新八年级数学下册《数据的初步分析》单元检测题.docx
八年级数学下册 数据的分析单元试卷(含答案)

.21,21B.21,21.5
)本次抽样调查共抽测了 名学生.
)图①中a的值为 ;
)求统计的这组初赛成绩数据的平均数、众数和中位数;
)根据这组初赛成绩,由高到低确定9
为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图①和图②两幅尚不完整的统计图
)本次抽测的男生有 人,抽测成绩的众数是 ;
)请你将图②的统计图补充完整;
根据图表解答下列问题:
.21,21B.21,21.5
28B.26,26C.31,30
)本次抽样调查共抽测了 名学生.
)图①中a的值为 ;
)求统计的这组初赛成绩数据的平均数、众数和中位数;
)根据这组初赛成绩,由高到低确定9
【参考答案】
)本次抽测的男生有 人,抽测成绩的众数是 ;)请你将图②的统计图补充完整;
)∵被调查的50人中有36人达标,根据图表解答下列问题:。
新人教版八年级下册数据的分析单元测试卷

1 / 4第二十章《数据的分析》单元测试题一、选择题)1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是( )A .200名运动员是总体B .每个运动员是总体C .20名运动员是所抽取的一个样本D .样本容量是202.一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃请你帮采购小组出谋划策,应选购( )A .甲苗圃的树苗B .乙苗圃的树苗;C .丙苗圃的树苗D .丁苗圃的树苗3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,•则原来那组数据的平均数是( )A .50B .52C .48D .24.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( ) A .8,9 B .8,8 C .8.5,8 D .8.5,95.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:那么,8月份这100户平均节约用水的吨数为(精确到0.01t ) ( ) A .1.5t B .1.20t C .1.05t D .1t6.已知一组数据-2,-2,3,-2,-x ,-1的平均数是-0.5,•那么这组数据的众数与中位数分别是( )A .-2和3B .-2和0.5C .-2和-1D .-2和-1.5 7.方差为2的是( )A .1,2,3,4,5B .0,1,2,3,5 C .2,2,2,2,2 D .2,2,2,3,38.甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个 某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同; (2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小 上述结论中正确的是( ) A .(1)(2)(3) B .(1)(2) C .(1)(3) D .(2)(3) 9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )A.甲B.乙丙C.甲乙D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.(2005,深圳)下图是根据某地近两年6•月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是_____年.12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.17.某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____.20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________.三、解答题(60分)21.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、•课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、•84,则她这学期期末数学总评成绩是多少?22.(8分)为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?23.(82 / 4(1)若这20y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.24.(8分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品(1(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?25.(8分)题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过..中位数的有多少人?(2)费尔兹奖得主获奖时年龄的众数是多少?(3)•费尔兹奖得主获奖时的年龄高于..平均年龄的人数占获奖人数的百分比是多少?26.(10分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)•班这三个班中推荐一个班为市级先进班集体的候选班,•现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,(1)请问各班五项考评分的平均数、•中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,•设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),•按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分..最高..的班作为市级先进班集体的候选班.27.(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平3 / 4均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(•单位:cm).并且数据15,16,16,14,14,15的方差S甲2=23,数据11,15,18,17,10,19的方差S乙2=353).答案:1.D 2.D 3.B 4.B 5.A 6.D 7.A 8.B 9.C 10.A 11.2005 12.-2•℃13.9.4分14.103 15.1500 16.3 17.100km/h 18.27.3% 19.21 20.65.•75分21.解:9070%8020%8410%70%20%10%⨯+⨯+⨯++=88.8(分)22.(1)=14(吨);(2)7000吨.23.(1)x=5,y=7;(2)a=90,b=80.24.(1)平均数:260(件)中位数:240(件)众数:240(件);(2)不合理,•因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,•尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.25.解:(1)中位数为35.5岁,•年龄超过中位数的有22人.(2)众数是38岁.(3)高于平均年龄的人数为22人,22÷44=50%.26.(1)平均数不能反映三个班的考评结果的差异,用中位数或众数可以反映.(2)行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3:2:1:1.x1=1.78,x4=•1.74,x8=1.8 ∴x8>x1>x4,所以推荐九年级(8)班作为市场先进班集体的候选班级合适.27.(1)相同点:两段台阶路台阶高度的平均数相同.不同点:•两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0.4 / 4。
初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案) (150)

