脉冲多普勒雷达的汇总
脉冲多普勒雷达的总结

脉冲多普勒雷达的总结1、适用范围脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。
这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。
2、PD雷达的定义及其特征(1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。
(2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。
②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。
③PRF很高,通常对所观测的目标产生距离模糊。
3、PD雷达的分类图1 PD雷达的分类图①MTI雷达(低PRF):测距清晰,测速模糊②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择③PD雷达(高PRF):测距模糊,测速清晰4、机载下视PD雷达的杂波谱分析机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。
、PRF的选择(1)高、中、低脉冲重复频率的选择①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。
②迎面攻击时高PRF优于中PRF。
尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。
③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。
(2)高PRF时重复频率的选择①使迎面目标谱线不落人旁瓣杂波区中:②为了识别迎面和离去的目标:A、当接收机单边带滤波器对主瓣杂波频率固定时:B、当接收机单边带滤波器相对发射频率是固定时:注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。
6、PD雷达的信号处理系统PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。
SQ-雷达系统(第三章)脉冲多普勒雷达

PD雷达的应用
强杂波背景下检测动目标的雷达系统
应用
要求
机载或空间监视
探测距离远;距离数据精确
战场监视(低速目标检测) 中等探测距离;距离和速度数据精确
导弹告警
探测距离近;非常低的虚警率
2
2020/12/8
第三章 脉冲多普勒雷达
3.1 脉冲多普勒(PD)雷达基本概念 3.2 脉冲多普勒雷达的杂波 3.3 PD雷达典型框图与原理 3.4 PD雷达的距离性能
措施:
① 降低天线副瓣 杂波功率谱 提高相对强度
② 提高载机飞行高度 fc max
18
2020/12/8
第三章 脉冲多普勒雷达
3.1 脉冲多普勒(PD)雷达基本概念 3.2 脉冲多普勒雷达的杂波 3.3 PD雷达典型框图与原理 3.4 PD雷达的距离性能
19
2020/12/8
机载PD雷达典型框图与原理
3
2020/12/8
机载PD雷达下视几何关系
天线主瓣
天线旁瓣
机载下视雷达的地面杂波被分为:
主瓣杂波区 -> 天线波束主瓣照射区的地面杂波 旁瓣杂波区 -> 视角范围宽广的天线旁瓣照射的杂波 高度线杂波区 -> 雷达正下方的地面回波
杂波的多普勒频率分布取决于: ① 雷达平台速度(速度和方向) ② 平台相对地面照射点的几何关系
主瓣杂波
主瓣杂波强度:最大
主瓣杂波多普勒中心频率:
fM Bfd(0)2vRcos0
主瓣杂波宽度: fM B fd (0 2 B ) fd (0 2 B ) 2 v RB s in0
8
