测量方位角与坐标的计算..

合集下载

工程测量中坐标方位角计算公式

工程测量中坐标方位角计算公式

工程测量中如何计算坐标方位角?
工程测量中坐标方位角计算是测量过程中非常重要的一项工作,
它不仅能够精确测算点位之间的距离和方向,还能够在工程项目中起
到指导作用。

那么,在实际操作中,我们应该如何计算坐标方位角呢?
首先,我们需要确定测量点位的基准点和目标点,并使用仪器进
行测量。

在取得测量数据之后,我们可以利用以下公式进行坐标方位
角的计算:
tanθ = (E2 - E1) / (N2 - N1),其中E1和E2为基准点和目标
点的东坐标,N1和N2为基准点和目标点的北坐标。

在进行计算时,需要注意以下几点:
1.计算中的角度应该以北为0度,逆时针旋转为正向。

2.坐标位置的表示需要考虑到坐标系的不同,因此应根据不同的
坐标系进行转换。

3.在测量时,应该尽可能使用高精度的仪器,减小误差的产生。

通过以上几点的注意事项,我们可以更加准确地进行坐标方位角
的计算,为工程项目的实施提供可靠的测量数据和指导意见。

实地测绘中的方位角与坐标计算

实地测绘中的方位角与坐标计算

实地测绘中的方位角与坐标计算引言:实地测绘作为一门应用广泛的工程学科,在现代技术的支持下正变得越来越精准和高效。

其中,方位角与坐标计算是实地测绘的重要组成部分,它们决定了测绘结果的准确性和可靠性。

本文将从理论到实践,深入探讨实地测绘中方位角与坐标计算的方法和应用。

一、方位角的概念和计算方法方位角是指测量线与正北方向之间的夹角,通常用度数表示。

在实地测绘中,我们常常使用全站仪、经纬仪等仪器来测量方位角。

具体计算方法是通过观测望远镜上的方位圈上的读数,再结合磁偏角、磁倾角等参数进行修正。

通过多次观测和计算,可以得到相对准确的方位角数据。

二、坐标计算的基本原理坐标计算是指根据已知的测量数据,通过特定的计算方法得出目标点的坐标值。

在实地测绘中,常用的坐标计算方法有三角测量法、导线测量法等。

在三角测量法中,通过测量目标点与已知基准点之间的距离和方位角,利用三角形的几何关系计算目标点的坐标值。

在导线测量法中,通过测量每一个线段的长度和方位角,再根据已知起点的坐标,通过累加和计算得出目标点的坐标值。

三、实地测绘中的方位角与坐标计算的应用方位角与坐标计算作为实地测绘的基本工具,广泛应用于土地测量、建筑工程、道路设计等领域。

例如,在土地测量中,方位角与坐标计算可以用于绘制土地界址线图、确定土地纠纷的范围等。

在建筑工程中,方位角与坐标计算可以用于测量建筑物的位置和大小,保证建筑物的合理布局。

在道路设计中,方位角与坐标计算可以用于确定道路的走向和布局,保证道路的安全性和通行性。

四、实地测绘中方位角与坐标计算的挑战与进展实地测绘中的方位角与坐标计算面临着一些挑战,如地形复杂、测量误差、环境干扰等。

为应对这些挑战,近年来,越来越多的新技术被引入到实地测绘中。

比如,全球卫星导航系统(GNSS)可以提供高精度的全球定位信息,激光扫描技术可以获取更准确的地形数据。

这些新技术的应用,不仅提高了方位角与坐标计算的准确性,还提高了测绘工作的效率和可靠性。

计算坐标与坐标方位角的基本公式

计算坐标与坐标方位角的基本公式

二 计算坐标与坐标方位角的基本公式控制测量的主要目的是通过测量和计算求出控制点的坐标,控制点的坐标是根据边长及方位角计算出来的.下面介绍计算坐标与坐标方位角的基本公式,这些公式是矿山测量工中最基本最常用的公式.一、坐标正算和坐标反算公式1.坐标正算根据已知点的坐标和已知点到待定点的坐标方位角、边长计算待定点的坐标,这种计算在测量中称为坐标正算。