初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案)烹饪大赛的菜品的评价按味道、外形、色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是_______________.【答案】90分【解析】【分析】根据加权平均数的计算方法即可得出答案.【详解】⨯⨯⨯(分).解:这位厨师的最后得分为:927+882+801=907+2+1故答案为:90分.【点睛】本题考查了加权平均数的计算,掌握计算加权平均数的方法是解题的关键.62.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自已家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计该周全班同学各家总共丢弃塑料袋的数量约为个.【答案】1260.【解析】试题分析:由题意可得,6个家庭一周内丢弃的塑料袋的平均数量为(33+25+28+26+25+31)÷6=28个,所以该周全班同学各家丢弃塑料袋的数量为28×45=1260个.考点:平均数;用样本估计总体.63.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是_____.【答案】5【解析】【分析】抓住平均数和中位数都是7,可以列出16(2+5+x+y+2x+11)=12(x+y)=7,解方程得.【详解】∵一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,∴1 6(2+5+x+y+2x+11)=12(x+y)=7,解得y=9,x=5,∴这组数据的众数是5.故正确答案为:5.【点睛】本题考核知识点:平均数、中位数. 解题关键:抓住题中涉及的数量关系,列出相关式子.64.超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.【答案】77.4.【解析】试题分析:根据该应聘者的总成绩=创新能力×所占的比值+综合知识×所占的比值+语言表达×所占的比值可得该应聘者的总成绩是:70×510+80×310+92×210=77.4分.考点:加权平均数.65.某商场4月份抽查了6天的营业额,结果是(单位:万元):2.8,3.2,3.4,3.7,3.0,3.1,则该商场这6天平均每天的营业额是________万元,估计4月份的总营业额大约是________万元.【答案】3.296【解析】【分析】把所记录的6个数据相加除以6即可求出这6天平均每天的营业额,把平均每天的营业额×30即可求出4月份的总营业额.【详解】(2.8+3.2+3.4+3.7+3.0+3.1)÷6=3.2(万元);3.2×30=96(万元). 故答案为:3.2 , 96. 【点睛】本题考查了平均数的计算及用样本估计总体,利用样本中的数据特征对整体进行估算是统计学中最常用的估算方法.66.某班27名男同学的平均身高是1.70米,23名女同学的平均身高是1.60米,则该班同学的平均身高是________米.(结果精确到0.01米)【答案】1.65 【解析】 【分析】求出27名男同学的总身高,23名女同学的总身高,然后相加除以该班同学的总人数即可.【详解】解:该班同学的平均身高=(1.70×27+1.60×23)÷(27+23)=82.7÷50≈1.65米. 故答案为1.65.【点睛】本题考查加权平均数的求法.本题易出现的错误是.1.70,1.60这两个数的平均数,对平均数的理解不正确.67.已知数据a ,a ,b ,c ,d ,c ,c ,b ,且a b c d <<<,则这组数据的众数为______;中位数为______;平均数为______.【答案】c()12b c + ()12238a b c d +++【解析】 【分析】一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,据此解答即可.【详解】解:∵数据c 出现了3次,出现的次数最多, ∴这组数据的众数为c ; ∵a b c d <<<,∴这组数据从小到大依次排列为:a 、a 、b 、b 、c 、c 、c 、d , ∴中位数:()12b c +; 平均数:18(a+a+b+b+c+c+c+d )=()12238a b c d +++.故答案为:c ,()12b c +,()12238a b c d +++. 【点睛】本题考查平均数、中位数和众数,解题的关键是掌握众数、平均数、中位数的定义.68.东营市某饮品店在一段时间内销售了各种饮品共200杯,各种饮品的具体销售量如下表所示:根据表中的数据可知该饮品店应多购进______________(种类)的原材料.【答案】果汁【解析】【分析】根据果汁的销量最多可得答案.【详解】解:由表格可知,果汁的销量最多,故应多购进果汁的原材料.故答案为:果汁.【点睛】本题考查了众数的应用,准确获取表格信息是解题的关键.69.一组数据:10,5,15,5,20,则这组数据的平均数是_____,中位数是______.【答案】11,10.【解析】【分析】【详解】×(10+5+15+5+20)=11;试题分析:平均数是:15将该组数据按从小到大的顺序排列得:5,5,10,15,20,∴其中位数是:10.考点:1.中位数;2.算术平均数.70.某市对旧城区规划改建,根据2001年至2003年发展情况调查,制作成了房地产开发公司个数的条形图和各年度每个房地产开发公司平均建筑面积情况的条形图,利用统计图提供的信息计算出这3年中该市平均每年的建筑面积是_____万平方米.【答案】702【解析】【分析】根据加权平均数的计算方法进行求解即可.【详解】解:3年中该市平均每年的建筑面积=(15×9+30×30+51×21)÷3=702(万平方米).故答案为:702.【点睛】本题考查求加权平均数,掌握求加权平均数的方法是解题的关键.。
八年级数学下第20单元数据的初步分析检测题含答案

第20章数据的初步分析检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数2.(2015•江苏连云港中考)某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差如表所示.如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是( )A.甲B.乙C.丙D.丁3.(2015·安徽中考)某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分4.下列说法中正确的有()①描述一组数据的平均数只有一个;②描述一组数据的中位数只有一个;③描述一组数据的众数只有一个;④描述一组数据的平均数、中位数和众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数.A.1个B.2个C.3个D.4个5. (2015·福州中考)若一组数据1,2,3,4,x 的平均数与中位数相同,则实数x 的值不可能是( ) A.0 B.2.5 C.3 D.5 6.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出的平均数与实际平均数的差是( )A.3.5B.3C.0.5D.-37. 已知一组数据12345,,,,x x x x x 的平均数是2,方差是13,那么另一组数据-2,-2, -2,-2,-2的平均数和方差是( )A.12,3B.2,1C.4,23 D.4,38. 某特警部队为了选拔“神枪手”,举行了1 000米射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是( )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定9.(2015•山东泰安中考)某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别 是( )第9题图A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分10.某同学在本学期的前四次数学测验中得分依次是95、82、76、88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得()A.84分B.75分C.82分D.87分二、填空题(每小题3分,共24分)11.某校八年级(1)班一次数学考试的成绩为:分的3人,分的人,分的17人,分的人,分的人,分的人,全班数学考试的平均成绩为_______分.12.某果园有果树200棵,从中随机抽取5棵,每棵果树的产量如下:(单位:kg)98 102 97 103 105这棵果树的平均产量为 kg,估计这棵果树的总产量约为kg.13.已知两个样本,甲:2,4,6,8,10;乙:1,3,5,7,9.用2s甲与2s乙分别表示这两个样本的方差,则下列结论:①2s甲>2s乙;②2s甲<2s乙;③2s甲=2s乙,其中正确的结论是 (填写序号).14.有个数由小到大依次排列,其平均数是,如果这组数的前个数的平均数是,后个数的平均数是,则这个数的中位数是_______.15.若已知数据的平均数为,那么数据的平均数(用含的表达式表示)为_______.16.某超市招聘收银员一名,对三名应聘者进行了三项素质测试.