2020/12/8
旁瓣杂波
旁瓣杂波强度:较大
旁瓣波束与地面的夹角为 ,其多普勒频率为:
脉冲波多普勒

脉冲波多普勒
脉冲波多普勒(或称脉冲多普勒)是一种多普勒雷达技术,用于测量目标的速度和方向。
它通过发送脉冲波形的雷达信号,并接收回波信号来获取目标物体的速度信息。
多普勒效应是指当波源和接收器靠近或远离时,波的频率会发生变化。
在脉冲波多普勒中,雷达发送一个短暂的脉冲信号,当信号与移动目标相互作用时,目标物体会将信号反射回雷达。
由于目标物体的速度不同,返回的信号会有不同的频率偏移。
通过测量回波信号的频率偏移,可以确定目标物体的速度。
速度的正负取决于回波信号的频率偏移方向。
脉冲波多普勒雷达还可以通过测量多个方向上的频率偏移来确定目标物体的方向。
脉冲波多普勒广泛应用于航空、气象、交通、军事等领域。
在航空中,它用于测量飞机的速度和方向。
在气象上,它可以检测和跟踪风暴的运动。
在交通中,它用于监测和管理交通流量。
在军事中,它可以用于目标检测和识别。
第3章脉冲多普勒雷达

1.脉冲多普勒雷达的跟踪 (1)单目标跟踪系统 (1-1)角度跟踪系统 根据角度,距离和速度信息,用伺服系统始终跟踪目标。 补充:常规雷达单目标跟踪方式:圆锥扫描,单脉冲体制。 回波 扫描角度
目标 扫描轨迹
回波
扫描角度 图3.8 圆锥扫描示意
βx 波程差l y x 图3.9 单脉冲跟踪示意 目标方位βx与波程差l和信号相位差θ的关系: (3-9)
f c ,max =
2v R cos ψ λ
角度变化范围是0-360度,所以,旁瓣多普勒频率范围是... 当PD雷达不动是主瓣杂波与旁瓣杂波在频域上是重合的 (3)垂直(高度线)杂波。 雷达副瓣垂直照射地面,地面反射较强,回波中存在一个较强的" 零频"杂波. (4)无杂波区 适当选择雷达脉冲重复频率使地面杂波不连续不重叠,形成无杂波 区.在无杂波区域,只有接收机噪声,没有地面杂波,有利于发 现该区域的运动目标.
6.恒虚警处理 现在恒虚警处理均在零中频上进行。 7.线性调频频谱变换(p91) 进行频谱分析最简单的方法就是进行傅立叶 变换。我们也可以用若干滤波器组成滤波器组进 行频谱分析。得益于CCD器件和SAW器件的发 展。 §3.4脉冲多普勒雷达数据处理 数据处理的目的:最大限度提取雷达目标的 坐标信息。内容:解测距模糊,解测速模糊和目 标跟踪。
§3.1脉冲多普勒雷达的基本概念
脉冲多普勒雷达简称PD雷达,特点: 具有脉冲雷达的距离分辨能力 具有连续波雷达的速度分辨率 有强的杂波抑制能力
1.PD雷达的定义 雷达的定义 20世纪70年代初的定义 (1)具有足够高的PRF,使观测范围内的目标、杂波时 均没有速度模糊。 (2)能对脉冲串频谱单根谱线滤波。 (3)对观测目标的距离有一定的模糊。 上世纪70年代中期,制造出中重频PD雷达,既有距离 模糊又有速度模糊。而将原来的定义称为高重频PD雷达。 最后,不管雷达的重复频率,只要满足上述定义第二条, 就可称为PD雷达,是一个广义定义。
脉冲多普勒雷达距离方位矩阵

脉冲多普勒雷达距离方位矩阵摘要:1.脉冲多普勒雷达概述2.距离方位矩阵的构建3.距离模糊的问题4.新算法解析5.实验结果与分析6.结论正文:一、脉冲多普勒雷达概述脉冲多普勒雷达是一种利用多普勒效应测量物体距离和速度的雷达系统。
相较于传统雷达,脉冲多普勒雷达能够提供更准确的目标信息,因此在军事、民用等领域得到了广泛应用。
二、距离方位矩阵的构建脉冲多普勒雷达通过发送和接收电磁脉冲,可以建立一个包含目标距离和方位信息的矩阵,称为距离方位矩阵。
该矩阵的构建基于多普勒效应原理,通过对接收信号进行分析,可以获取目标的距离和方位信息。
三、距离模糊的问题在实际应用中,由于多种因素的影响,如电磁波的传播特性、接收器的性能等,距离方位矩阵中的距离信息可能出现模糊现象。
