到坐标系的不同,因此应根据不同的
坐标系进行转换。
3.在测量时,应该尽可能使用高精度的仪器,减小误差的产生。
通过以上几点的注意事项,我们可以更加准确地进行坐标方位角
的计算,为工程项目的实施提供可靠的测量数据和指导意见。
经纬度计算距离和方位角

经纬度计算距离和方位角方位角(azimuthangle):从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角。
(一)方位角的种类由于每点都有真北、磁北和坐标纵线北三种不同的指北方向线,因此,从某点到某一目标,就有三种不同方位角。
(1)真方位角。
某点指向北极的方向线叫真北方向线,而经线,也叫真子午线。
由真子午线方向的北端起,顺时针量到直线间的夹角,称为该直线的真方位角,一般用A表示。
通常在精密测量中使用。
(2)磁方位角。
地球是一个大磁体,地球的磁极位置是不断变化的,某点指向磁北极的方向线叫磁北方向线,也叫磁子午线。
在地形图南、北图廓上的磁南、磁北两点间的直线,为该图的磁子午线。
由磁子午线方向的北端起,顺时针量至直线间的夹角,称为该直线的磁方位角,用Am表示。
(3)坐标方位角。
由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a表示。
方位角在测绘、地质与地球物理勘探、航空、航海、炮兵射击及部队行进时等,都广泛使用。
不同的方位角可以相互换算。
军事应用:为了计算方便精确,方位角的单位不用度,用密位作单位。
换算作:360度=6000密位。
(二)三种方位角之间的关系因标准方向选择的不同,使得一条直线有不同的方位角。
同一直线的三种方位角之间的关系为:A=Am+δA=a+γa=Am+δ-γ(三)坐标方位角的推算1.正、反坐标方位角每条直线段都有两个端点,若直线段从起点1到终点2为直线的前进方向,则在起点1处的坐标方位角a12称为直线12的正方位角,在终点2处的坐标方位角a21称为直线12的反方位角。
a反=a正±180°式中,当a正<180°时,上式用加180°;当a正>180°时,上式用减180°。
2.坐标方位角的推算实际工作中并不需要测定每条直线的坐标方位角,而是通过与已知坐标方位角的直线连测后,推算出各直线的坐标方位角。
测量坐标方位角公式

测量坐标方位角公式引言坐标方位角是地理测量中常用的一个概念,用于描述一个点相对于参考方向的角度。
测量坐标方位角是确定一个点相对于某一基准点的相对位置的重要步骤。
本文将介绍测量坐标方位角的公式和计算方法。
坐标方位角的定义坐标方位角可以理解为从参考方向逆时针旋转的角度,以度数或弧度表示。
参考方向通常以正北或正东为基准,具体取决于实际应用场景。
方位角的取值范围为0°至360°或0至2π弧度。
坐标方位角的计算要计算一个点相对于参考方向的方位角,需要知道两者之间的水平方向角和距离。
水平方向角是指从参考方向到目标点方向的角度。
公式下面是计算坐标方位角的公式:方位角 = atan2(y2 - y1, x2 - x1) * 180 / π其中,(x1, y1)是参考点的坐标,(x2, y2)是目标点的坐标,atan2是求反正切的函数,π是数学常量π。
计算步骤1.确定参考点和目标点的坐标(x1, y1)和(x2, y2);2.计算水平方向角,即参考点指向目标点的角度。
可以借助数学库或计算工具来计算反正切;3.使用公式计算坐标方位角,将水平方向角转换为度数。
示例假设有一个参考点A的坐标为(2, 3),目标点B的坐标为(5, 7)。
我们来计算点B相对于点A的坐标方位角。
1.点A的坐标为(2, 3),点B的坐标为(5, 7);2.计算水平方向角:atan2(7 - 3, 5 - 2) = atan2(4, 3)≈ 51.34°;3.使用公式计算坐标方位角:51.34°。
因此,点B相对于点A的坐标方位角约为51.34°。
结论测量坐标方位角是地理测量中的一项重要任务。
通过计算水平方向角和距离,我们可以轻松计算出点相对于参考方向的方位角。
在实际的地理测量和导航应用中,坐标方位角的计算是不可或缺的步骤,能够帮助我们准确确定物体或位置相对于参考点的方向关系。
以上是测量坐标方位角的公式和计算方法的介绍,希望对您有所帮助。
全站仪闭合导线方位角及距离计算方法步骤

闭合导线测量计算方法①.方位角计算(左角)已知A,B两点坐标,且AB的方位角为30°即αAB = 30°,可求出其它方位角如下:αBC = αAB + ∠B ±180° = 30°+ 60° + 180° = 270°αCD = αBC + ∠C ±180° = 270°+ 70°- 180° = 160°αDE = αCD + ∠D ±180° =160°+ 100° - 180° = 80°αEB = αDE + ∠E ±180° = 80° + 130° - 180° = 30°②.方位角计算(右角)已知A,B两点坐标,且AB的方位角为30°即αAB = 30°,可求出其它方位角如下:αBC = αAB + ∠B ±180° = 30°+ 60° + 180° = 270°αCD = αBC - ∠C ±180° = 270° - 290° + 180°= 160°αDE = αCD - ∠D ±180° =160°- 260° - 180° = 80°αEB = αDE - ∠E ±180° = 80° - 230° - 180° = 30°总结:角在左边用加法,角在右边用减法(左加右减);在求方位角时,两个角相加或相减得出来的得数大于180°则减去180°,若小于180°则加上180°(大减小加)。
方位角距离直线坐标计算