如图5—5所示,已知A 点的坐标为A x 、A y ,A 到B 的边长和坐标方位角分别为AB S 和AB α,则待定点B 的坐标为AB A B ABA B y y y x x x ∆+=∆+= }(5—1) 式中 AB x ∆ 、AB y ∆——坐标增量。

由图5—5可知AB AB AB AB AB AB S y S x ααsin cos =∆=∆ }(5—2)式中 AB S ——水平边长; AB α-—坐标方位角.将式(5-2)代入式(5—1),则有AB AB A B ABAB A B S y y S x x ααsin cos +=+= }(5—3)当A 点的坐标A x 、A y 和边长AB S 及其坐标方位角AB α为已知时,就可以用上述公式计算出待定点B 的坐标。

式(5—2)是计算坐标增量的基本公式,式(5-3)是计算坐标的基本公式,称为坐标正算公式.从图5—5可以看出AB x ∆是边长AB S 在x 轴上的投影长度,AB y ∆是边长AB S 在y 轴上的投影长度,边长是有向线段,是在实地由A 量到B 得到的正值。

而公式中的坐标方位角可以从0°到360°变化,根据三角函数定义,坐标方位角的正弦值和余弦值就有正负两种情况,其正负符号取决于坐标方位角所在的象限,如图5-6所示。

从式(5—2)知,由于三角函数值的正负决定了坐标增量的正负,其符号归纳成表5—3.图5-5 坐标计算图5—6 坐标增量符号表5—3 坐标增量符号表坐标方位角(°)所在象限坐标增量的正负号⊿x ⊿y0~9090~180180~270270~ⅠⅡⅢⅣ+--+++--例1 已知A 点坐标A x =100。