距离模糊会导致目标定位不准确,影响雷达系统的性能。
四、新算法解析为了解决距离模糊问题,本文提出了一种新的脉冲多普勒雷达解距离模糊算法。
该算法通过优化距离方位矩阵的构建过程,提高距离信息的准确性。
具体来说,该算法包括以下步骤:1.对接收信号进行去噪处理,减小噪声对距离信息的影响;2.利用脉冲压缩技术,提高距离分辨率;3.结合目标的运动模型,对距离信息进行修正;4.利用最小二乘法,优化距离方位矩阵的构建。
五、实验结果与分析为了验证新算法的性能,我们进行了大量实验。
实验结果表明,新算法能有效解决距离模糊问题,提高脉冲多普勒雷达的定位精度。
在不同的场景和条件下,新算法都表现出良好的性能。
六、结论本文提出了一种新的脉冲多普勒雷达解距离模糊算法,通过优化距离方位矩阵的构建过程,提高距离信息的准确性。
脉冲多普勒雷达原理

脉冲多普勒雷达原理
脉冲多普勒雷达是一种利用脉冲信号来测量目标距离和速度的雷达系统。
它通过发射脉冲信号并接收目标反射的信号来实现目标的探测和跟踪。
脉冲多普勒雷达具有较高的测速精度和抗干扰能力,因此在军事、民用航空等领域得到了广泛的应用。
脉冲多普勒雷达的工作原理主要包括脉冲信号的发射和接收、目标回波信号的处理以及速度测量等几个方面。
首先,当脉冲多普勒雷达工作时,会发射一系列的脉冲信号。
这些脉冲信号会以一定的重复频率被发射出去,然后在空间中传播。
当这些脉冲信号遇到目标时,会被目标反射回来,形成回波信号。
接着,雷达系统会接收这些回波信号,并进行信号处理。
在信号处理过程中,脉冲多普勒雷达会对接收到的回波信号进行时域和频域的分析。
通过时域分析,可以测量目标与雷达之间的距离,即目标的径向距离。
而通过频域分析,可以测量目标的速度。
这是因为目标的运动会导致回波信号的多普勒频移,通过测量多普勒频移的大小,可以计算出目标的速度信息。
除了距离和速度测量外,脉冲多普勒雷达还可以实现目标的探测和跟踪。
当目标被探测到后,雷达系统会不断地追踪目标,并根据目标的运动状态进行预测。
这样可以实现对目标的持续跟踪,从而满足实际应用中对目标监测的需求。
总的来说,脉冲多普勒雷达是一种能够实现目标距离和速度测量的雷达系统。
它通过发射脉冲信号、接收目标回波信号并进行信号处理,实现了对目标的探测和跟踪。
在实际应用中,脉冲多普勒雷达具有较高的测速精度和抗干扰能力,因此在军事、民用航空等领域有着广泛的应用前景。
经典雷达资料-第17章脉冲多普勒(PD)雷达

系统损耗下面讨论采用数字信号处理的PD 雷达所固有的但不一定是独有的某些损耗。
量化噪声损耗量化噪声损耗是由模/数转换处理过程中所引入的噪声产生的,以及由信号处理电路中有限字长的截断效应产生的[45]。
CFAR 损耗这是由检测门限非理想估值与理想的门限相比所造成的。
估计值的波动迫使门限均值高于理想门限值,因而产生了损耗。
多普勒滤波器的跨接损耗由于目标并不总是位于多普勒滤波器的中心,因而造成了多普勒滤波器的跨接损耗。
假设目标多普勒频率在一个滤波器频率范围内是均匀分布的,则可算出该损耗,而且它是FFT 副瓣加权的函数。
幅度加权损耗滤波器副瓣加权使多普勒滤波器的噪声带宽增加,从而导致了幅度加权损耗。
这种损耗可用多普勒滤波器噪声带宽的增量来考虑,而不看做另外的某种损耗。
脉冲压缩失配损耗脉冲压缩失配损耗是由于为了降低时间(距离)副瓣而引入失配产生的。
保护消隐损耗这是由保护通道寄生消隐造成的主信道检测损耗,如图17.9所示。
遮挡和距离波门跨接损耗由于遮挡,因此按式(17.20)给出的距离R 0可能是零或最大值之间的任意值,这取决于脉间目标回波的确切位置。
当PRF 较高时,会出现许多距离模糊,则扫描间的距离延迟可认为是随机的,且在脉间均匀分布。
在这种情况下,一种近似的性能度量是首先计算从零到脉冲间间隔全部模糊距离的平均检测曲线。