下面是三名应聘者的素质测试成绩:公司根据实际需要,对计算机、商品知识、语言三项测试成绩分别赋予权重4、3、2,则这三人中将被录用.17.已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为_____________,标准差为__________.18.某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).三、解答题(共46分)19. (6分) 某乡镇企业生产部有技术工人15人,生产部为了合理制定产品每月的生产定额,统计了15人某月的加工零件的件数如下:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,为什么?20. (6分)为调查八年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成家庭作业所需时间(单位:)分别为:60,55,75,55,55,43,65,40. (1)求这组数据的众数、中位数.(2)求这8名学生每天完成家庭作业的平均时间.如果按照学校要求,学生每天完成家庭作业时间不能超过,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?21. (6分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活率为98%.现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和.22. (7分)某校在一次数学检测中,八年级甲、乙两班学生的数学成绩统计如下表:第21题图请根据表中提供的信息回答下列问题:(1)甲班的众数是多少分,乙班的众数是多少分,从众数看成绩较好的是哪个班? (2)甲班的中位数是多少分,乙班的中位数是多少分,甲班成绩在中位数以上(包括中位数)的学生所占的百分比是多少;乙班成绩在中位数以上(包括中位数)的学生所占的百分比是多少,从中位数看成绩较好的是哪个班?(3)甲班的平均成绩是多少分,乙班的平均成绩是多少分,从平均成绩看成绩较好的班是哪个班?23. (7分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分.(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)? (3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么谁将被录用?24.(7分)(2015·天津中考)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:①②第24题图(1)该商场服装部营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.25.(7分)一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩有如下信息:(1)求这5位同学在本次考试中数学成绩的平均分和英语成绩的标准差.(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?第20章数据的初步分析检测题参考答案1. D 解析:本题考查了平均数、众数、中位数及方差等几个统计量,众数是出现次数最多的数,方差表示数据的波动程度,平均数表示一组数据的平均水平,中位数是一个位置的代表值,把一组数据按由小到大(或由大到小)的顺序排列后,它处于这组数据的中间位置,大于或等于中位数的数据至少有一半.2.B 解析:因为乙和丙的平均成绩优于甲和丁的平均成绩,所以应从乙和丙中选取一名学生参赛,而乙学生成绩的方差小于丙学生成绩的方差,说明乙学生成绩稳定,所以应选乙参赛.3. D 解析:该班的人数为2+5+6+6+8+7+6=40;在这组数据中45出现了8次,是出现次数最多的数据,所以这组数据的众数是45分;因为这组数据的个数是40,所以这组数据的中位数是第20个数和第21个数的平均数,而第20个数和第21个数均为45,所以这组数据的中位数是45分;该班学生这次考试成绩的平均数=140(35×2+39×5+42×6+44×6+45×8+48×7+50×6)= 44.425(分).所以错误的结论是选项D.4.B 解析:一组数据的中位数和平均数只有一个,但出现次数最多的数即众数,可以有多个,所以①②对,③错;由于一组数据的平均数是各数的平均值,中位数是将原数据按由小到大或由大到小的顺序排列后,中间的一个数或中间两数的平均数,所以平均数与中位数不一定是原数据里的数,故④错;一组数据中的一个数大小发生了变化,它的平均数一定发生变化,众数、中位数可能发生改变,也可能不发生改变,所以⑤错.5.C 解析:当x=0时,这组数据的平均数与中位数都是2;当x=2.5时,这组数据的平均数与中位数都是2.5;当x=3时,这组数据的平均数是2.6,中位数是3;当x=5时,这组数据的平均数是3,中位数也是3.6.D 解析:设其他29个数据的和为,则实际的平均数为,而所求出的平均数为,故.7.D 解析:考查平均数和方差的知识.8. B 解析:本题考查了方差的意义,方差越小,数据越稳定.在甲、乙两名战士的总成绩相同的条件下,∵>,∴乙的成绩比甲的成绩稳定.9. D 解析:根据92分的有6人,占10%,可求出参加竞赛的职工总人数为60人.根据94分的占20%可求出94分的人数是60×20%=12(人).96分、100分的百分比是=25%,=15%,从而求出98分的人数所占的百分比,进而求出98分的有18人,因为这组数据共60个,所以第30与31个数的平均数是这组数据的中位数,将这组数据按从小到大的顺序排列后,第30、31个数据落在96分内,故中位数是96分,再由加权平均数的计算方法,得=96.4(分),故选项D 正确.10.A 解析:利用求平均数的公式.设第五次测验得分,则588768295x++++,解得.11. 78.8 解析:.8.783212171333502601270178013903100(分)=+++++⨯+⨯+⨯+⨯+⨯+⨯12.解析:抽取的5棵果树的平均产量为;估计这棵果树的总产量约为.13.③ 解析:x 甲=(2+4+6+8+10)÷5=6,2=s 甲8;x 乙=(1+3+5+7+9)÷5=5,2=s 乙8.所以2=s 甲2s 乙. 14. 解析:设中间的一个数即中位数为,则,所以中位数为.15.解析:设的平均数为,则31)(21)(21)(2321+++++x x x 13233)2(321321+++⨯=+++=xx x x x x .又因为3321x x x ++=x,于是y.16.小张 解析:∵ 小李的成绩是:9565234280350470=++⨯+⨯+⨯,小张的成绩是:9772234235375490=++⨯+⨯+⨯,小赵的成绩是:65234280355465=++⨯+⨯+⨯,∴ 小张将被录用.17.2解析:根据方差和标准差的定义进行求解.18.①②③ 解析:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个以上,而甲班学生的中位数为149,说明不到一半的学生达到每分钟150个以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.19.解:(1)平均数:(件);260152120321062402300450540=⨯+⨯+⨯+⨯++中位数:240件,众数:240件.(2)不合理,因为表中数据显示,每月能完成件以上(包含260件)的一共是4人,还有11人不能达到此定额,尽管是平均数,但不利于调动多数员工的积极性.因为既是中位数,又是众数,是大多数人能达到的定额,故定额为件较为合理.20.解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列为40,43,55,55,55,60,65,75,其中最中间的两个数据都是55,即这组数据的中位数是55. (2)这8个数据的平均数是,所以这8名学生每天完成家庭作业的平均时间为.因为,所以该班学生每天完成家庭作业的平均时间符合学校的要求.21.分析:根据平均数的计算方法求出平均数,再用用样本估计总体的方法求出产量总和即可解答. 解: 40434403650=+++=甲x (千克),40436484036=+++=乙x (千克),甲、乙两山杨梅的产量总和为40×100×98%×2=7 840(千克). 22.解:(1)甲班中分出现的次数最多,故甲班的众数是分;乙班中分出现的次数最多,故乙班的众数是分.从众数看,甲班成绩好.(2)两个班都是人,甲班中的第名的分数是分,故甲班的中位数是分;乙班中的第名的分数是分,故乙班的中位数是分.甲班成绩在中位数以上(包括中位数)的学生所占的百分比为;乙班成绩在中位数以上(包括中位数)的学生所占的百分比为.