方位角的计算公式

方位角的计算公式

计算公式一、 方位角的计算公式1. 字母所代表的意义:x 1:QD 的X 坐标 y 1:QD 的Y 坐标 x 2:ZD 的X 坐标 y 2:ZD 的Y 坐标 S :QD ~ZD 的距离 α:QD ~ZD 的方位角2. 计算公式:()()212212y y x x S -+-=1)当y 2- y 1>0,x 2- x 1>0时:1212x x y y arctg--=α2)当y 2- y 1<0,x 2- x 1>0时:1212360x x y y arctg --+︒=α 3)当x 2- x 1<0时:1212180x x y y arctg--+︒=α 二、 平曲线转角点偏角计算公式1. 字母所代表的意义:α1:QD ~JD 的方位角 α2:JD ~ZD 的方位角 β:JD 处的偏角2. 计算公式:β=α2-α1(负值为左偏、正值为右偏)三、 平曲线直缓、缓直点的坐标计算公式1. 字母所代表的意义:U :JD 的X 坐标 V :JD 的Y 坐标 A :方位角(ZH ~JD )T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=D :JD 偏角,左偏为-、右偏为+2. 计算公式:直缓(直圆)点的国家坐标:X ′=U+Tcos(A+180°)Y ′=V+Tsin(A+180°)缓直(圆直)点的国家坐标:X ″=U+Tcos(A+D)Y ″=V+Tsin(A+D)四、 平曲线上任意点的坐标计算公式1. 字母所代表的意义:P :所求点的桩号B :所求边桩~中桩距离,左-、右+ M :左偏-1,右偏+1C :JD 桩号 D :JD 偏角 L s :缓和曲线长 A :方位角(ZH ~JD ) U :JD 的X 坐标 V :JD 的Y 坐标T :曲线的切线长,2322402224R L L D tg R L R T ss s -+⎪⎪⎭⎫ ⎝⎛+=I=C -T :直缓桩号 J=I+L :缓圆桩号s L DRJ H -+=180π:圆缓桩号K=H+L :缓直桩号2. 计算公式: 1)当P<I 时中桩坐标:X m =U+(C -P)cos(A+180°) Y m =V+(C -P)sin(A+180°) 边桩坐标:X b =X m +Bcos(A+90°) Y b =Y m +Bsin(A+90°)2)当I<P<J 时()s230RL I P MA O π-︒+= ()()2390R I P I P G ---=中桩坐标:X m =U+Tcos(A+180°)+GcosO Y m =V+Tsin(A+180°)+GsinO()s290RL I P W π-︒=边桩坐标:X b =X m +Bcos(A+MW+90°) Y b =Y m +Bsin(A+MW+90°)3)当J<P<H 时()()R J P L M A R J P R L M A O s s πππ-+︒+=⎪⎭⎫⎝⎛-︒+︒+=909090 ()RJ P R G π-︒=90sin2中桩坐标:()O G R L M A R L L A T U X s ss m cos 30cos 90180cos 23+⎪⎭⎫⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()O G R L M A R L L A T V Y s ss m sin 30sin 90180sin 23+⎪⎭⎫ ⎝⎛︒+⎪⎪⎭⎫ ⎝⎛-+︒++=π ()RJ P W π-︒=90边桩坐标:X b =X m +Bcos(O+MW+90°) Y b =Y m +Bsin(O+MW+90°)4)当H<P<K 时()sRL K P MMD A O π230180-︒-︒++= ()2390R P K P K G ---= 中桩坐标:X m =U+Tcos(A+MD)+GcosO Y m =V+Tsin(A+MD)+GsinO()s290RL K P W π-︒=边桩坐标:X b =X m +Bcos(A+MD -MW+90°) Y b =Y m +Bsin(A+MD -MW+90°)5)当P>K 时中桩坐标:X m =U+(T+P -K)cos(A+MD) Y m =V+(T+P-K)sin(A+MD) 边桩坐标:X b =X m +Bcos(A+MD+90°) Y b =Y m +Bsin(A+MD+90°)注:计算公式中距离、长度、桩号单位:“米”;角度测量单位:“度”;假设要以“弧度”为角度测量单位,请将公式中带°的数字换算为弧度。

坐标,方位角计算公式

坐标,方位角计算公式

坐标,方位角计算公式坐标方位角=磁方位角+(±磁坐偏角)。

方位角是卫星接收天线,在水平面上转0°-360°。

设定方位角时,抛物面在水平面上左右移动。

方位角(方位角,缩写为Az)是用于测量平面中物体之间的角度差的方法之一。

它是从点的北方向顺时针方向和目标方向之间的水平角度。

一、计算方法1、按给定的坐标数据计算方位角αBA、αBPΔxBA=xA-xB=+123.461m;ΔyBA=yA-yB=+91.508m;由于ΔxBA>0,ΔyBA>0;可知αBA位于第Ⅰ象限,即αBA=arctg=36°32'43.64";ΔxBP=xP-xB=-37.819m;ΔyBP=yP-yB=+9.048m;由于ΔxBP<0,ΔyBP>0;公式计算出来的方位角,可知αBP位于第Ⅱ象限。

αBP=180o-α=180o-arctg=180o-13o27'17.33"=166°32'42.67";此外,当Δx<0,Δy<0;位于第Ⅲ象限,方位角=180°+arctg;当Δx>0,Δy<0;位于第Ⅳ象限,方位角=360°-arctg。