为获得与采用匹配波门接收发射脉冲无跨接时相同的检测概率,遮挡和距离波门跨接损耗等于系统所要求的信噪比提高。
由于检测概率的曲线形状不同,所以损耗取决于所选择的检测概率。
一种粗略的近似是脉间平均信噪比与匹配条件下的信噪比进行比较。
在M 个宽度为的相邻距离波门情况下,这些波门占据了除宽度为的发射脉冲之外的整个脉冲间隔,在信噪比基础上的平均的遮挡和跨接损耗为遮挡和跨接损耗= )1(3+M Y g t ττ= (17.21) 式中,Y 1=(1-R )(2+R ) M =1;Y =(1-R )(1-R +2X )+2+1.75(M -2) M >1, R ≥0.618;Y =(1-R )(1+R +Z )+(Z -R )[Z (Z +X )]+(1-Z )[Z (Z +1)+1]+1+1.75(M -2) M >1, R <0.618; Z =1/(1+X );X=R -1;R =b /;b =第一个波门消隐的宽度;=发射脉冲t 和接收波门g 的宽度;M =相邻波门的数目。
脉冲多普勒雷达距离方位矩阵

脉冲多普勒雷达距离方位矩阵摘要:1.脉冲多普勒雷达概述2.距离方位矩阵的构建3.距离模糊问题的提出4.新算法解决距离模糊问题5.实验结果与分析6.结论正文:一、脉冲多普勒雷达概述脉冲多普勒雷达是一种利用多普勒效应测量目标距离和速度的雷达系统。
它通过发送短脉冲信号并与接收到的回波进行比较,来检测和测量目标的距离和速度。
由于其高精度和可靠性,脉冲多普勒雷达在军事、航空、航天等领域具有广泛的应用。
二、距离方位矩阵的构建距离方位矩阵是脉冲多普勒雷达系统中的一个重要组成部分,它用于存储雷达接收到的回波信息。
距离方位矩阵由距离通道和方位通道组成,其中距离通道表示目标距离信息,方位通道表示目标方位信息。
通过距离方位矩阵,可以获得目标的距离和方位信息。
三、距离模糊问题的提出在实际应用中,由于雷达系统受到各种因素的影响,例如信号噪声、多径效应等,导致距离方位矩阵中的距离信息出现模糊,无法准确获得目标的距离。
因此,如何解决距离模糊问题成为脉冲多普勒雷达研究的关键之一。
四、新算法解决距离模糊问题为了解决距离模糊问题,研究人员提出了一种新的算法。
该算法通过对距离方位矩阵进行处理,消除噪声和多径效应的影响,从而提高距离信息的准确性。
具体来说,该算法包括以下步骤:1.对距离方位矩阵进行预处理,消除噪声和多径效应的影响;2.计算预处理后的距离方位矩阵的特征矩阵;3.根据特征矩阵,估计目标的距离信息。
五、实验结果与分析为了验证新算法的有效性,研究人员进行了大量实验。
实验结果表明,新算法能够在一定程度上提高距离信息的准确性,降低距离模糊的程度。
在不同的场景和条件下,新算法都表现出较好的性能。
六、结论本文介绍了脉冲多普勒雷达距离方位矩阵的概念,提出了一种解决距离模糊问题的新算法。
实验结果表明,该算法能够有效地提高距离信息的准确性,具有较好的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲多普勒雷达的汇总
————————————————————————————————作者:————————————————————————————————日期:
脉冲多普勒雷达的总结
1、适用范围
脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。
这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。
2、PD雷达的定义及其特征
(1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。
(2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。