从中位数看成绩较好的是甲班.(3)甲班的平均成绩为;乙班的平均成绩为.从平均成绩看成绩较好的是乙班.23.解:(1)甲、乙、丙的民主评议得分分别为:50分、80分、70分.(2)甲的平均成绩为:75935021872.6733++=≈(分), 乙的平均成绩为:80708023076.6733++=≈(分), 丙的平均成绩为:90687022876.0033++==(分).由于76.677672.67>>,所以乙将被录用.(3)如果将笔试、面试、民主评议三项测试得分按的比例确定个人成绩,那么 甲的个人成绩为:472.9433⨯75+3⨯93+3⨯50=++(分), 乙的个人成绩为:477433⨯80+3⨯70+3⨯80=++(分), 丙的个人成绩为:477.4433⨯90+3⨯68+3⨯70=++(分), 由于丙的个人成绩最高,所以丙将被录用.24. 分析:(1)从条形统计图可以看出销售额为15万元的有5人,从扇形统计图得销售额为15万元的人数占总人数的百分比为20%,所以被调查的总人数为5÷20%=25(人);用1减去销售额分别为15万元、12万元、24万元、21万元所占的百分比可得1-20%-8%-12%-32%=28%,所以m =28.(2)求销售额数据的平均数利用加权平均数求解,根据众数及中位数意义求众数和中位数即可.解:(1)25;28(2)观察条形统计图,∵ ==18.6,∴ 这组数据的平均数是18.6.∵ 在这组数据中,21出现了8次,出现的次数最多,∴ 这组数据的众数是21.∵ 将这组数据按照由小到大的顺序排列,处于中间位置的数是18,∴ 这组数据的中位数是18.25.解:(1)数学成绩的平均分为7057068697271=++++(分), 英语成绩的方差为51,故标准差为6. (2)A 同学数学成绩的标准分是;英语成绩的标准分是.可以看出数学成绩的标准分高于英语成绩的标准分,所以A 同学的数学要比英语考 得好.。
人教版八下数学数据的分析单元试卷

八年级数学科《数据的分析》全章测试卷班级:__________.姓名:___________.座号:___________.成绩:___________.一、填空题(每空2分,共34 分)1、已知一个样本:1,3,5,4,2,则这个样本的方差是 .2、数据11,9,7,10,14,7,6,5的中位数是______ ,众数是______3、某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,•则这位候选人的招聘得分为________,4.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,•对其使用寿命跟踪调查结果如下(单位:年):甲:3,4,6,8,8,8,10,5乙:4,6,6,6,8,9,12,13丙:3,3,4,7,9,10,11,12三个厂家在广告中都标明产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、•众数、•中位数哪一种集中趋势的特征数,•甲:•______.•乙:_______.丙:________5.某商场5月份随机抽查7天的营业额,结果如下(单位:万元):3.6,3.2,3.4,3.9,3.0,3.1,3.6.试估计该商场5月份(31天)的营业额大约是________万元.6、在一次测验中,某学习小组的5名学生的成绩如下(单位:分)68 、75、67、66、99这组成绩的平均分x= ,中位数M= ;若去掉一个最高分后的平均分a= ;那么所求的x,M,a这三个数据中,你认为能描述该小组学生这次测验成绩的一般水平的数据是 .7.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数为 __________,方差为 _______________.8、物理老师布置了10道选择题作为课堂练习,平均每个学生做对了 _________ 道题;(结果保留到小数点后第一位).做对题数的中位数为;众数为_________ ;题数二、选择题(每题3分,共18分)1、一组数据由a 个x 1,b 个2x ,c 个3x 组成,那么这组数据的平均数是( )(A )123x x x 3++ (B )3c b a ++ (C )1233ax bx cx ++ (D )123ax bx cx a b c ++++ 2、人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:80==乙甲x x ,2402=甲s ,1802=乙s ,则成绩较为稳定的班级是( ) A.甲班 B.乙班 C.两班成绩一样稳定 D.无法确定3、六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,•这六个数的中位数是( ) A .3 B .4 C .5 D .64、若一组数据a 1,a 2,…,a n 的方差是5,则一组新数据2a 1,2a 2,…,2a n 的方差是( )A.5B.10C.20D.505、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( ) A.100分 B.95分 C.90分 D.85分6、学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).如图3是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( )A .2.95元,3元B .3元,3元C .3元,4元D .2.95元,4元三、解答题(1小题8分,2-5题每小题10分,共 48 分)1.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:(1) 若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5︰5︰4︰6的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占5﹪,口才占30﹪,笔试成绩中专业水平占35﹪,创新能力占30﹪,那么你认为该公司应该录取谁?2、为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:(1) 计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?3.某公司10(1 (2)今年公司为调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较合理确定今年每个销售员统一的销售额标准是多少万元?4. 某市举行一次少年滑冰比赛,各年级组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数,中位数.(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄组的选手?请说明理由5.某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在五天中进球的个数统计结果如下:经过计算,甲进球的平均数为x 甲=8,方差为23.2s 甲. (1)求乙进球的平均数x 乙和方差2s 乙;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?二、附加题(1-3小题每题2分,4题6分,5题8分,共20分)1.为了调查某一段的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天是284辆,4天是290辆,12天是312辆,10天314辆,那么这30天该路口同一时段通过的汽车平均数为。
八年级下册数学-数据的分析单元检测(含答案)