方位角距离直线坐标计算首先,我们来介绍一下方位角的概念。
方位角是指从一个固定的参考点沿着固定的方向到达目标点所需的旋转角度。
方位角通常用北方向起始,沿顺时针方向旋转来表示。
具体来说,方位角是以正北方向为0度,正东方向为90度,正南方向为180度,正西方向为270度来表示的。
根据这个旋转规则,我们可以计算出两个点之间的方位角。
为了计算方位角,我们需要知道两个点的直线坐标。
直线坐标是以一个参考点为原点,沿着水平和垂直方向来表示点的位置。
通常情况下,直线坐标使用x轴和y轴来表示。
根据直线坐标,我们可以计算出两个点之间的距离。
在计算两个点之间的距离时,我们可以使用勾股定理来得到结果。
根据勾股定理,两个点之间的距离可以通过计算两个点在x轴和y轴上的坐标差值的平方和再开平方根来得到。
具体公式如下:距离=√((x2-x1)²+(y2-y1)²)其中,(x1,y1)和(x2,y2)分别是两个点的直线坐标。
另外,我们还可以根据直线坐标计算出两个点之间的方位角。
为了计算方位角,我们需要计算出两个点在x轴和y轴上的坐标差值,并使用反正切函数来获得结果。
具体公式如下:方位角 = atan((y2 - y1) / (x2 - x1))需要注意的是,由于反正切函数的定义域是(-π/2,π/2)范围内的,当计算结果在第二象限或第三象限时,需要加上π或π/2来获得准确的结果。
以上就是方位角、距离以及直线坐标计算的基本原理和公式。
下面我们通过一个具体的例子来演示如何进行方位角、距离和直线坐标的计算。
假设我们有两个点A和B,其直线坐标分别为A(3,4)和B(7,1)。
我们首先可以计算出这两个点之间的距离。
根据上面的公式,我们有:距离=√((7-3)²+(1-4)²)=√(4²+(-3)²)=√(16+9)=√25=5接下来,我们可以计算出点B相对于点A的方位角。
根据上面的公式,我们有:方位角 = atan((1 - 4) / (7 - 3))= atan(-3 / 4)由于计算结果在第三象限,我们需要加上π或π/2来获得准确的结果。
坐标方位角计算公式

坐标方位角计算公式
坐标方位角是计算地理位置的重要参数,它指的是从一个点指向另一个点的角度,可以使用坐标方位角来计算两个点之间的距离。
坐标方位角是指一个点到另一个点的角度,以正北方向为0度,顺时针方向增大,范围为0°-360°,也可以用-180°至+180°表示,例如,一个点从正北方向顺时针旋转90°,就是在正东方向,坐标方位角就是90°。
计算坐标方位角的方法有很多,最常用的是三角函数法,又称“正余弦定理”。
它可以通过计算两个点的经纬度来计算坐标方位角,即可以计算出从一个点指向另一个点的角度。
此外,还可以使用坐标方位角来计算两个点之间的距离。
通常,计算距离的方法是使用余弦定理,即可以根据两个点的坐标方位角来计算出两点之间的距离。
以上就是坐标方位角的基本概念及其计算方法。
坐标方位角是地理位置和距离计算中不可或缺的重要参数,可以用来计算两点之间的距离,以及从一个点指向另一个点的角度。
两点方位角计算公式

两点方位角计算公式
两点方位角是指从一个点出发,经过直线路径到达另一个点的方向。
一般通过经纬度的坐标来计算两点方位角,以下是计算公式:
1. 根据起点和终点的经纬度计算它们之间的距离,可以使用以下公式:
a = sin(Δlat/2) + cos(lat1) * cos(lat2) * sin(Δlong/2)
c = 2 * atan2( √a, √(1a) )
d = R * c
其中,Δlat和Δlong分别表示起点和终点的纬度和经度之差,R为地球半径,d表示两点之间的距离。
2. 计算起点和终点的方位角,可以使用以下公式:
y = sin(Δlong) * cos(lat2)
x = cos(lat1) * sin(lat2) sin(lat1) * cos(lat2) * cos(Δlong)
θ = atan2(y, x)
其中,θ表示起点指向终点的方位角,正北方向为0°,顺时针方向为正。
以上就是计算两点方位角的公式,可以通过这些公式来快速计算出两点间的方位角。
- 1 -。
方位角计算公式.

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。
2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。
所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。
为了说明直线所在的象限,在前应加注直线所在象限的名称。
四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。
象限角和坐标方位角之间的换算公式列于表1-4。
表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。
设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。
水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。
设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。
二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。
坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。
如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。