②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。
③PRF很高,通常对所观测的目标产生距离模糊。
3、PD雷达的分类
图1 PD雷达的分类图
①MTI雷达(低PRF):测距清晰,测速模糊
②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择
③PD雷达(高PRF):测距模糊,测速清晰
4、机载下视PD雷达的杂波谱分析
机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。
表1
多普勒中心频率变化范围特点
主瓣杂波①强度比雷达接收机的噪声强70-90dB
②与天线主波束的宽度 、方向角 、载机速度 、发射信号波长 有关
旁瓣杂波①当PD雷达不运动时,旁瓣杂波与主瓣杂波在频域上相重合;
②当PD雷达运动时,旁瓣杂波与主瓣杂波就分布在不同的频域上
高度线杂波①机载下视PD雷达做平行于地面的运动
②在零多普勒频率处总有一个较强的“杂波”
无杂波区①恰当选择雷达信号的PRF,使得其地面杂波既不重叠也不连接
②其频谱中不可能有地面杂波,只有接收机内部热噪声的部分
5、PRF的选择
(1)高、中、低脉冲重复频率的选择
①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。
②迎面攻击时高PRF优于中PRF。
尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。
③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。
(2)高PRF时重复频率的选择
①使迎面目标谱线不落人旁瓣杂波区中:
②为了识别迎面和离去的目标:
A、当接收机单边带滤波器对主瓣杂波频率固定时:
B、当接收机单边带滤波器相对发射频率是固定时:
注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。
6、PD雷达的信号处理系统
PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。
(1)单边带滤波器
特点:带宽近似等于脉冲重复频率fr, 一般设置在中频;
从回波频谱中只滤出单根谱线;
避免了后面信号处理过程中可能产生的频谱折叠效应;
距离选通波门必须设在单边带滤波器之前;
要求带外抑制至少要大于60dB;
实现方法:采用石英晶体滤波器
(2)主瓣杂波抑制滤波器
特点:比目标回波能量要高出60-80dB;
主瓣杂波抑制滤波器的幅一频特性应是主瓣杂波频谱包络的倒数;
相当于一个白化滤波器,经过主瓣杂波抑制之后,后面的多普勒滤
波器可以按照白噪声中的匹配滤波理论来进行设计;
实现方法:首先确定它的频率,用一个混频器先消除变化的,就可以用一
个固定频率的滤波器将其滤除.
确定主瓣杂波中心频率有两种方法:一种方法是利用频率跟踪;
另一种是由天线指向和载机飞行速度计算出主瓣杂波应有的多普勒频移,直接
控制压控振荡器去产生的振荡濒率。
(3)零多普勒频率抑制滤波器
特点:用于高度杂波的滤除;
同时抑制发射机直接进人到接收机的泄漏;
实现方法:①只需断开滤波器组中落人高度杂波区的那些子滤波器的输出;
②使用可防止检测高度线杂波专用的CFAR电路;
③使用航迹消隐器除去最后输出的高度线杂波。
(4)多普勒滤波器组
特点:是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器;
起到了实现速度分辨和精确测量的作用;
可以设在中频,也可以设在视频;
每个滤波器的带宽应设计得尽量与回波信号的谱线宽度相匹配。