数据的分析单元检测(中考试题)一、单选题(共15题;共30分)1.(云南)下列说法正确的是( )A. 要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B. 4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C. 甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D. 某次抽奖活动中,中奖的概率为 150 表示每抽奖50次就有一次中奖 2.(贺州)现有相同个数的甲、乙两组数据,经计算得: x 甲̅̅̅̅ = x 乙̅̅̅̅ ,且S 甲2=0.35,S 乙2=0.25,比较这两组数据的稳定性,下列说法正确的是( )A. 甲比较稳定B. 乙比较稳定C. 甲、乙一样稳定D. 无法确定3.(扬州)下列统计量中,反映一组数据波动情况的是( )A. 平均数B. 众数C. 频率D. 方差4.(烟台)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是( )A. 两地气温的平均数相同B. 甲地气温的中位数是6℃C. 乙地气温的众数是4℃D. 乙地气温相对比较稳定5.(广安)关于2、6、1、10、6的这组数据,下列说法正确的是( )A. 这组数据的众数是6B. 这组数据的中位数是1C. 这组数据的平均数是6D. 这组数据的方差是10,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是( )A. 平均数B. 方差C. 众数D. 中位数7.(宁波)若一组数据2,3,x , 5,7的众数为7,则这组数据的中位数为 ( )A. 2B. 3C. 5D. 78.(菏泽)某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):﹣7,﹣4,﹣2,1,﹣2,2.关于这组数据,下列结论不正确的是( )A. 平均数是﹣2B. 中位数是﹣2C. 众数是﹣2D. 方差是79.(南通)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A. 平均数B. 中位数C. 众数D. 方差,每人只测一次,测试结果统计如下:)A. 2B. 3C. 4D. 511.(潍坊)甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A. 甲B. 乙C. 丙D. 丁12.(毕节市)甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:)A. 甲B. 乙C. 丙D. 丁13.(宜宾)某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A. 参加本次植树活动共有30人B. 每人植树量的众数是4棵C. 每人植树量的中位数是5棵D. 每人植树量的平均数是5棵14.(·嘉兴)已知一组数据a, b, c的平均数为5,方差为4,那么数据a−2, b−2, c−2的平均数和方差分别是()A. 3, 2B. 3 , 4C. 5 , 2D. 5 , 4若该组数据的中位数不大于38,则符合条件的正整数a的取值共有()A. 3个B. 4个C. 5个D. 6个二、填空题(共6题;共6分)16.(包头)某班有50名学生,平均身高为166cm,其中20名女生的平均身高为163cm,则30名男生的平均身高为________cm.17.(赤峰)数据5,6,5,4,10的众数、中位数、平均数的和是________.18.(郴州)为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩都为8.9环,方差分别是S甲2=0.8,S乙2=1.3,从稳定性的角度来看________的成绩更稳定.(填“甲”或“乙”)19.(咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,众数和中位数分别是________.20.(江西)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.21.(苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知, 11名成员射击成绩的中位数是________环.三、综合题(共4题;共58分)22.(通辽)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.23.(呼和浩特)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x <24,24≤x<28,28≤x<32分成五组,得到如图频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.24.(邵阳)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.25.(白银)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表根据所给信息,解答下列问题:(1)m=________,n=________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?答案解析部分一、单选题1.【答案】A2.【答案】B3.【答案】D4.【答案】C5.【答案】A6.【答案】C7.【答案】C8.【答案】D9.【答案】D10.【答案】C11.【答案】C12.【答案】B13.【答案】D14.【答案】B15.【答案】C二、填空题16.【答案】16817.【答案】1618.【答案】甲19.【答案】1.4,1.3520.【答案】521.【答案】8三、综合题22.【答案】(1)解:由折线统计图可知,甲组成绩从小到大排列为:3、6、6、6、6、6、7、9、9、10,∴其中位数a=6,=7.2乙组学生成绩的平均分b= 5×2+6×1+7×2+8×3+9×210(2)解:∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于全班中上游,∴小英属于甲组学生(3)解:①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定23.【答案】(1)这30天最高气温的平均数为:14×8+18×6+22×10+26×2+30×4=20.4℃;30∵中位数落在第三组内,∴中位数为22℃;(2)∵30天中,最高气温超过(1)中平均数的天数为16天,∴该地这个季度中最高气温超过(1)中平均数的天数为16×90=48(天)30(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,故这两天都在气温最高一组内的概率为615= 2524.【答案】(1)解:这7天内小申家每天用水量的平均数为815+780+800+785+790+825+8057=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升(2)解:100800×100%=12.5%,答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%(3)解:小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升25.【答案】(1)70;0.2(2)解:频数分布直方图如图所示,(3)80≤x<90(4)解:该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人)。
初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案) (77)

初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案)晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐三项体育成绩(百分制)依次95分、90分、86分,则小桐这学期的体育成绩是( ) A.88 B.89分C.90分D.91分【答案】B【解析】【分析】根据加权平均数的意义计算即可.【详解】解:小桐这学期的体育成绩:95×20%+90×30%+86×50%=89(分),故选:B.【点睛】本题考查了加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n wn)÷(w1+w2+…+w n)叫做这n个数的加权平均数.32.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【答案】C【解析】【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【详解】解:由于总人数为7+12+10+8+3=40人,=80(分),所以中位数为第20、21个数据平均数,即中位数为80802因为70分出现次数最多,所以众数为70分,故选C.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.33.已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是()A.平均数、中位数和众数都是3 B.极差为4C.方差为10 D.标准差是【答案】C【解析】试题分析:根据数据可得:中位数为3;众数为3;平均数=(1+2+3+3+4+5)÷6=3;极差=5-1=4;方差=÷6=;标准差为:.考点:(1)、极差的计算;(2)、平均数、众数、中位数的计算;(3)、方差与标准差的计算.34.