2、计算放样数据∠PBA、DBP∠PBA=αBP-αBA=129°59'59.03"。

3、测设时,把经纬仪安置在B点,瞄准A点,按顺时针方向测设∠PBA,得到BP方向,沿此方向测设水平距离DBP,就得到P点的平面位置。

当受地形限制不便于量距时,可采用角度交会法测设放样点平面位置上例中,当BP间量距受限时,通过计算测设∠PAB、∠PBA来定P点。

根据给定坐标计算∠PAB;ΔxAP=xP-xA=-161.28m;ΔyAP=yP-yA=-82.46m;αAP=180°+arctg=207°4'47.88";又αAB=180°+αBA=180°+36°32'43.64"=216°32'43.64";∠PAB=αAB-αAP=9°27'55.76"。

坐标测量角度及方位角计算

坐标测量角度及方位角计算

基本计算公式:
sinα=对边/斜边sinα=A/C
cosα=邻边/斜边cosα=B/C
tgα=对边/邻边tgα=A/B
ctgα=邻边/对边ctgα=B/A
B
一、根据其中一个已知坐标点做原点,作坐标系图。

二、根据已知第二坐标点与假定原点坐标的差值确定其所在象限位置。

三、根据第二已知坐标点与假定原点的差值计算第二已知坐标点与假定原点的夹角。

四、根据夹角象限位置+或—180度//90度。

(第四象限减180度,第二象限减90度,第三象限减360度)
五、根据需测坐标数据计算其与假定原点的差值。

六、根据差值计算需测坐标与假定原点的夹角。

七、根据象限位置加+减—已知坐标与假定原点的夹角。

八、得出已知第二坐标与需测坐标的夹角。

九、根据坐标计算假定原点与需测坐标的距离。

十、根据计算结果与经纬仪测定需测坐标的位置。

方位角的计算方法

方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角坐标增量的计算方法:平距×COS方位角=△X坐标增量平距×Sin方位角=△Y坐标增量坐标的计算方法:已知X坐标±△X坐标增量=X坐标已知Y坐标±△Y坐标增量=Y坐标高差、平距的计算方法:斜距×Sin倾角=高差斜距×COS倾角=平距高差÷Sin倾角=斜距平距÷cos已知度分秒=斜距高程的计算方法:已知高程-仪器高+前视高±高差=该点的顶板高差原始记录计算方法:前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″前视92°49′02″272°49′13″水平角= 92°49′03″实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″实例: 270°30′38″-270°= 00°30′38″激光的计算方法:两点的高程相减:比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、7988、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点)测量:1、先测后视水平角:归零,倒镜180°不能误差15′2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。

要求方位角-已知方位角±180°=拨角方位画两千的图:展点用0.6正好.倾角的计算方法:180°以下的-90°270°-超过180°的两点的高差除平距按tan=倾角比如:2点1500、026-6点1484、096=15、932点~6点平距=127、8315、93÷127、83=接按第二功能键、接按tan接按=接按度分秒键完事。