实现方法:模拟式(少用)
数字式:FFT(多用)
近代模拟式:CT(多用)
注:所需滤波器的数目:
(5)转换器和门限(CFAR)
实现方法:参量法或非参量法
7、PD雷达的数据处理系统及其实现方法
PD雷达具有两种跟踪体制,即单目标跟踪和多目标跟踪。
前者采用类似常规跟踪系统
的角度、距离和速度跟踪伺服回路,后者采用边扫描边跟踪的方法。
(1)单目标跟踪系统
①角度跟踪系统:a、顺序波束序列的算法:波束行程、多波束行程
b、单脉冲体制
c、合并通道技术
②速度(多普勒频率)跟踪系统:锁频式和锁相式
特点:a、锁相系统是测量多普勒频率的优选装置,其理论上的稳态测速误差为0;
b、对雷达设备的稳定性提出了较高的要求;
c、当系统的带宽一定时,锁相系统就存在最大可跟踪目标加速度的
限制,而在锁频系统中就无此限制。
③距离跟踪系统:a、基本原理与常规脉冲雷达相同;
b、距离门用一个低频参考信号;
c、跨过多个脉冲周期的跟踪可以用一个具有比一个脉冲
周期长的时间基准的距离跟踪器实现。
(2)四维分辨跟踪系统
距离、速度、两个角度(方位角和俯仰角)等四个跟踪回路,就构成具有四维分辨能力的跟踪系统。
特点:a、角度上的分辨由角跟踪系统和波束宽度决定;
b、距离上的分辨由距离跟踪系统和距离门的宽度决定;
c、能在速度坐标即多普勒频率上分辨目标如果系统所用的窄带滤波
器的带宽小于20Hz,则可立即将这两个目标分开;
d、加了窄带滤波器,从而滤除了噪声,所以可以提高信噪比:
e、具有很强的抗干扰能力。
(3)多目标跟踪系统
特点:a、由多路接收通道实现;
b、在强杂波干扰环境下有常规雷达所无法比拟的优良性能。
8、测距和测速模糊的解算
(1)定义
测距模糊:同一距离读数可能对应几个目标真实距离的现象。
测速模糊:相差nfr,的目标多普勒频移会读做同样的多普勒频移,测量出的一个速度可能对应几种真实速度的这种现象。
(2)测距模糊的解算
①多重脉冲重复频率测距法(优)
采用双重PRF所能达到的最大无模糊距离,由和最大公约频率决定。
②连续改变脉冲重复频率测距法
这种方法的原理是,发现目标后立即调整PRF,并且使目标回波始终位于相邻两个发射脉冲的中间,也就是保持目标回波的延时与脉冲重复周期为(n十1/2)倍的关系。
即目标距离为:
③射频调频测距法
这种方法用于脉冲多普勒雷达时,只是把连续变化的载频变成脉冲变化的。
载频调制周期对应于最大无模糊距离,为了消除测距模糊,它应该远大于脉冲重复周期。
目标的真实距离为:
特点:a、适用于单目标跟踪,在多目标环境下,需要增加大量的距离门;
b、测量精度主要取决于频率变化率和多普勒滤波器组的分辨力;
c、方法比较简单,而且获得数据迅速,因此适用于对目标测距精度要
求不高的边扫描边跟踪雷达。
④脉冲调制测距法
脉冲调制测距法是通过改变发射脉冲的波形参数(幅度、宽度和位置),对接收到的回波信号加以识别和计算处理来消除测距模糊的方法。
目标无模糊距离为:
(3)测速模糊的解算
常用的方法是利用距离跟踪的粗略微分数据来消除测速模糊。
无模糊多普勒频率为:
对应目标的无模糊相对速度为:
=
9、影响PD雷达距离方程的主要因素
当要求信噪比为S/N时作用距离R与R。
的关系为:
(1)发射脉冲遮挡效应
特点:降低了回波有效宽度;
当回波全部被发射脉冲挡住时,影响最严重,使作用距离降为0,称
为盲距;
一般重复频率越高,发射脉冲越宽,遮挡的平均影响越严重。
解决方法:用概率平均的方法研究
(2)跨越效应
特点:回波脉冲不是完全进入一个距离门,而是跨接在两个相邻的距离门中间。
解决方法:用统计平均的方法研究。
若采用比回波更宽的距离门,可以降低跨越发生的概率。
(3)频域处理和带宽的影响
多普勒频移正好落在主瓣杂波频率上的动目标回波谱也被滤除了。
这就是频域中的遮挡现象。