今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是( )A.33℃33℃B.33℃32℃C.34℃33℃D.35℃33℃【答案】A【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中33℃出现三次,出现的次数最多,故这组数据的众数为33℃.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为31℃,32℃,32℃,33℃,33℃,33℃,34℃,34℃,35℃,35℃,∴中位数是按从小到大排列后第5,6个数的平均数,为:33℃.故选A.35.压岁钱由来已久,古称“厌胜钱”、“压祟钱”等.铛铛同学在2019年春节共收到10位长辈给的压岁钱,分别是:100元、200元、100元、50元、400元、300元、50元、100元、200元、400元.关于这组数据,下列说法正确的是()A.中位数是200元B.众数是100元C.平均数是200元D.极差是300元【答案】B【解析】【分析】逐项计算分析,即可得到答案.【详解】A:将数据从小到大重新排列:50、50、100、100、100、200、200、300、400、400,元,故第5个和第6个数分别是100、200,所以中位数是1002001502该选项错误;B:10个数中个数最多的数是100元,故众数是100元,故该选项正确;,故该选项错误;C:100200100504003005010020040019010D:极差=400-50=350,故该选项错误.故选B.【点睛】此题考察数据的分析,注意中位数的确定:将数据从小到大或从大到小重新排列,数据是奇数个取中间的一个数作为这组数据的中位数,如果数据是偶数个,则取中间两个数的平均数作为这组数据的中位数.36.下表是某位男子马拉松长跑运动员近6次的比赛成绩(单位:分钟)则这组成绩的中位数和平均数分别为()A.137、138 B.138、137 C.138、138 D.137、139【答案】B【解析】分析: 根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.详解: 把这组数据按从大到小的顺序排列是:125,129,136,140,145,147,故这组数据的中位数是:(136+140)÷2=138;平均数=(125+129+136+140+145+147)÷6=137.故选:B.点睛: 本题考查了中位数的定义和平均数的求法,解题的关键是牢记定义,此题比较简单,易于掌握.37.下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《在线体育》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根【答案】D【解析】【分析】根据必然事件的定义逐项进行分析即可做出判断,必然事件是一定会发生的事件.【详解】A、抛掷一枚硬币,四次中有两次正面朝上是随机事件,故本选项错误;B、打开电视频道,正在播放《在线体育》是随机事件,故本选项错误;C、射击运动员射击一次,命中十环是随机事件,故本选项错误;D. 方程2210x x =﹣﹣中()2241180=-⨯⨯-=>必有实数根,是必然事件,故本选项正确.故选:D .【点睛】解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点有:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.38.数据a ,b ,c ,x ,y 的平均数是m ,若a+b+c=3n ,则数据a ,b ,c ,-x ,-y 的平均数为( )A .6n-5mB .4n-5mC .1.2n-mD .0.8n-m【答案】C【解析】【分析】先利用平均数的计算方法,得到a+b+c+x+y=5m ,再根据a+b+c=3n ,可得x+y=5m -3n ,从而可求a 、b 、c 、-x 、-y 的平均数.【详解】由题意得:a+b+c+x+y=5m ,又因为a+b+c=3n ,所以x+y=5m -3n ,所以a 、b 、c 、-x 、-y 的平均数:(a+b+c -x -y)÷5=(3n -5m+3n)÷5= 1.2n -m .故答案为C.【点睛】本题考查了平均数的计算公式,熟悉掌握公式是解题关键.39.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【答案】A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差40.调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是()A.20 B.30 C.0.4 D.0.6【答案】A【解析】【分析】根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数。
人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(1)一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.52.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.94.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为46.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是.9.(3分)已知样本方差S2=,则这个样本的容量是,样本的平均数是.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为分.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是环,众数是环.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是,方差是.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数111113220000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是;所有员工工资的中位数是.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.频数(人数)频率组别个人年消费金额x(元)A x≤2000180.15B2000<x≤4000a bC4000<x≤6000D6000<x≤8000240.20E x>8000120.10合计c 1.00根据以上信息回答下列问题:(1)a=,b=,c=.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?人教新版八年级下册《第20章数据的分析》单元测试卷(1)参考答案与试题解析一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.5【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选:D.2.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.9【考点】众数;算术平均数.【分析】根据题意先确定x的值,再根据定义求解即可.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去,当众数为10,根据题意得=10,解得x=10,∵这组数据的众数与平均数相同,∴这组数据的平均数是10;故选:B.4.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【考点】用样本估计总体;算术平均数.【分析】先计算出8条鱼的平均质量,然后乘以240即可.【解答】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选:B.5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为4【考点】方差;算术平均数.【分析】一般地设n个数据,x1,x2,…x n,平均数=(x1+x2+x3…+x n),方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].直接用公式计算.