坐标及方位角计算

坐标及方位角计算坐标和方位角是地理学和导航中常用的概念,用于确定一个地点在地球上的位置和方向。

坐标通常用经度和纬度表示,而方位角则是用于确定一个地点相对于另一个地点的方向。

在本文中,我们将介绍坐标和方位角的计算方法。

1.坐标的计算方法:坐标是用经度和纬度来表示一个地点在地球上的位置。

经度是指一个地点距离地球上子午线的距离,而纬度是指一个地点距离地球赤道的距离。

计算经度和纬度的方法如下:-经度的计算方法:经度的取值范围是从-180度到180度。

以本初子午线(通过伦敦的经线)为基准,向东为正,向西为负。

可以通过使用全球定位系统(GPS)或使用地图上的比例尺来确定一个地点的经度。

-纬度的计算方法:纬度的取值范围是从-90度到90度。

以地球赤道为基准,向北为正,向南为负。

可以通过使用全球定位系统(GPS)或使用地图上的比例尺来确定一个地点的纬度。

2.方位角的计算方法:方位角是用于确定一个地点相对于另一个地点的方向的角度。

方位角通常使用正北方向为基准,顺时针方向计算。

计算方位角的方法如下:-使用经纬度计算方位角:首先,计算两个地点的经度差和纬度差。

然后,使用三角函数(正弦、余弦或正切)计算两个地点之间的夹角。

最后,将夹角转换为以度为单位的方位角。

-使用几何图形计算方位角:将两个地点的经纬度绘制在一张地图上,并为两个地点之间的连线添加标记。

然后,使用直线夹角定理计算连线的夹角。

最后,使用罗盘或直尺等工具,将夹角转换为以度为单位的方位角。

总结:坐标和方位角是地理学和导航中常用的概念,用于确定一个地点在地球上的位置和方向。

坐标使用经度和纬度来表示一个地点的位置,而方位角用于确定一个地点相对于另一个地点的方向。

计算坐标和方位角的方法可以通过使用全球定位系统(GPS)、地图上的比例尺或几何图形等方法来进行。

测量中的坐标方位角怎么求

测量中的坐标方位角怎么求在测量学中,坐标方位角是指一个点在平面直角坐标系下相对于原点的角度。

它在实际测量中被广泛应用于方位角测量、导航以及地图制作等领域。

求解坐标方位角的方法有很多,本文将介绍两种常用的方法:直角坐标法和极坐标法。

1. 直角坐标法直角坐标法是根据一个点在平面直角坐标系中的坐标来确定其方位角的方法。

通过求解该点相对于原点的角度,可以得到坐标方位角。

设我们有一个点P(x, y),在平面直角坐标系中,其中x表示点P相对于原点在x轴上的坐标,y表示点P相对于原点在y轴上的坐标。

步骤如下:1.计算点P与原点之间的水平距离d,可以使用勾股定理计算:d =sqrt(x^2 + y2),其中表示指数运算,sqrt表示求平方根。

2.计算点P与原点之间的方位角θ,可以使用反三角函数arctan计算:θ = arctan(y / x),其中arctan表示反正切函数,y / x表示y除以x的结果。

需要注意的是,计算得到的角度θ是弧度表示,如果需要转换为度数表示,可以使用以下公式:θ = θ * 180 / π,其中π表示圆周率。

3.根据计算结果,得到点P的坐标方位角为θ。

2. 极坐标法极坐标法是通过一个点在极坐标系中的坐标来确定其方位角的方法。

在极坐标系中,一个点由径向距离和角度两个参数来确定。

设我们有一个点P(r, θ),其中r表示点P与极点之间的距离,θ表示点P相对于参考方向的角度。

步骤如下:1.将点P的坐标由直角坐标系转换为极坐标系,可以使用以下公式进行计算:r = sqrt(x^2 + y^2),θ = arctan(y / x)。

2.根据计算结果,得到点P的坐标方位角为θ。

需要注意的是,在极坐标法中,角度θ的取值范围一般是[0, 2π]或[-π, π],具体取决于使用的角度单位制(弧度制或度数制)。

总结本文介绍了在测量中求解坐标方位角的两种常用方法:直角坐标法和极坐标法。

直角坐标法是根据点在平面直角坐标系中的坐标求解方位角,而极坐标法是通过点在极坐标系中的距离和角度参数求解方位角。

测量学中坐标方位角计算公式

测量学中坐标方位角计算公式在测量学中,坐标方位角是用于描述目标物体或点在水平坐标系中的方向的数值。

坐标方位角是指从北方向顺时针旋转到目标点所需的角度。

在实际的测量工作中,计算坐标方位角是非常重要的,它可以帮助测量员准确地确定目标点在地图上的位置。

计算公式计算坐标方位角的主要公式是使用三角函数来实现的。

具体的计算公式如下:方位角 = arctan((Y2 - Y1) / (X2 - X1))在上述公式中,X1和Y1表示起点的水平坐标值,X2和Y2表示终点的水平坐标值。

arctan表示反正切函数,它可以将斜率转化为角度值。

通过使用这个计算公式,我们可以得到起点和终点之间的坐标方位角。

需要注意的是,上述公式仅适用于计算水平平面上的坐标方位角。

如果需要在垂直平面上计算坐标方位角,我们还需要考虑高程的影响。

在这种情况下,计算公式会稍有不同,需要引入高程差的概念。

示例为了更好地理解坐标方位角的计算过程,我们可以通过一个示例来说明。

假设我们有两个点A和B,它们的水平坐标分别为:点A:(X1, Y1) = (100, 200)点B:(X2, Y2) = (150, 280)现在我们来计算点A和点B之间的坐标方位角。

首先,我们将点A和点B的坐标值代入计算公式中:方位角 = arctan((280 - 200) / (150 - 100))接下来,我们计算分子和分母的差值:方位角 = arctan(80 / 50)然后,我们计算这两个差值的比值:方位角 = arctan(1.6)最后,使用反正切函数来计算坐标方位角的数值:方位角≈ 56.31°所以,根据计算结果,点A和点B之间的坐标方位角约为56.31°。

结论测量学中的坐标方位角是用于描述目标物体或点在水平坐标系中方向的数值。

通过使用三角函数计算公式,我们可以准确地确定起点和终点之间的坐标方位角。

在计算时需要注意坐标值的顺序和差值的计算方法。

通过实际的计算示例,我们可以更好地理解和应用坐标方位角的计算公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题:
用EXCEL程序进行附合导线计算
选择=结果
汇报结束 谢谢观看! 欢迎提出您的宝贵意见!
48 43 18
539 59 00 540 00 00
理=5400000 = 测理=60 容=405 =89
485.47 +0.09 -0.08 0
xy
= +0.09 =0.08
= x²+ y²=0.120
K = D
0
=
1 4000
<1
2000
例题:
用EXCEL程序进行闭合导线计算
(四)附合导线平差计算
来依次计算各导线点的坐标。
1
x2 x1 xˆ12 y2 y1 yˆ12
1
970300
484318 A1
A
XA=536.27m
A
1122224
2
1051706
YA=328.74m
1233006
4 1014624
4
3
3
例题:闭合导线坐标计算表
点 号
转折角 (右)
改正后 方向角 转折角
边长 D
左角:终 始 理(左) n 180 的计其理中(左,) 终 始 n 180