【解答】解:由题知,x1+1+x2+1+x3+1+…+x n+1=10n,∴x1+x2+…+x n=10n﹣n=9nS12=[(x1+1﹣10)2+(x2+1﹣10)2+…+(x n+1﹣10)2]=[(x12+x22+x32+…+x n2)﹣18(x1+x2+x3+…+x n)+81n]=2,∴(x12+x22+x32+…+x n2)=83n另一组数据的平均数=[x1+2+x2+2+…+x n+2]=[(x1+x2+x3+…+x n)+2n]=[9n+2n]=×11n=11,另一组数据的方差=[(x1+2﹣11)2+(x2+2﹣11)2+…+(x n+2﹣11)2]=[(x12+x22+…+x n2)﹣18(x1+x2+…+x n)+81n]=[83n﹣18×9n+81n]=2,故选:C.6.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是32.【考点】算术平均数.【分析】5x+3,5y﹣2,5z+5的平均数是(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3,因为x,y,z的平均数是6,则x+y+z=18;再整体代入即可求解.【解答】解:∵x,y,z的平均数是6,∴x+y+z=18;∴(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3=[5×18+6]÷3=96÷3=32.故答案为:32.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是2.【考点】中位数;众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出a的值,将数据从小到大排列可得出中位数.【解答】解:1,3,2,5,2,a的众数是a,∴a=2,将数据从小到大排列为:1,2,2,2,3,5,中位数为:2.故答案为:2.9.(3分)已知样本方差S2=,则这个样本的容量是4,样本的平均数是3.【考点】方差;总体、个体、样本、样本容量;算术平均数.【分析】从方差公式中可以得到样本容量和平均数.【解答】解:根据样本方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,其中n是这个样本的容量,是样本的平均数,所以本题中这个样本的容量是4,样本的平均数是3.故填4,3.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为89分.【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(80×3+90×5+100×2)÷(3+5+2)=89(分);故答案为:89.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是8.5环,众数是8环.【考点】众数;条形统计图;中位数.【分析】根据众数和中位数的概念求解.【解答】解:把数据按照从小到大的顺序排列为:7,8,8,8,9,9,10,10,中位数为:=8.5,众数为:8.故答案为:8.5,8.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是6,方差是8.【考点】方差;算术平均数.【分析】由题意可知,将这组数据的每个数都扩大2倍,那它的和也将扩大2倍,它的平均数也扩大2倍;根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.【解答】解:设这组数有x个,这组数的平均数是3,那么这组数的和为3x,如果这组数据的每个数都扩大2倍,则这组数的总和为3x×2,平均数为3x×2÷x=6.将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,∴新数据的方差是2×4=8,故答案为:6;8.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.【考点】加权平均数.【分析】根据三项成绩的不同权重,分别计算三人的成绩.【解答】解:班长的成绩=24×0.3+26×0.3+28×0.4=26.2(分);学习委员的成绩=28×0.3+26×0.3+24×0.4=25.8(分);团支部书记的成绩=26×0.3+24×0.3+26×0.4=25.4(分);∵26.2>25.8>25.4,∴班长应当选.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数1111132 20000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是4350;所有员工工资的中位数是2000.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?【考点】中位数;加权平均数.【分析】(1)根据加权平均数的定义和中位数的定义即可得到结论;(2)中位数描述该餐厅员工工资的一般水平比较恰当;(3)由平均数的定义即可得到结论.【解答】解:(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;工资的中位数为=2000元;故答案为:4350,2000;(2)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(3)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.【考点】众数;二元一次方程组的应用;统计表;中位数.【分析】(1)根据题意:设该班80分和90分的人数分别是x、y;得方程=76与x+y=30﹣2﹣5﹣7﹣3;解方程组即可.(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.求出a,b的值就可以.【解答】解:(1)据题意得,∴∴该班80分和90分的人数分别是8人,5人.成绩(分)5060708090100人数(人)257853(2)据题意得a=80,b=(80+80)÷2=80∴a+b=160四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x ≤2000180.15B 2000<x ≤4000abC 4000<x ≤6000D 6000<x ≤8000240.20Ex >8000120.10合计c1.00根据以上信息回答下列问题:(1)a =36,b =0.30,c =120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【考点】频数(率)分布表;条形统计图;中位数;用样本估计总体.【分析】(1)首先根据A 组的人数和所占的百分比确定c 的值,然后确定a 和b 的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.【解答】解:(1)观察频数分布表知:A 组有18人,频率为0.15,∴c =18÷0.15=120,∵a =36,∴b =36÷120=0.30;∴C 组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【考点】条形统计图;中位数;众数;扇形统计图.【分析】(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据众数的定义以及中位数的定义解答.【解答】解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示;(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?【考点】方差;算术平均数;极差.【分析】(1)根据平均数的公式进行计算即可;(2)根据极差和方差的计算公式计算即可;(3)从方差和极差两个数比较即可;(4)根据成绩稳定性与目标进行分析即可.【解答】解:(1)甲的平均数=(584+594+…+599)=600(cm),乙的平均数=(615+618+…+624)=600(cm);(2)甲的极差为:612﹣584=28;乙的极差为:624﹣579=45;S甲2=[(584﹣600)2+(594﹣600)2+…+(599﹣600)2]=59.4,S乙2=[(615﹣600)2+(618﹣600)2+…+(624﹣600)2]=266.8.(3)甲的方差较小,成绩较稳定,乙的方差较大,波动较大,但最好成绩较好,爆发力强.(4)若只想夺冠,选甲参加比赛,因为甲的方差较小,成绩较稳定,且大于或等于5.96m 的次数有8次;若要打破纪录,应选乙参加比赛,因为有四次超过6.10m,最好成绩较好,爆发力强.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年(新课标)沪科版八年级数学下册
第20章 数据的初步分析单元检测
(时间:60分钟 分值:100分)
一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项正确)
1.某鞋商在进行市场占有率的调查时,他最关注的是( ).
A .鞋型号的平均数
B .鞋型号的众数
C .鞋型号的中位数
D .最小的鞋型号
2.已知一组数据5,15,75,45,25,75,45,35,45,35.那么40是这一组数据的( ).
A .平均数但不是中位数
B .平均数也是中位数
C .众数
D .中位数但不是平均数
3.在样本方差的计算公式2221101[(20)(20)]10
s x x L =-++-中,10和20分别表示( ).
A .容量、方差
B .平均数、容量
C .容量、平均数
D .标准差、平均数
4.某居民一家6人向汶川灾区捐款数目如下:(单位:元)200,170,150,170,30,120.请问这组数据的平均数和众数分别是( ).
A .140和160
B .140和170
C .170和170
D .170和160
5.数据1,2,2,3,3的极差为( ).
A .1
B .2
C .3
D .6
6.一组数据2,3,5,4,4,6的中位数和平均数分别是( )
A.4.5和4
B.4和4
C.4和4.8
D.5和4
7.如果一组数据的方差是2,那么这一组数据都扩大2倍后所构成的新的数据的方差为( ).
A .16
B .8
C .4
D .2
8.把一组数据中的每一个数据都减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )
A.78.8,75.6
B.78.8,4.4
C.81.2,84.4
D.81.2,4.4
9.某同学使用计数器求30个数据的平均数时将其中一个数据105输入为15.那么由此求出的平均数与实际平均数的差为
( ).
A .3.5
B .5
C .-3.5
D .-3
10.某中学人数相等的甲、乙两班学生参加了同一次数学检测, 各班平均分和方差分别为:82x 甲=分,82x 乙=分,2245s 甲=,190s 2乙=,那么成绩较为整齐的是( ).
A .甲班
B .乙班
C .两班一样整齐
D .无法确定
11.某中学随机调查了50名学生,了解他们一周在校的体育锻
炼时间,结果如下表所示:
则这50( )
A.6.2小时
B.6.4小时
C.6.5小时
D.7小时
12.从鱼塘捕获同时放养的鲤鱼120条,从中任选8条称得每条鱼的质量分别是:1.4,1.7,1.5,1.4,1.4,1.2,1.7,1.1(单位:千克),那么估计这120条鱼的总质量大约为( )千克.
A .180
B .170
C .18
D .20
二、填空题(本题共6小题,每小题3分,共18分)
13.有一组数据,5,6,6,X ,其中位数与平均数相等,则X 的值为__________.
14.某日天气预报说今天最高气温为8 ℃,气温的极差为9 ℃,则该日最低气温为__________ ℃.
15.某射击运动爱好者在一次比赛中,共射击10次,前6次射击共中53环(环数是整数),如果他想取得不低于89环的成绩,第7次射击不能少于__________环.
16. 为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩都为9.3环;方差分
别为s 甲2=1.22,s 乙2=1.68,s 丙2=0.44,则应该选_____________参加全运会.
17.两组数据:3,a,2b,5与a,6,b 的平均数都是6,若将这两组数据
合并为一组数据,则这组新数据的中位数为_____________.
18.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,以此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=_____________ (用只含有k的代数式表示).
三、计算题(共46分,要求写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能给分)
19.(10分)某校为了充实师资力量,决定招聘一位数学教师,对应聘者进行笔试和试讲两项综合考核,根据重要性,笔试成绩占30%,试讲成绩占70%.应聘者张颖、李默两人的得分如下表,如果你是校长,你会录用谁?请说明理由.
20.(10分)每年3
小组为了了解今年植树情况,对一个有500户居民的村庄进行调查,他们随机调查了10户家庭.这10户家庭当天植树的棵数分别是:5,4,10,6,1,6,3,4,6,5,根据以上数据回答下列问题:
(1)此次调查中,这10户家庭当天植树的棵数的众数是__________,中位数是__________,平均数是__________.
(2)请你估计这个村庄当天植树多少棵?
(3)你对这次活动有何感想,请你说一句体会或提一条合理化
建议.
21.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况
如下表:
5 10 15 20 25 30
人数11 9 6 2 1 1
(2)求这30名同学捐款的平均数.
22.为了宣传节约用水,小明随机调查了某小区家庭5月份的用水情况,并将收集的数据整理成如图所示的统计图.
(1)小明一共调查了多少户家庭?
(2)求所调查家庭5月份用水量的众数、平均数;
(3)若该小区有400户居民,请你估计这个小区5月份的用水量.
23.下表是光明中学七(5)班全班40名学生的出生月份的调查记录:
2 8 9 6 5 4
3 3 11 10
11 2 12 7 2 9 12 8 1 12
12 10 12 3 4 9 12 3 5 10
11 4 12 10 5 3 2 8 10 12
(1)
数情况一目了然;
(2)求出10月份出生的学生的频数和频率;
(3)现在是1月份,如果你准备为下个月生日的每一名学生送一份礼物,那么你应该准备多少份礼物?
24.我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了了解学生们的劳动情况,学校随机调查了部分学生的劳动时间,并用得到的数据绘制了如图所示不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整.
(2)扇形图中的“1.5时”部分的圆心角是多少度?
(3)求抽查的学生劳动时间的众数和中位数.。