右角:终 始 理(右) n 180 公理(右) 始 终 n 180
(2)满足精度要求,将fβ反符号式如平均分配到各观测角上。

2、坐标增量闭合差的计算 :
f x x测 x理 x测 (x终 x始 ) f y y测 y理 y测 ( y终 y始 )
ˆi i V
1
1
970300
484318 A1
A
XA=536.27m
A
1122224
2
1051706
2
YA=328.74m
1233006
4 1014624
4
3
3
3、按新的角值,推算各边坐标方位角。
4、按坐标正算公式,计算各边坐标增量。
5、坐标增量闭合差(closing error in coordination increment)计算与调整 1
1
970300
484318 A1
A
XA=536.27m
A
1122224
2
1051706
2
YA=328.74m
1233006
4 1014624
4
3
3
1
(1)计算坐标增量闭合差:
f x x测 x理 x测
1
970300
f y y测 y理 y测
484318 A1
➢导线全长闭合差:
A
增量。
1
Vxi
f
x
D
Di
Vyi
f
y
D
Di
xˆi x Vxi yˆi x Vyi
1
970300
484318 A1
A
XA=536.27m
A
1122224
2
1051706
2
YA=328.74m
1233006
4 1014624
4
3
3
6、坐标计算
根据起始点的已知坐标和经改正的新的坐标增量,
123 30
18
284
36
12
112
+12 22 24
112
22
341
36
05
54
115.10 100.09 108.32
94.38 67.58
-2 +2
536.27 328.74 A
+75.93 +86.50 +75.91 +86.52
-2 +2
612.18 415.26
1
-66.54 +74.77 -66.56 +74.79
说明:与闭合导线基本相同,以下是两者的不同点:
1、角度闭合差的分配与调整 方法1:
(1)计算方位角闭合差: f 终计算 终已知
(2)满足精度要求,若观测角为左角,则将fα反符号 平均分配到各观测角上;若观测角为右角,则将fα同符 号平均分配到各观测角上。
方法2(*):
(1)计算角度闭合差:
(米)
坐标 增量(米) X Y
改 正 后 坐标(米) 增量(米)
点 号
X Y X Y
A 1
2 3 4 A
48 43 18
+12
97 03 00 97 03 12
+12
131 40 06
105 17 06 105 17 18
101
+12 46 24
101
206
46 36
22
48
+12 123 30 06
B 5 6 7 8 C
180 178 193 181 204 180
+8 13 36 180
+8 22 30 178
+8 44 00 193
13
+8 00
181
54
+8 30
204
32Βιβλιοθήκη +8 48180
13 22 44 13 54 32
44 38 08 08 38 56
43 03 28 44 40 50 30 56 42 29 43 34
4 48 56
124.08 164.10 208.53 94.18 147.44
-2 +2
1230.88 673.45 B
+90.66 +84.71 +90.64 +84.73
5 -2
+116.68
6 -2
+3 +115.39
+3
+116.66
+115.42
1321.52 1438.18
758.18 873.60
讲题:导线测量内业计算
内容提要:
四、导线的内业计算
四.导线的内业计算——计算各导线点的坐标
(一)几个基本公式 1、坐标方位角(grid bearing)的推算
前 后 左 180
或: 前 后 右 180
注意:若计算出的方位角>360°,则减去360°; 若为负值,则加上360°。
例题:附合导线的计算
(1)绘制计算草图,在表内填写已知 数据和观测数据
D 41600
CD
(2)角度闭合差的计算与调整
XC=1845.69 YC=1039.98 C C
(3)各边方向角的推算
1803248
8
(4)坐标增量闭合差的计算与调整
4
(5)推算各点坐标。
7
2045430
3
5
6
1811300
2
B
例题:方位角的推算
2
2
已知:α12=300,各观测角β
30 12
130
如图,求各边坐标方位角α23、 1 1 95
3
65 3
α34、α45、α51。
解: α23= α12-β2±1800=800
122
5
128
4
5
α34= α23-β3±1800=1950
4
α45=2470
α51=3050
α12=300(检查)
(1)计算角度闭合差:
1
=测-理 = 测-(n-2)180
(2)计算限差:
f允 40" n
1
970300
484318 A1
A
XA=536.27m
A
1122224
2
1051706
2
YA=328.74m
1233006
4 1014624
4
3
3
(3)若在限差内,则平均分配原则,计算改正
数:
V
f n
(4)计算改正后新 的角值:
D
-9 +12
1119 00 24 1119 01 12
738.33
+614.90
+614.81+366.53 +366.41
+614.81
+366.53
理=11190112 = 测理=48 容=406 =98
xy
= +0.09 =0.12
= x²+ y²=0.150
K = D
=
1 4900
<
1 2000
XA=536.27m YA=328.74m
A
1122224
2
1051706
2
1233006
4 1014624
f
f
2 x
f
2 y
4
3
3
➢导线全长相对闭合差(relative length closing
error of traverse):
K f 1 / XXX
D
(2)分配坐标增量闭合差。
若K<1/2000(图根级),则将fx、fy以相反符号,按 边长成正比分配到各坐标增量上去。并计算改正后的坐标
-2 +2
545.62 490.05
2
-97.04
-2
-48.13
+1
-97.06
-48.11
448.56 441.94
3
+23.80 -91.33
-1 +1
+23.78 -91.32 472.34 350.62
4
+63.94 -21.89 +63.93 -21.88 536.27 328.74
相关文档
最新文档